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ASYMPTOTICS OF UTILITY FROM TERMINAL WEALTH
FOR PARTIALLY OBSERVED PORTFOLIOS

Abstract. We study the asymptotical behaviour of expected utility from
terminal wealth on a market in which asset prices depend on economic factors
that are unobserved or observed with delay.

1. Introduction. In this paper we consider a discrete time market con-
sisting of a bank account with interest rate for simplicity equal to 0 and a
risky asset with price S(n) at time n. We shall assume that the asset price,
which is observed, depends on an unobserved or partially observed Markov
process of economic factors (xn) on a Polish space E with transition op-
erator P , which is Feller, i.e., it transforms the set of continuous bounded
functions into itself. Let Xn = σ{xi, i ≤ n} and Y n = σ{S(i), i ≤ n}, and
let B(E) denote the set of Borel subsets of E. We assume that
(1.1) P{xn+1 ∈ A |Xn, Y n} = P (xn, A)

P -a.e. for A ∈ B(E). Let

(1.2) rn :=
S(n)

S(n− 1)
.

We shall assume the asset price S(0) at time 0 is deterministic, and therefore
Y n = σ{ri, i ≤ n}. The dynamics of rn depends on economic factors in the
following way:

(1.3) P{rn+1 ∈ B |Xn+1, Y n} =
�

B

q(xn+1, rn, y) ν(dy)

P -a.e. for B ∈ B((0,∞)), where ν ∈ P((0,∞)), the set of probability mea-
sures on (0,∞), and q > 0 is a bounded continuous function. Since we would
like to have formula (1.3) valid also for n = 0 we assume that we know

2010 Mathematics Subject Classification: Primary 93E20; Secondary 91B16.
Key words and phrases: utility, terminal wealth, asymptotics, partially observed economic
factors.

DOI: 10.4064/am39-4-4 [445] c© Instytut Matematyczny PAN, 2012



446 Ł. Stettner

the initial value r0 of the dynamics rn. At each time n we choose, based on
available observation, the portion bn of capital invested in the risky asset.
Since we do not admit shortselling or shortborrowing, our control parameter
bn at time n should take values from S = [0, 1]. Starting with initial wealth
W0 the wealth Wn at time n is given by the formula

(1.4) Wn = Wn−1(1− bn−1 + bn−1rn) for n ≥ 1.

Our problem is to determine the asymptotics of the optimal utility from
terminal wealth, i.e. of sup(bn)E{U(WT )}, where U is one of the following
utility functions: U(W ) = lnW , U(W ) = Wα with α ∈ (0, 1), or U(W ) =
1 −W−α with α > 0. In other words we are looking for a λ such that for
large T > 0,

(1.5) sup
(bn)

E{U(WT )} ∼ U(eλT ),

where ∼ means the same order. This way the problem leads to a suitable
infinite time horizon control problem, where λ plays the role of an optimal
value of a suitable long run cost functional. This problem has been studied
intensively with complete observation for the logarithmic utility function
under the name of the Kelly capital growth investment criterion (see [6]
and the references therein). A similar problem with transaction costs was
considered in [4] and in [10], where additionally the power utility function
was also studied. A risk sensitive portfolio problem with partial observation
of economic factors was studied for a general discrete time model in [9].

In this paper we characterize the asymptotics of the logarithmic and
negative power utility functions for a discrete time model with unobserved
economic factors and then study the asymptotics of the logarithmic, negative
and positive power utility functions in the case of delay in the observation of
economic factors. Solutions to both asymptotical problems, i.e., the problems
with partial or with delayed observation, seem to be new. The study of the
growth optimal portfolio with unobserved economic factors strongly relies
on the recent result of [11] on ergodicity of hidden Markov processes.

2. Ergodicity of hidden Markov processes. We shall assume that
the portion bn ∈ S of the capital invested in the asset at time n is adapted
only to Y n, i.e. we observe the asset prices and our information about the
economic factors (xn) comes from the observation of (S(n)). By (1.3) it is
clear that the pair (rn, xn) forms a Markov process. Given the initial law µ of
the Markov process (xn) define the following sequence of random measures:
π0(A) = µ(A) and

(2.1) πn+1(A) =

	
A q(z, rn, rn+1)P (πn, dz)	
E q(z, rn, rn+1)P (πn, dz)

=:
N(rn, rn+1, πn)(A)

N(rn, rn+1, πn)(E)
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for A ∈ B(E) where P (πn, A) =
	
E P (x,A)πn(dx), defining moreover im-

plicitly random measures N(rn, rn+1, πn)(·) ∈M(E), where M(E) is the set
of finite measures on E. One can easily prove (see e.g. [8, proof of Lemma
1.1.1])

Lemma 2.1. The process πn defined in (2.1) is a representation of the
conditional probability

(2.2) πn(A) = P{xn ∈ A |Y n}
for A ∈ B(E), P -a.e., and the pair (rn, πn) forms a Markov process with
transition operator Π.

Notice that when studying the optimal asymptotics (1.5) of the utility
from terminal wealth, it is important that the pair (rn, πn) is a non-controlled
Markov process.

Let Λn(ω) =
∏n−1
i=0 q(xi+1(ω), ri(ω), ri+1(ω)) and let P 0 be a probability

measure such that the restrictions P 0
|n and P|n of P 0 and P respectively to

the σ-field Xn ∨ Y n satisfy the formula P|n(dω) = Λn(ω)P 0
|n(dω). We have

(see [8, proof of Lemma 1.1.8])

Lemma 2.2. Under P 0, (rn) is i.i.d. with law ν independent of (xn),
and (xn) is Markov with transition operator P (x, dx′).

For A ∈ B(E) let

(2.3) Nn(r, r1, . . . , rn, η)(A) = N(rn−1, rn, Nn−1(r, r1, . . . , rn−1, η))(A)

with N1 = N defined in (2.1).
From [1, Lemma 4] we obtain

Lemma 2.3. The transition operator Π of the pair (rn, πn) and its iter-
ations are respectively of the form

(2.4) ΠF (r, µ) = Erµ{F (r1, π1)} = E0{SF (r1, N(r, r1, µ))}
and

(2.5) ΠnF (r, µ) = Erµ{F (rn, πn)} = E0{SF (rn, Nn(r, r1, . . . , rn, µ))}
for any bounded Borel function F : (0,∞) × P(E) → R, with SF (r, ζ) :=
ζ(E)F (r, ζ/ζ(E)) for ζ ∈M(E).

We introduce the following assumption:

(A) there is a probability measure φ ∈ P(E × (0,∞)) such that

P{(xn, rn) ∈ ·} → φ(·) in variation norm as n→∞.

This assumption is clearly satisfied for a wide family of ergodic processes
called positive aperiodic Harris processes (see Theorem 13.3.1 of [7]). From
[11] we have
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Theorem 2.4. Under (A) there is a unique invariant measure Φ for the
pair (rn, πn), and Πn converges to Φ in variation norm as n→∞.

Remark 2.5. If the convergence in (A) is replaced by convergence in
the weak topology then we may have more invariant measures for the pair
(rn, πn), as is shown in [13]. The long standing problem of filling the gap
in the famous paper [5] has been partially solved in [12] and [11]. It is still
an open problem to clarify what we should add to the weak convergence of
P{(xn, rn) ∈ ·} to φ(·) as n → ∞ to get a unique invariant measure Φ for
the pair (rn, πn).

Using Theorem 2.4 we can characterize the optimal asymptotics of the
logarithmic utility function. We have

Proposition 2.6. Under (A), assuming that

(I) L = sup
x∈E

sup
r∈(0,∞)

sup
b∈[0,1]

∣∣∣∞�
0

�

E

ln(1− b+ by)q(x′, r, y)P (x, dx′) ν(dy)
∣∣∣ <∞

and that for all ε > 0, C compact in E and C1 compact in (0,∞) there exists
K compact in (0,∞)× E such that

(2.6) sup
x∈C

sup
r∈C1

sup
b∈S

�

Kc

|ln(1− b+ by)|q(x′, r, y)P (x, dx′) ν(dy) < ε,

we have

(2.7) lim
T→∞

sup
(bn)

1

T
E{lnWT } = λ,

where

(2.8) λ =
�

(0,∞)×P(E)

F (b̃(r, η), r, η)Φ(dr, dη)

with

F (b, r, η) =
�

E

�

E

�

(0,∞)

ln(1− b+ by)q(x′, r, y) ν(dy)P (x, dx′) η(dx)

and b̃(r, η) = argmaxb∈S F (b, r, η). Furthermore an optimal control is of the
form bi = b̃(ri, πi).

Proof. Note first that

E{lnWT } = lnW0 +

T−1∑
i=0

E{ln(1− bi + biri+1)}.
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Furthermore

E{ln(1− bi + biri+1)}

= E
{ �

E

�

(0,∞)

ln(1− bi + biy)q(x′, ri, y) ν(dy)P (xi, dx
′)
}

= E
{ �

E

�

E

�

(0,∞)

ln(1− bi + biy)q(x′, ri, y) ν(dy)P (x, dx′)πi(dx)
}

= E{F (bi, ri, πi)}
and by (I) the function F is bounded. By (2.6) the condition (5.1) (see
Appendix) is satisfied, and using Proposition 5.1 we obtain the existence of
a continuous selector b̃. Consequently, bi of the form b̃(ri, πi) is an optimal
control maximizing E{ln(1 − bi + biri+1)} at time i. Since we practically
maximize each term of

∑T−1
i=0 E{ln(1− bi + biri+1)}, and by Theorem 2.4

E{F (b̃(ri, πi), ri, πi)} →
�

(0,∞)×P(E)

F (b̃(r, η), r, η)Φ(dr, dη)

as i→∞, we finally obtain (2.7), which completes the proof.

3. Asymptotics of negative power utility functions. In this section
we consider the case of the negative power utility function U(W ) = 1−W−α,
with α > 0. Maximizing the expected utility from terminal wealth in this
case we minimize

(3.1) E
{ T−1∏
i=0

(1− bi + biri+1)−α
}

= E
{ T−1∏
i=0

e−αG(ri+1,bi)
}

with G(r, b) = ln(1− b+ br). Consequently, we are looking for λ such that

(3.2) e−αλT ∼ inf
(bi)

E
{ T−1∏
i=0

(1− bi + biri+1)−α
}
.

The cost functional on the right hand side of (3.1) is close to the risk
sensitive cost functional studied in [9]. We consider first the discounted risk
sensitive control problem consisting in minimizing, for given β ∈ (0, 1) and
γ ∈ (0, 1], the cost functional

(3.3) Jβγr,µ((bn)) = E
[ ∞∏
i=0

(1− bi + biri+1)−αβ
iγ
]

= E
{ ∞∏
i=0

e−αβ
iγG(ri+1,bi)

}
.

Let

(3.4) wβ(r, η, γ) = inf
(bn)

Jβγr,η ((bn)).

We have
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Theorem 3.1. Under the assumption (I) of Proposition 2.6, the function
wβ defined in (3.4) is a solution to the Bellman equation

(3.5) wβ(r, η, γ) = inf
b∈S

∞�

0

e−αγG(y,b)Swβ(y,N(r, y, η), γβ) ν(dy),

with the operator S defined in Lemma 2.3, and wβ takes values in the interval
(0, 1] and is bounded away from 0 (i.e. there is an a > 0 such that wβ ≥ a).
Moreover the mapping P(E) 3 η 7→ wβ(r, η, γ) is concave.

Proof. Define an operator T on bounded measurable functions w on
(0,∞)× P(E)× (0, 1) by the formula

Tw(r, η, γ) = inf
b∈S

∞�

0

e−αγG(y,b)Sw(y,N(r, y, η), γβ) ν(dy).

Letting b = 0 it is clear that T1(r, η, γ) ≤ 1. The operator T is monotone
and therefore the sequence Tn1(r, η, γ) is nonincreasing and nonnegative.
Moreover one can show that Tn1(r, η, γ) is the optimal value of the cost
functional E{

∏n
i=0 e

−αβiγG(ri+1,bi)}. Consequently, Tn1(r, η, γ) has a limit
wβ(r, η, γ), and this limit is also a solution to (3.5).

We now show the concavity of the mapping P(E) 3 η 7→ wβ(r, η, γ).
Since

T1(r, η, γ) = inf
b∈S

∞�

0

e−αγG(y,b)N(r, y, η)(E) ν(dy),

the mapping η 7→ T1(r, η, γ) is concave as the infimum of linear functions.
By Lemma 2 of [2] the mapping M(E) 3 ζ 7→ ST1(r, ζ, γ) is also concave.
Consequently, the mapping P(E) 3 η 7→ ST 21(r, η, γ) is concave and by
induction for each n the mapping P(E) 3 η 7→ STn1(r, η, γ) is concave and
the same is true for the limit function wβ .

To show that wβ is bounded away from 0 we use the Jensen inequality:

E{e−αβiγG(ri+1,bi) |Y i} ≥ exp{E{−αβiγG(ri+1, bi) |Y i}}

≥ exp
{
−αβi sup

x∈E
sup

r∈(0,∞)
sup
b∈[0,1]

∣∣∣∞�
0

�

E

G(y, b)q(x′, r, y)P (x, dx′) ν(dy)
∣∣∣}

and by (I) we obtain

(3.6) wβ(r, η, γ) ≥ e−αγL
∑∞
i=0 β

i
.

Consequently, wβ is bounded away from 0 and is an optimal value of the
cost functional (3.3).
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We now impose the following assumptions:

sup
r,r′∈(0,∞)

sup
x∈E

sup
y∈(0,∞)

q(x, r, y)

q(x, r′, y)
:= q̄ <∞,(B1)

sup
x,x′∈E

sup
A

P (x,A)

P (x′, A)
:= p̄ <∞.(B2)

We have

Proposition 3.2. Under (B1), (B2) and (I) we have

(3.7) Swβ(y,N(r, y, η), γβ) ≥ 1

p̄q̄
Swβ(y,N(r′, y, η′), γβ)

for r, y ∈ (0,∞) and η, η′ ∈ P(E). Furthermore

(3.8) (q̄(r′, r)p̄(η′, η))−1 ≤ wβ(r, η, γ)

wβ(r′, η′, γ)
≤ q̄(r, r′)p̄(η, η′)

with

p̄(η, η′) = sup
A

P (η,A)

P (η′, A)
and q̄(r, r′) = sup

x∈E, y∈(0,∞)

q(x, r, y)

q(x, r′, y)
.

Proof. By (B1) and (B2) for A ∈ B(E), r, r′, y ∈ (0,∞) and η, η′ ∈ P(E)
we have

N(r′, y, η′)(A) =
�

A

q(z, r′, y)P (η′, dz) ≤ q̄
�

A

q(z, r, y)P (η′, dz)

≤ p̄q̄
�

A

q(z, r, y)P (η, dz) = p̄q̄N(r, y, η)(A).

Therefore N(r, y, η)− (p̄q̄)−1N(r′, y, η′) ∈M(E) and whenever p̄q̄ > 1,

d(r, r′, y, η, η′) :=
1

1− (p̄q̄)−1
N(r, y, η)− (p̄q̄)−1N(r′, y, η′)

is a nontrivial measure from M(E). When p̄q̄ = 1, since p̄ ≥ 1 and q̄ ≥ 1
we have a trivial case for which (3.7) is clearly satisfied. Therefore we can
restrict ourselves to p̄q̄ > 1. Then by concavity of P(E) 3 ζ 7→ Swβ(y, ζ, γβ),
which follows from Lemma 2 of [2] (or the proof of Theorem 3.1), we obtain

Swβ(y,N(r, y, η), γβ) ≥ 1

p̄q̄
Swβ(y,N(r′, y, η′), γβ)

+ (1− (p̄q̄)−1)Swβ(y, d(r, r′, y, η, η′), γβ)

≥ 1

p̄q̄
Swβ(y,N(r′, y, η′), γβ),

which completes the proof of (3.7). Moreover

N(r′, y, η′) ≤ q̄(r′, r)p̄(η′, η)N(r, y, η)
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and by similar arguments to those above

Swβ(y,N(r, y, η), γβ) ≥ 1

p̄(η′, η)q̄(r′, r)
Swβ(y,N(r′, y, η′), γβ),

and therefore from (3.5) we obtain

wβ(r, η, γ)

wβ(r′, η′, γ)
≥ 1

p̄(η′, η)q̄(r′, r)
.

Replacing r by r′ and η by η′ we immediately obtain the second part of
(3.8).

Remark 3.3. One could try to use the same method for the power utility
function U(W ) = Wα with α ∈ (0, 1). However, then an analog of the
function wβ is convex in η and consequently we do not obtain (3.7), which is
crucial in the proof of Theorem 3.5, based on a vanishing discount argument.

In what follows we fix η̄ ∈ P(E) and r̄ ∈ (0,∞) and define

vβ(r, η, γ) :=
wβ(r, η, γ)

wβ(r̄, η̄, γ)
and κβ(γ) :=

wβ(r̄, η̄, γ)

wβ(r̄, η̄, γβ)
.

Then from (3.5) we have

(3.9) vβ(r, η, γ)κβ(γ) = inf
b∈S

∞�

0

e−αγG(y,b)Svβ(y,N(r, y, η), γβ) ν(dy).

The following estimates will be important:

Corollary 3.4. We have

(3.10) e−αγL ≤ κβ(γ) ≤ p̄q̄.
Proof. Since by Jensen’s inequality

wβ(r̄, η̄, γβ) ≤ wβ(r̄, η̄, γ)β,

using (3.6) we obtain

κβ(γ) ≥ wβ(r̄, η̄, γ)1−β ≥ e−αγL.
From (3.8),

wβ
(
y,

N(r, y, η)

N(r, y, η)(E)
, γβ

)
≤ p̄q̄wβ(y′, η̄, γβ),

and therefore from (3.5),

wβ(r̄, η̄, γ) ≤ p̄q̄ inf
b∈S

∞�

0

�

E

e−αγG(y,b)wβ(r̄, η̄, γβ)q(x′, r, y)P (η̄, dx′) ν(dy)

≤ p̄q̄wβ(r̄, η̄, γβ),

from which the second part of (3.10) follows.



Asymptotics of utility from terminal wealth 453

We impose a further assumption:

(C1) p̄(η, η′) → 0 when η′ ⇒ η in the weak topology of P(E), and
q̄(r, r′)→ 0 when r′ → r.

We have

Theorem 3.5. Under (B1), (B2), (I) and (C1), for every γ > 0 there is
λ(γ) and a continuous bounded function (r, η) 7→ v(r, η, γ) such that

(3.11) v(r, η, γ)e−αλ(γ) = inf
b∈S

∞�

0

e−αγG(y,b)Sv(y,N(r, y, η), γ) ν(dy)

and

λ(γ) = lim
T→∞

−1

αγT
ln inf

(bi)
E
{ T−1∏
i=0

(1− bi + biri+1)−αγ
}
,

so that λ(1) is the optimal asymptotics of the negative power utility function
and the optimal control is of the form bi = b̃(ri, πi, 1) for i = 0, 1, . . . , where
b̃ is a continuous selector for which the infimum on the right hand side of
(3.11) with γ = 1 is attained.

Proof. By (C1) and (3.8) the family {vβ(r, η, γ) : β ∈ (0, 1), γ > 0} is
bounded and equicontinuous so that by Ascoli–Arzelà theorem and (3.10)
we have the following convergences of suitable subsequences (with βn → 1) :

vβn(r, η, γβjn) → vj(r, η) uniformly in r, η on compact sets and κβn(γβjn)
→ κj as n → ∞. Choosing further subsequences (using again Proposition
3.2 and Corollary 3.4) we find a subsequence jm →∞ such that vjm(r, η)→
v(r, η, γ) uniformly in r and η on compact subsets and κjm → e−αλ(γ). Con-
sequently, from (3.9) we obtain (3.11). The mapping (r, η) 7→ v(r, η, γ) is
continuous. Since e−αγG(y,b) = (1 − b + by)−αγ is a strictly convex function
of b, the function

b 7→
∞�

0

e−αγG(y,b)Sv(y,N(r, y, η), γ) ν(dy)

is also strictly convex, and by a version of Proposition 5.1 for strictly con-
vex functions we obtain the existence of a continuous (in r and η) selec-
tor b̃(r, η, λ). The optimality of λ(1) and of the control b̃(ri, πi, 1) follows
from [2].

4. Asymptotics of utility from terminal wealth for models with
delayed observation. In this section we assume that economic factors are
observed with a fixed delay k, i.e. at time n+k we know the value of xn but
we do not know xn+i for i > 0. Define the following sequence of measures
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for A ∈ B(E):

(4.1) π̃kn+k(A) =
N(rn+k−1, rn+k, π̃

k−1
n+k−1)(A)

N(rn+k−1, rn+k, π̃
k−1
n+k−1)(E)

with π̃0
n(A) = δA(xn), and the operator N defined in (2.1). Recalling that

Xn = σ{xi, i ≤ n} and Y n+k = σ{ri, i ≤ n + k} we have (see the proof of
Lemma 1.1.1 in [8])

Lemma 4.1. For A ∈ B(E) we have

(4.2) π̃kn+k(A) = P{xn+k ∈ A |Xn, Y n+k}
P -a.e. and

π̃kn+k(A) =
Nk(rn, rn+1, . . . , rn+k, δxn)(A)

Nk(rn, rn+1, . . . , rn+k, δxn)(E)
(4.3)

= M̃k(rn, rn+1, . . . , rn+k, xn)(A)

with operator Nk defined in (2.3), and δx the Dirac measure at x.

For A ∈ B(E) let

(4.4) πn,n+k
n+1 (A)

=

	
ANk−1(rn+1, rn+2, . . . , rn+k, δz)(E)q(z, rn, rn+1)P (xn, dz)

Nk(rn, rn+1, . . . , rn+k, δxn)(E)

=: Mk(rn, rn+1, . . . , rn+k, xn)(A).

We have (see again the proof of Lemma 1.1.1 in [8])

Lemma 4.2. For A ∈ B(E),

(4.5) πn,n+k
n+1 (A) = P{xn+1 ∈ A |Xn, Y n+k}

P -a.e.

In the next lemma we markovianize our problem:

Lemma 4.3. The (k + 2)-tuple (xn, rn, rn+1, . . . , rn+k) forms a Markov
process with transition operator P defined implicitly as follows:

(4.6) E[f(xn+1, rn+1, rn+2, . . . , rn+k+1) |Xn, Y n+k]

=
�

E

∞�

0

f(z, rn+1, . . . , rn+k, y)
�

E

q(x′, rn+k, y)

· P (M̃k−1(rn+1, . . . , rn+k, z), dx
′) ν(dy)Mk(rn, rn+1, . . . , rn+k, xn)(dz)

=
�

E

∞�

0

f(z, rn+1, . . . , rn+k, y)P(xn, rn, rn+1, . . . , rn+k, dy, dz)

= Pf(xn, rn, rn+1, . . . , rn+k).
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Given nice ergodic properties of the processes (xn) and (rn), the kth
iteration Pk of the operator P inherits ergodic properties. Namely, we have

Proposition 4.4. Under (B1), (B2) the operator P is uniformly ergodic,
i.e., its iterations uniformly approximate a unique invariant measure Ψ .

Proof. We show first that the operator Pk+1 is uniformly ergodic. Note
that for a bounded Borel measurable function f on E × (0,∞)k+1 we have

(4.7) Pk+1f(xn, rn, rn+1, . . . , rn+k)

= E{f(xn+k+1, rn+k+1, rn+k+2, . . . , rn+2k+1) |Xn, Y n+k}.

Furthermore

(4.8) E{f(xn+k+1, rn+k+1, rn+k+2, . . . , rn+2k+1) |Xn+k, Y n+k}

=
�

E

∞�

0

. . .
�

E

∞�

0

f(x(k+1), y(k+1), y(k), . . . , y(1), y)q(x, y(1), y)

· ν(dy)P (x(1), dx)q(x(1), y(2), y(1))ν(dy(1))P (x(2), dx(1))

. . . q(x(k+1), rn+k, y
(k+1))ν(dy(k+1))P (xn+k, dx

(k+1))

and therefore

(4.9) E{f(xn+k+1, rn+k+1, rn+k+2, . . . , rn+2k+1) |Xn, Y n+k}

=
�

E

∞�

0

. . .
�

E

∞�

0

f(x(k+1), y(k+1), y(k), . . . , y(1), y)q(x, y(1), y)

· ν(dy)P (x(1), dx)q(x(1), y(2), y(1))ν(dy(1))P (x(2), dx(1))

. . . q(x(k+1), rn+k, y
(k+1))ν(dy(k+1))P (π̃kn+k, dx

(k+1)).

Consequently, under (B1) and (B2) we have

(4.10) sup
A∈B(E×(0,∞)k+1)

sup
(x,r,r1,...,rk),(x̄,r̄,r̄1,...,r̄k)∈E×(0,∞)k+1

(P(x, r, r1, . . . , rk, A)−P(x̄, r̄, r̄1, . . . , r̄k, A)) < 1,

which by part (b) of Section 5.5 in [3] implies uniform ergodicity of Pk+1,
i.e. the iterations of the operator Pk+1 approximate uniformly an invariant
measure Ψ . Therefore denoting by [x] the integer part of x we have

Pnf = Pn−[ n
k+1

](k+1)(Pk+1)[ n
k+1

]f → Pn−[ n
k+1

](k+1)Ψ(f) = Ψ(f)

as n→∞, which shows uniqueness of the invariant measure Ψ and completes
the proof.

We can now summarize our results for the logarithmic utility function.
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Proposition 4.5. Under (B1), (B2) and (I), for the logarithmic utility
function the optimal growth rate λ is of the form

(4.11) λ =
�

E×(0,∞)k+1

∞�

0

ln
(
1− b̃(x, r, r(1), . . . , r(k))

+ b̃(x, r, r(1), . . . , r(k))y)P(x, r, r(1), . . . , r(k), dy, E)

· Ψ(dx, dr, dr(1), . . . , dr(k)),

where Ψ is the unique invariant measure of the operator P, and b̃ is the
unique continuous selector for which the following supremum is attained:

(4.12) sup
b∈S

∞�

0

ln(1− b+ by)P(xi, ri, ri+1, . . . , ri+k, dy, E).

Furthermore the optimal control is of the form bi+k = b̃(xi, ri, ri+1, . . . , ri+k).

Proof. We have P -a.e.

(4.13) sup
b∈S

E[ln(1− b+ brn+k+1) |Xn, Y n+k]

= sup
b∈S

∞�

0

ln(1− b+ by)N(rn+k, y, π̃
k
n+k)(E) ν(dy)

= sup
b∈S

∞�

0

ln(1− b+ by)P(xn, rn, rn+1, . . . , rn+k, dy, E).

By Proposition 5.1 there exists a continuous selector b̃ for which the supre-
mum in (4.12) is attained. By (I) the last term of (4.13) is a bounded function
of (xn, rn, rn+1, . . . , rn+k), so that by uniform ergodicity of P (using Propo-
sition 4.4) we obtain the form (4.11) of λ. The form of the optimal control
immediately follows from (4.12) and (4.13).

We now consider the cases with multiplicative functionals, i.e. first when
U(W ) = Wα with α ∈ (0, 1) and then U(W ) = 1 −W−α with α > 0. We
use the vanishing discount approach in a similar way to Section 3. Consider
first the discounted control problem for β ∈ (0, 1) and γ ∈ (0, 1],

Jβγx,r,r1,...,rk((bn)) = E
[ ∞∏
i=0

(1− bk+i + bk+irk+i+1)αβ
iγ
]

(4.14)

= E
{ ∞∏
i=0

eαβ
iγG(rk+i+1,bk+i)

}
with G(r, b) = ln(1− b+ br). Let
(4.15) wβ(x, r, r1, . . . , rk, γ) = sup

(bn)
Jβγx,r,r1,...,rk((bn)).



Asymptotics of utility from terminal wealth 457

We shall assume that

(I1) L1 := sup
(x,r,r1,...,rk)∈E×(0,∞)k+1

sup
b∈S

Ex,r,r1,...,rk{(1− b+ brk+1)α} <∞.

We have

Proposition 4.6. Under the assumption (I1) function wβ defined in
(4.15) is a bounded solution, with values in (1,∞), to the Bellman equation

(4.16) wβ(x, r, r1, . . . , rk, γ) = sup
b∈S

∞�

0

eαγG(y,b)

· wβ(x′, r1, . . . , rk, y, γβ)q(x′, rn+k, y)P (π̃kn+k, dx
′) ν(dy)

with π̃kn+k defined in (4.1).

Proof. By Jensen’s inequality

(4.17) E[(1− bk+i + bk+irk+i+1)αβ
iγ ]

≤ (E[(1− bk+i + bk+irk+i+1)α])β
iγ ≤ Lβ

iγ
1 .

Define the operator T by the right hand side of (4.16) on bounded functions
w on E × (0,∞)k+1 × (0, 1]:

Tw(x, r, r1, . . . , rk, γ) = sup
b∈S

∞�

0

eαγG(y,b)

· w(x′, r1, . . . , rk, y, γβ)q(x′, rn+k, y)P (π̃kn+k, dx
′) ν(dy).

Clearly letting b = 0 we have T1 ≥ 1 and therefore Tn1 is nondecreasing
and bounded by (4.17). Furthermore Tn1 is an optimal value of the cost
functional

E
{ n−1∏
i=0

eαβ
iγG(rk+i+1,bk+i)

}
and the limit wβ of the sequence Tn1 is a solution to (4.16).

Now we fix x̄ ∈ E, r̄, r̄1, . . . , r̄k ∈ (0,∞) and define

vβ(x, r, r1, . . . , rk, γ) :=
wβ(x, r, r1, . . . , rk, γ)

wβ(x̄, r̄, r̄1, . . . , r̄k, γ)
,

κβ(γ) :=
wβ(x̄, r̄, r̄1, . . . , r̄k, γ)

wβ(x̄, r̄, r̄1, . . . , r̄k, γβ)
.
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From (4.16) we then have

(4.18) vβ(x, r, r1, . . . , rk, γ)κβ(γ) = sup
b∈S

∞�

0

e−αγG(y,b)

· vβ(x′, r1, . . . , rk, y, γβ)q(x′, rn+k, y)P (π̃kn+k, dx
′) ν(dy)

and letting β → 1 and choosing subsequences we obtain

Theorem 4.7. Under (B1), (B2), (C1) and (I1) there is λ and a con-
tinuous bounded function v such that

(4.19) v(x, r, r1, . . . , rk)e
αλ

= sup
b∈S

∞�

0

�

E

eαG(y,b)v(z, r1, . . . , rk, y)P(x, r, r1, . . . , rk, dy, dz)

and

λ = lim
T→∞

1

αT
sup
(bn)

lnE
[ T−1∏
i=0

(1− bk+i + bk+irk+i+1)α
]
,

i.e. λ is the optimal asymptotics of the power utility function. Furthermore
the optimal strategy is of the form bi+k = b̃(xi, ri, ri+1, . . . , ri+k), where b̃
is a continuous function for which the supremum on the right hand side of
(4.19) is attained.

Proof. Note that under (C1) and (I1), wβ = T k+1wβ with T defined in
the proof of Proposition 4.6 is a continuous function. Consequently, vβ is
continuous as well. By (B1) and (B2), vβ is uniformly (in β) bounded from

below and from above by a positive constant. By (4.17), κβ(γ) ≥ L
(1−β) γ

1−β
1

= Lγ1 . Since v
β is bounded (from below and from above by a positive con-

stant), by (4.18) there is a convergent subsequence βn → 1 such that for
fixed γ ∈ (0, 1] the sequence κβn(γ) converges to 0 < κ(γ) <∞. By (C1) the
functions vβ are equicontinuous in β so that using the Ascoli–Arzelà theorem
there is a subsequence of (βn) (not relabelled) and a continuous function v
such that vβn(x, r, r1, . . . , rk, γ) → v(x, r, r1, . . . , rk, γ) as n → ∞ uniformly
in (x, r, r1, . . . , rk) from compact subsets of E× (0,∞)k+1. Letting γ = 1 we
obtain (4.19) with λ = 1

α lnκ(1). The existence of a continuous selector b̃
follows from Proposition 5.1 below. The optimality of λ and the form of the
optimal strategy b̃ follow directly from (4.19) and the boundedness of v.

In the case of the negative power utility function we first minimize the
discounted cost functional for β ∈ (0, 1) and γ ∈ (0, 1],
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J̄βγx,r,r1,...,rk((bn)) = E
[ ∞∏
i=0

(1− bk+i + bk+irk+i+1)−αβ
iγ
]

(4.20)

= E
{ ∞∏
i=0

e−αβ
iγG(rk+i+1,bk+i)

}
,

and characterize

(4.21) w̄β(x, r, r1, . . . , rk, γ) = inf
(bn)

J̄βγx,r,r1,...,rk((bn)).

By analogy to Theorem 3.1, Proposition 4.6 and Theorem 4.7 one can prove

Proposition 4.8. Under the assumption (I) the function w̄β defined in
(4.15) is a bounded solution, with values in (0, 1], to the Bellman equation

(4.22) w̄β(x, r, r1, . . . , rk, γ) = inf
b∈S

∞�

0

e−αγG(y,b)

· w̄β(x′, r1, . . . , rk, y, γβ)q(x′, rn+k, y)P (π̃kn+k, dx
′) ν(dy)

with π̃kn+k defined in (4.1).

Theorem 4.9. Under (B1), (B2), (C1) and (I) there is λ and a contin-
uous bounded function v̄ such that

(4.23) v̄(x, r, r1, . . . , rk)e
−αλ

= inf
b∈S

∞�

0

�

E

e−αG(y,b)v̄(z, r1, . . . , rk, y)P(x, r, r1, . . . , rk, dy, dz)

and

λ = lim
T→∞

−1

αT
inf
(bn)

lnE
[ T−1∏
i=0

(1− bk+i + bk+irk+i+1)−α
]
,

i.e. λ is the optimal asymptotics of the negative power utility function. Fur-
thermore the optimal strategy is of the form bi+k = b̃(xi, ri, ri+1, . . . , ri+k),
where b̃ is a continuous function for which the infimum on the right hand
side of (4.23) is attained.

5. Appendix. We formulate here a continuous selection theorem which
is frequently used in this paper.

Proposition 5.1. Let G be a Polish space, (0,∞) 3 u 7→ f(u) ∈ R
be strictly concave and G 3 z 7→ Q(z, ·) ∈ P((0,∞)) be weakly continuous.
Suppose that the following tightness property is satisfied: for all ε > 0 and C
compact in G there exists K compact in (0,∞) such that

(5.1) sup
z∈C

sup
b∈S

�

Kc

|f(1− b+ by)|Q(z, dy) < ε.
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Then g(z) = supb∈S F (z, b) is continuous, where F (z, b) =
	∞
0 f(1 − b +

by)Q(z, dy), and there is a unique continuous function z 7→ b(z) ∈ S such
that g(z) = F (z, b(z)).

Proof. Let zn → z and bn → b as n → ∞. For a given ε > 0 and
C = {z, z1, z2, . . .} we choose a compact set K ⊂ (0,∞) for which (5.1)
holds. Then

|F (zn, bn)− F (z, b)| ≤ 2ε+
�

K

|f(1− b+ by)− f(1− bn + bny)|Q(zn, dy)

+
∣∣∣ �
K

f(1− b+ by) (Q(zn, dy)−Q(z, dy))
∣∣∣

= 2ε+ a1
n + a2

n,

and since f as a concave function is continuous, a1
n → 0 as n→∞. Choosing

K such that its boundary ∂K is a continuity point of the measure Q(z, ·), i.e.
Q(z, ∂K) = 0, we also obtain a2

n → 0 as n→∞. Consequently, the mapping
(z, b) 7→ F (z, b) is continuous, and clearly z 7→ g(z) is continuous. Since f
is strictly concave, for each z ∈ G the mapping b 7→ F (z, b) is also strictly
concave, so that there is only one b(z) ∈ S for which g(z) = F (z, b(z)). Since
zn → z as n → ∞, we have g(z) = F (z, b(z)) = F (z, b̃), where b̃ is any
limit of a converging subsequence of (b(zn)). By strict concavity b(z) = b̃
and therefore b(zn)→ b(z).

Remark 5.2. A suitable version of Proposition 5.1 is true for a strictly
convex function f with sup replaced by inf; we obtain it immediately using
the fact that −f is then a strictly concave function.
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