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STOCHASTIC DIFFERENTIAL EQUATIONS TO PRICING,
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Abstract. We investigate novel applications of a new class of equations
which we call time-delayed backward stochastic differential equations. Time-
delayed BSDEs may arise in insurance and finance in an attempt to find
an investment strategy and an investment portfolio which should replicate
a liability or meet a target depending on the strategy applied or the past
values of the portfolio. In this setting, a managed investment portfolio serves
simultaneously as the underlying security on which the liability/target is
contingent and as a replicating portfolio for that liability/target. This is
usually the case of capital-protected investments and performance-linked
pay-offs. We give examples of pricing, hedging and portfolio management
problems (asset-liability management problems) which could be investigated
in the framework of time-delayed BSDEs. We focus on participating contracts
and variable annuities. We believe that time-delayed BSDEs could offer a tool
for studying investment life insurance contracts from a new and desirable
perspective.

1. Introduction. Backward stochastic differential equations (BSDEs)
were introduced by Pardoux and Peng (1990). Since then, theoretical prop-
erties of BSDEs have been thoroughly studied in the literature and BSDEs
have found numerous applications in finance: see for example El Karoui et al.
(1997) and Pham (2009).
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In this paper we study applications of a new class of backward stochastic
differential equations driven by a Brownian motion. We consider the dynam-
ics given by

Y (t) = ξ(ω, YT , ZT )(1.1)

+

T�

t

f(s, ω, Ys, Zs) ds−
T�

t

Z(s) dW (s), 0 ≤ t ≤ T.

Here, the generator f at time s and the terminal condition ξ depend on
the past values of the solution (Ys, Zs) = (Y (s + u), Z(s + u))−T≤u≤0. The
classical BSDE in the sense of Pardoux and Peng (1990) arises when ξ does
not depend on (Y,Z), and f at time s depends only on the value of the
solution at this time, f(s, ω, Y (s), Z(s)). We introduce ω in (1.1) to point
out that ξ and f can depend on an exogenously given source of uncertainty
induced by the Brownian motion W .

The equation (1.1) can be called a time-delayed backward stochastic
differential equation. This type of equation was introduced and investigated
from the theoretical point of view in Delong and Imkeller (2010a), Delong
and Imkeller (2010b), Dos Reis et al. (2011). However, no applications have
been presented so far. The main contribution of this paper is to provide
the first and novel applications of time-delayed BSDEs to problems related
to pricing, hedging and investment portfolio management in insurance and
finance. In particular, our goal is to show that time-delayed BSDEs may
offer a tool for studying investment life insurance contracts from a new and
desirable perspective. We point out that whereas forward SDEs with delays
are well-studied (see for example David (2008) and the references therein),
backward SDEs with delays are a new research field.

In financial applications of (1.1), Y stands for a replicating portfolio,
Z denotes a replicating strategy and ξ is a terminal liability. The time-
delayed BSDE (1.1) may arise when seeking an investment strategy Z and
an investment portfolio Y which should replicate a liability or meet a tar-
get ξ(YT , ZT ) depending on the investment strategy applied and the past
values (past performance) of the investment portfolio. Time-delayed BSDEs
may become useful when we face the problem of managing an investment
portfolio which serves simultaneously as the underlying security on which
the liability/target is contingent and as a replicating portfolio for that lia-
bility/target. Non-trivial dependencies ξ(YT , ZT ) arise in the case of capital-
protected investments (capital guarantees) and performance-linked pay-offs
(profit-sharing rules). We point out that dependence of the value of the li-
ability or target on the replicating portfolio does not occur in the classical
financial mathematics where the claims are contingent only on exogenously
given sources of uncertainty, and ξ is independent of (Y,Z). It should be
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noticed that time-delayed generator f(t, Yt, Zt) may model a stream of lia-
bilities depending on the past performance of the replicating portfolio.

We focus on participating contracts and variable annuities which are life
insurance products with capital protection guarantees and benefits based on
the performance of the underlying investment portfolio. Participating con-
tracts and variable annuities are extensively studied in the actuarial litera-
ture but almost all papers treat the investment portfolio as an exogenously
given stock, beyond the control of the insurer, and assume that bonuses and
guarantees are contingent on the performance of that stock; see for example
Bacinello (2001), Bauer et al. (2005), Dai et al. (2008), Huang et al. (2009),
Milevsky and Posner (2001) and Milevsky and Salisbury (2006). These au-
thors apply the methods of the classical mathematical finance and consider
pricing and hedging of path-dependent European contingent claims. Under
their approach dependencies and interactions between the investment portfo-
lio and the liability are lost. The considerations do not focus on an important
issue of risk management as the investment portfolio can be controlled in-
ternally by the insurer, who by choosing an appropriate investment strategy,
can reduce or remove the financial risk of the issued guarantee. Our idea
is to take into account interactions between assets and liabilities arising in
participating contracts and variable annuities. We believe that this is the
right direction in financial modelling of such insurance contracts.

The mutual dependence between the insurer’s investment strategy and
the pay-off arising under participating contracts was noticed by Kleinow
and Wilder (2007), Kleinow (2009), Ballotta and Haberman (2009) and Sart
(2010). Kleinow and Wilder (2007) and Kleinow (2009) considered perfect
hedging of a participating contract with a guaranteed rate of return and a
terminal bonus contingent on the return of a continuously rebalanced asset
portfolio held by the insurer. Their strategy cannot be financed with the
initial premium and the insurer has to provide additional capital to fulfill
the obligation. In Ballotta and Haberman (2009) quadratic hedging is inves-
tigated for a participating policy with a terminal benefit equal to smoothed
value, of an average type, of the insurer’s asset portfolio. A static asset allo-
cation strategy is found by a numerical experiment. Sart (2010) constructed,
for a general participating contract, an investment portfolio which replicates
the benefit contingent on the return earned by that portfolio. The invest-
ment strategy consists of bonds held to maturity and it is derived by solving
a fixed point problem under which the value of the liability equals the asset
value. Sart (2010) applies the amortized cost valuation of the bonds which
makes the profit earned by the investment portfolio in subsequent periods
deterministic. In this paper we combine the ideas from Kleinow and Wilder
(2007), Kleinow (2009), Ballotta and Haberman (2009) and Sart (2010), and
we aim at showing how to use time-delayed BSDEs to solve pricing, hedging,
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and portfolio management problems for participating contracts and variable
annuities which take into account the feedback between assets and liabili-
ties. We remark that in the context of variable annuities the optimal asset
allocation has not been considered yet. Our investigation leads to new types
of time-delayed BSDEs.

This paper is structured as follows. Section 2 presents a motivation for
applying time-delayed BSDEs in insurance and finance. Sections 3–6 inves-
tigate investment strategies for portfolios subjected to ratchet options (in
discrete and continuous time), bonuses based on the average portfolio value
and withdrawal rates related to the maximum of the portfolio value.

We consider a probability space (Ω,F ,P) with a filtration F = (Ft)0≤t≤T
and a finite time horizon T <∞. We assume that F is the natural filtration
generated by a Brownian motion W := (W (t), 0 ≤ t ≤ T ) completed with
sets of measure zero.

2. Pricing and hedging with time-delayed BSDEs. We consider a
financial market which consists of two tradeable instruments: a risk-free asset
and a risky bond. The price of the risk-free asset B := (B(t), 0 ≤ t ≤ T ) is
given by the equation

dB(t)

B(t)
= r(t) dt, B(0) = 1,(2.1)

where r := (r(t), 0 ≤ t ≤ T ) denotes the risk-free interest rate. We assume
that

(A1) the rate r is a non-negative, F-progressively measurable, square in-
tegrable process.

The price of the risky bond D := (D(t), 0 ≤ t ≤ T ) with maturity T is given
by the equation

dD(t)

D(t)
= (r(t) + σ(t)θ(t)) dt+ σ(t) dW (t), D(0) = d0,(2.2)

where θ := (θ(t), 0 ≤ t ≤ T ) and σ := (σ(t), 0 ≤ t ≤ T ) denote the risk
premium and volatility. We assume that

(A2) θ and σ are non-negative, F-progressively measurable, square inte-
grable processes such that θ and σ−1 are a.s. uniformly bounded
on [0, T ],

(A3) 0 < D(t) < 1, 0 ≤ t < T , D(T ) = 1.

In particular, there exists a unique equivalent martingale measure Q ∼ P.
Let us consider an investment portfolio X := (X(t), 0 ≤ t ≤ T ). Let π :=

(π(t), 0 ≤ t ≤ T ) denote the amount invested in the bond D. Any admissible
strategy π should be an F-predictable process satisfying

	T
0 |π(s)σ(s)|

2 ds
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<∞, a.s. The dynamics or the value of the investment portfolio is given by
the stochastic differential equation

dX(t) = π(t)((r(t) + σ(t)θ(t)) dt+ σ(t) dW (t))(2.3)
+ (X(t)− π(t))r(t) dt, X(0) = x.

By the change of variables

Y (t) = X(t)e−
	t
0 r(s) ds, Z(t) = e−

	t
0 r(s) dsπ(t)σ(t), 0 ≤ t ≤ T,(2.4)

we arrive at the discounted portfolio process Y := (Y (t), 0 ≤ t ≤ T ) under
the martingale measure Q,

dY (t) = Z(t) dWQ(t), Y (0) = y,(2.5)

whereWQ is a Q-Brownian motion. We simultaneously work with the undis-
counted portfolio X and the discounted portfolio Y and the reader should
keep in mind (2.4).

We deal with the problem of finding an investment strategy π and an
investment portfolio X which replicate a liability or meet a target ξ(XT , πT )
depending on the strategy applied or the past values of the portfolio. In the
language of BSDEs our financial problem is equivalent to deriving a solution
(Y,Z) to the time-delayed BSDE

Y (t) = ξ̃(YT , ZT )−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,(2.6)

which follows from (2.5). By tildes we denote discounted pay-offs: ξ̃ =

e−
	T
0 r(s) dsξ.
Let us start by giving a motivating example.

Example 2.1 (Option Based Portfolio Insurance). Let us consider an
investor who would like to invest x euros. They want to protect the initial
capital and hope to gain an additional profit. Let S := (S(t), 0 ≤ t ≤ T )
represent a benchmark which the investor would like to follow. We set S(0) =
1. It is well-known that in order to meet the investor’s target of protecting the
initial capital, a financial institution should buy the bond which guarantees
x at the terminal time which costs xD(0) and the call option on a fraction
λ of S which costs C(xλS(T ) − x) = EQ[e−

	T
0 r(s) ds(xλS(T ) − x)+]. From

El Karoui et al. (2005) we know that there exists a unique λ (independent
of x) such that

xD(0) + C(xλS(T )− x) = x,(2.7)

hence such a static investment strategy may be constructed. The strategy
(2.7) is called Option Based Portfolio Insurance and has gained popularity
in financial markets.
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The key point is that the above well-known strategy can be obtained as
a solution of a time-delayed BSDE. Let us now turn to dynamic investment
strategies. The goal in our problem is to find (X,π) in (2.3) such that

X(T ) = X(0) + (X(0)λS(T )−X(0))+,

which leads to the time-delayed BSDE of the form

Y (t) = e−
	T
0 r(s) ds

(
Y (0) + (Y (0)λS(T )− Y (0))+

)
(2.8)

−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,

where the terminal condition depends on the past values of Y via Y (0).
For given replicable benchmark S and some λ we expect to find multiple
solutions (Y,Z) to (2.8) which differ in Y (0). Taking a more general point
of view, in order to meet our investment goal we have to find (X,π) in (2.3)
such that

X(T ) = X(0) + (X(T )−X(0))+,

which leads to the time-delayed BSDE

Y (t) = Y (0)e−
	T
0 r(s) ds +

(
Y (T )− Y (0)e−

	T
0 r(s) ds

)+(2.9)

−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,

where the terminal condition depends on the past values of Y via Y (0)
and the current value Y (T ). The BSDE (2.8) arises when the target or
liability is contingent on the externally chosen benchmark S. However, in
many financial problems the target or liability could be contingent on the
performance of the internally managed assets and we end up with (2.9). In
this case a financial institution can set its own (replicable) benchmark. We
expect to obtain multiple solutions (Y,Z) to (2.9) which differ in (Y (0), S).

We comment on three possible areas where the time-delayed BSDE (2.6),
or more generally the time-delayed BSDE (1.1), may arise.

Application 1: Portfolio management. Example 2.1 shows that
some portfolio management problems can be investigated in the framework
of time-delayed BSDEs. The key example is a construction of a capital-pro-
tected investment as discussed in Example 2.1. A simple protection concerns
only an initial investment, but a more sophisticated protection may be based
on intermediate investment gain lock-ins and portfolio ratcheting or a draw-
down constraint. Asian type guarantees paying back an average value of the
investment portfolio are also common in portfolio management. All these
capital protections depend on the past values of the investment portfolio,
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and portfolio management problems under such capital guarantees fit into
the framework of time-delayed BSDEs.

Application 2: Participating contract. Under a participating con-
tract the asset portfolio is set internally by the insurer who has full discre-
tion over the choice of financial instruments. A policyholder earns a guaran-
teed return on the initial contribution and participates in the surplus return
gained by the insurer’s asset portfolio. The key feature of participating con-
tracts is that the final pay-off from the policy is related (by the profit-sharing
scheme) to the performance of the asset portfolio managed by the insurer
which backs the liability (see TP.2.86-TP.2.93 in QIS5 (2010)). This implies
that the insurer’s investment strategy in the asset portfolio backing the lia-
bility and the past values of the asset portfolio affect the final value of the
liability (via the profit-sharing scheme). The feedback between the asset al-
location and the benefit makes participating contracts the key example of
an insurance product which can be studied in the framework of time-delayed
BSDEs.

Application 3: Variable annuity. Under a variable annuity (or a unit-
linked contract) the policyholder’s contributions are invested in different
mutual funds. The key feature of variable annuities is that the final pay-off
is related to the performance of the policyholder’s investment account that
is subject to a capital guarantee. This again implies that the investment
strategy applied in the account and the past values of the investment account
affect the final value of the liability. In general, the insurer does not have
discretion over the allocation of the capital in the funds, which is to be
decided by the policyholder. However, the insurer can propose an investment
plan which is often accepted by the policyholder. In such a case, the insurer
decides on the investment strategy and manages the policyholder’s account
to fulfill the capital guarantee which depends on the performance of the
investment account.

In the cases of participating contracts and variable annuities the goal is
to find a composition of the insurer’s asset portfolio or the policyholder’s
investment account under which the embedded guarantee is fulfilled. More-
over, there should be a potential for additional profit to be next distributed
to the policyholder. According to Solvency II Directive (see V.2.2 in QIS5
(2010)), the insurance reserve must include an estimate of the value of the
liability arising under the contract including all possible guarantees, profits
and bonuses. When valuating the liability under a participating contract,
the future change of the allocations in the backing asset portfolio should be
taken into account as the result of future management actions (see TP.2.92
in QIS5 (2010)). The value of the asset portfolio must match the reserve,
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and the assets held by the insurer must finance the liability which depends
on the past and future performance of the asset portfolio and the allocation
strategy. In participating contracts and variable annuities, there is a strong
relation between the assets and liabilities as they affect each other. The prob-
lems investigated in this paper are examples of asset-liability management
problems under which the assets and liabilities must be matched and the
matching conditions involve fixed point equations. It should be noticed that
by choosing an investment strategy, applying an appropriate asset-liability
strategy, the insurer is able to fulfill the guarantee without deducting any
fees needed to buy options and without setting separate hedge accounts as
indicated in the papers mentioned in the Introduction.

We comment on the solvability of time-delayed BSDEs (1.1) and (2.6).
Even for a Lipschitz generator f we may have three cases (see Delong and
Imkeller (2010a) and Delong (2011)). There may be no solution to (1.1) or
there may be a solution which is not interesting from the practical point of
view, like a non-positive solution. These cases are interpreted as impossibil-
ity of hedging of a claim or unfairness of a contract. Recall from Example 2.1
that a positive solution to (2.8), the OBPI strategy, does not arise for all
λ, S, which is clear in the context of the investment problem considered.
There may be a unique practical solution to (1.1) which is interpreted as the
existence of a unique hedging strategy under a uniquely determined premium
(a unique asset-liability strategy). Finally, there may be multiple solutions
to (1.1). In many portfolio management problems, including Example 2.1,
participating contracts and variable annuities, we should not insist on ob-
taining a unique solution to a time-delayed BSDE, but we should try to
find all multiple solutions instead. Apparently, in some financial applica-
tions multiple solutions are more meaningful than unique solutions. This is
an important difference between time-delayed BSDEs and classical BSDEs
which give unique solutions (in the Lipschitz case). It should be noticed that
the existence of multiple solutions in Example 2.1 for (2.8) or (2.9) has a
clear financial interpretation as it indicates the possibility of meeting the
investment target for any initial premium and under different product de-
signs (different asset-liability strategies) depending on the choice of value
process S.

In the next sections we solve time-delayed BSDEs which may arise when
dealing with participating policies and variable annuities. We denote partic-
ipation factors by β > 0, γ > 0 and a guaranteed rate by g ≥ 0. Integrability
is understood as integrability under the martingale measure Q unless stated
otherwise.

3. Hedging a ratchet contingent on the maximum value of the
portfolio—the discrete time case. In this section we deal with the ter-
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minal liability of the form

(3.1) ξ = γmax{X(0)egT , X(t1)e
g(T−t1), . . . , X(tn−1)e

g(T−tn−1), X(T )}.
The pay-off (3.1) is called a ratchet option (or a drawdown constraint) and
under this protection any intermediate investment gain earned by the invest-
ment portfolio X (a fraction of it) is locked in as the liability and guaranteed
to be paid back at maturity (accumulated with a guaranteed rate). Ratchet
options are very popular as death or survival benefits in variable annuities
and are common forms of capital protections of investment funds. They can
also be used as a profit sharing scheme in participating contracts.

We solve the corresponding time-delayed BSDE (2.6) and derive an in-
vestment strategy.

Theorem 3.1. Assume that (A1)–(A3) hold. Consider the time-delayed
BSDE

(3.2) Y (t) = γmax
{
Y (0)e−

	T
0 r(s) ds+gT , Y (t1)e

−
	T
t1
r(s) ds+g(T−t1), . . . ,

Y (tn−1)e
g(T−tn−1), Y (T )

}
−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T.

Set

B =
{
ω∈Ω : γmax

{
egTD(0), eg(T−t1)D(t1), . . . , e

g(T−tn−1)D(tn−1), 1
}
>1
}
,

C =
{
ω∈Ω : γmax

{
eg(T−t1)D(t1), . . . , e

g(T−tn−1)D(tn−1), 1
}
= 1
}
.

The equation (3.2) has the following square integrable solutions under the
requirement that Y (0) ≥ 0:

1. If P(B) > 0, then there exists a unique solution Y = Z = 0.
2. If P(B) = 0, γegTD(0) = 1, then there exist multiple solutions (Y, Z),

which differ in Y (0), of the form

Y (t) = γY (0)egT−
	t
0 r(s) dsD(t), 0 ≤ t ≤ T,

Y (0)egT−
	T
0 r(s) ds = Y (0) +

T�

0

Z(s) dW (s).

3. If P(B) = 0, γegTD(0) < 1, P(C) = 1, then there exist multiple
solutions (Y, Z), which differ in (Y (0), (η̃(tm+1))m=0,1,...,n−1), of the
form

Y (t0) = Y (0),

Y (tm) = γ max
k=0,1,...,m

{
Y (tk)e

−
	tm
tk

r(u) du
eg(T−tk)

}
D(tm)

+ EQ[η̃(tm+1) | Ftm ],
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Y (tm+1) = γ max
k=0,1,...,m

{
Y (tk)e

−
	tm+1
tk

r(u) du
eg(T−tk)

}
D(tm+1) + η̃(tm+1)

= Y (tm) +

tm+1�

tm

Z(s) dWQ(s),

Y (t) = EQ[Y (tm+1) | Ft], tm ≤ t ≤ tm+1, m = 0, 1, . . . , n− 1,

with t0 = 0, tn = T , and a sequence of square integrable non-negative
random variables (η̃(tm+1))m=0,1,...,n−1 such that η̃(tm+1) ∈ Ftm+1.

4. If P(B) = 0, γegTD(0) < 1, 0 < P(C) < 1, P(η̃(T ) = 0 | Bc \ C) = 1,
then there exist multiple solutions (Y,Z) defined in item 3.

5. In the remaining cases, there exists a unique solution Y = Z = 0.

The solution Y is strictly positive provided that Y (0) > 0.

Proof. 1. As B =
⋃
m=0,1,...,n{ω ∈ Ω : γeg(T−tm)D(tm) > 1} there exist

tk, k = 0, 1, . . . , n, such that P(γeg(T−tk)D(tk) > 1) > 0. Taking the expected
value of (3.2) we arrive at

Y (tk) = EQ[Y (T ) | Ftk ] ≥ γE
Q[Y (tk)e

−
	T
tk
r(s) ds+g(T−tk) ∣∣Ftk]

= Y (tk)γe
g(T−tk)D(tk),

which results in a contradiction unless Y (tk) = 0. As EQ[Y (T ) | Ftk ] =
Y (tk) = 0, by non-negativity of Y (T ) we conclude first that Y (T ) = 0 and
next that Y (t) = EQ[Y (T ) | Ft] = 0, 0 ≤ t ≤ T . Finally, we get Z(t) = 0.

2. We first show that any solution to (3.2) must be a (Q,F)-square inte-
grable martingale and have a representation

Y (tm+1) = γ max
k=0,1,...,m

{
Y (tk)e

−
	tm+1
tk

r(u) du
eg(T−tk)

}
D(tm+1)(3.3)

+ η̃(tm+1), m = 0, 1, . . . , n− 1,

with some sequence of non-negative square integrable random variables
(η̃(tm+1))m=0,1,...,n−1 such that η̃(tm+1) ∈ Ftm+1 . The martingale property
of Y is obvious. By taking the expected value in (3.2) we arrive at

Y (tm+1) = γEQ
[

max
k=0,1,...,n

{
Y (tk)e

−
	T
tk
r(u) du

eg(T−tk)
} ∣∣∣Ftm+1

]
≥ γEQ

[
max

k=0,1,...,m

{
Y (tk)e

−
	T
tk
r(u) du

eg(T−tk)
} ∣∣∣Ftm+1

]
= γ max

k=0,1,...,m

{
Y (tk)e

−
	tm+1
tk

r(u) du
eg(T−tk)

}
D(tm+1),

and the statement (3.3) follows. Now we can prove item 2 of our theorem.
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By taking the expected value of (3.3) we derive

(3.4) Y (0) = EQ[Y (tm+1)]

= EQ
[
γ max
k=0,1,...,m

{
Y (tk)e

−
	tm+1
tk

r(u) du
eg(T−tk)

}
D(tm+1) + η̃(tm+1)

]
,

≥ γY (0)D(0)egT + EQ[η̃(tm+1)]

= Y (0) + EQ[η̃(tm+1)], m = 0, 1, . . . , n− 1,

which immediately implies that η̃(tm+1) = 0 for all m = 0, 1, . . . , n − 1.
Assume next that the maximum in (3.3) is not attained at t0 = 0. If for
some m = 1, . . . , n− 1,

Q
(

max
k=0,1,...,m

{
Y (tk)e

−
	tm+1
tk

r(u) du
eg(T−tk)

}
> Y (0)e−

	tm+1
0 r(u) duegT

)
> 0,

then we would find as in (3.4) that Y (0) = EQ[Y (tm+1)] > γY (0)D(0)egT ,
which is a contradiction. Hence, Y (tm+1) = γY (0)egT e−

	tm+1
0 r(s)D(tm+1) for

all m = 0, 1, . . . , n− 1 and a candidate solution (Y,Z) on [0, T ] could be de-
fined as in item 2. It is easy to check that for our candidate solution the termi-
nal condition is fulfilled: ξ̃ = γmaxm=0,1,...,n{Y (tm)e

−
	T
tm

r(s) ds+g(T−tm)} =
γY (0)e−

	T
0 r(s) ds+gT = Y (T ), hence a solution to (3.2) is derived.

3. The candidate solution follows from the representation (3.3). We check
whether the solution constructed satisfies the terminal condition. We have

Y (T ) = γ max
k=0,1,...,n−1

{
Y (tk)e

−
	tn
tk
r(u) du

eg(T−tk)
}
+ η̃(tn),

and

ξ̃ = γ max
k=0,1,...,n

{
Y (tk)e

−
	tn
tk
r(u) du

eg(T−tk)
}

= γmax
{

max
k=0,1,...,n−1

{
Y (tk)e

−
	tn
tk
r(u) du

eg(T−tk)
}
, Y (T )

}
= max

{
Y (T )− η̃(T ), γY (T )

}
.

Hence, Y (T ) = ξ̃ if and only if γ = 1 or η̃(T ) = 0. Since P(B) = 0
implies γ ≤ 1, we investigate the case of η̃(T ) = 0 and γ < 1. From
(3.3) we see that Y (t1) = γY (0)e−

	t1
0 r(u) duegTD(t1) + η̃(t1) and Y (0) =

γY (0)egTD(0) + EQ[η̃(t1)]. We choose η̃(t1) which yields a strictly pos-
itive pay-off with a positive probability (assuming Y (0) > 0). Consider
m = 1, . . . , n− 1. Following (3.4) we derive
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(3.5) EQ[η̃(tm+1) | Ftm ]

= Y (tm)− γ max
k=0,1,...,m

{
Y (tk)e

−
	tm
tk

r(u) du
eg(T−tk)

}
D(tm)

= Y (tm)

− γmax
{

max
k=0,1,...,m−1

{
Y (tk)e

−
	tm
tk

r(u) du
eg(T−tk)

}
, Y (tm)e

g(T−tm)
}
D(tm)

= Y (tm)

−max
{
Y (tm)− η̃(tm), γY (tm)e

g(T−tm)D(tm)
}
, m = 1, . . . , n− 1,

where we use the representation (3.3). We conclude that P(C) = 1 implies
that P(η̃(T ) = 0) = 1. The candidate solution is a solution to (3.2). The case
of γ = 1 is also included in assertion 3.

4. We have

P(η̃(T ) = 0) = P(η̃(T ) = 0 | C)P(C) + P(η̃(T ) = 0 | Bc \ C)P(Bc \ C)
and P(η̃(T ) = 0 | C) = 1. Hence, P(η̃(T ) = 0) = 1 if and only if P(C) = 1 or
P(η̃(T ) = 0 | Bc \ C) = 1.

5. If P(C) = 0, then we deduce that P(η̃(T ) > 0) > 0 for any η̃(T )
satisfying (3.5). The assertion follows.

Strict positivity of the solution for Y (0) > 0 is obvious.

The hedging of the ratchet (3.1) is only possible if at any time t we end
up with a portfolio X(t) which is sufficient to hedge at least its accumulated
value γX(t)eg(T−t). If we cannot guarantee that γeg(T−t)D(t) ≤ 1, then the
terminal investment portfolio value may fall below the value of the ratchet.
A financial institution would not issue the ratchet option under the assump-
tions of item 1 of Theorem 3.1. Hence, the time-delayed BSDE gives the zero
solution.

Under the assumptions of item 5 of Theorem 3.1 the policyholder could
receive only a part of the capital which he or she really owns as P(Y (T ) > ξ̃)
> 0 (see the proof of item 3 of Theorem 3.1). The ratchet option is not fair
from the point of view of the policyholder. Again, the zero solution arises.

If we set (g, γ) in such a way that the conditions of item 2 of Theorem 3.1
hold, then it is possible to hedge the ratchet (3.1) perfectly for any initial
premium. It should be noticed that by choosing sufficiently large g and low
γ the conditions stated in item 2 may be satisfied. In this case hedging the
path-dependent ratchet option on the investment portfolio is equivalent to
hedging the fraction γ of the guaranteed return g on the initial premium
at the terminal time. This investment strategy yields a priori known return
related to (γ, g) with no potential for additional profit. This is not a con-
struction which would be implemented in real life as it is not very appealing
to policyholders.
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The most important solution to our time-delayed BSDE from the practi-
cal point of view is the solution constructed in item 3 of Theorem 3.1. If we
set (g, γ) in such a way that the conditions of item 3 hold, then it is possible
to hedge the ratchet (3.1) perfectly for any initial premium as in item 2. The
key point is that in this case there is a potential for an unbounded growth
in the portfolio value over the fixed guaranteed return g which is controlled
by the sequence η̃. The most common guarantee of paying back the initial
premium and the highest earned investment gain, γ = 1, g = 0, fits item 3.

To specify the solution completely we must decide on η̃. The choice of η̃
is crucial from the practical point of view. In order to choose η̃ an additional
constraint for η̃ (or for Y, Z) is needed. We do not intend to discuss this
step here. We remark that the discrete time process η̃ is an analogue of the
value process of unconstrained allocation from El Karoui et al. (2005), where
the authors suggest applying utility maximization to determine the target
return η̃ (see El Karoui et al. (2005) for details).

The investment strategy from item 4 has a similar interpretation to the
strategy from item 3. The difference is that under item 4 we have more
freedom in choosing (g, γ) but an additional restriction on η̃ is imposed.
For an example of a strategy under item 4 see Delong (2011). We conclude
that multiple solutions to the time-delayed BSDE arise as the claim can be
hedged for any initial premium (item 2) and under different product designs
related to different choices of η̃ (items 3–4).

It should be noticed that item 3 of Theorem 3.1 gives a multi-period
Option Based Portfolio Insurance strategy which has been derived from the
time-delayed BSDE. For a semi-static version of the multi-period OBPI strat-
egy we refer to Delong (2011).

4. Hedging a ratchet contingent on the maximum value of the
portfolio—the continuous time case. We still consider the liability of a
ratchet type contingent on the investment portfolio but now in continuous
time. We investigate the following claim:

ξ = γ sup
s∈[0,T ]

{X(s)eg(T−s)}.(4.1)

First, we present counterparts of items 1–2 of Theorem 3.1.

Theorem 4.1. Assume that (A1)–(A3) hold. Consider the time-delayed
BSDE

Y (t) = γ sup
0≤t≤T

{
Y (t)e−

	T
t r(s) ds+g(T−t)

}
(4.2)

−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T.
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Set

D =
{
ω ∈ Ω : γ sup

0≤t≤T
{eg(T−t)D(t)} > 1

}
.

The equation (4.2) has the following square integrable solutions under the
requirement that Y (0) ≥ 0:

1. If P(D) > 0, then there exists a unique solution Y = Z = 0.
2. If P(D) = 0, γegTD(0) = 1, then there exist multiple solutions (Y, Z),

which differ in Y (0), of the form

Y (t) = γY (0)eg−
	t
0 r(s) dsD(t), 0 ≤ t ≤ T,

Y (0)egT−
	T
0 r(s) ds = Y (0) +

T�

0

Z(s) dW (s).

The solution Y is strictly positive provided that Y (0) > 0.

Proof. The proof is analogous to the proof of items 1–2 of Theorem 3.1.
In particular, we can show that any solution Y to (4.2) must have a repre-
sentation

(4.3) Y (t) = γ sup
0≤s≤t

{
Y (s)eg(T−s)e−

	t
s r(u) du

}
D(t) + η̃(t), 0 ≤ t ≤ T,

with a square integrable, non-negative and F-adapted process (η̃(t))t∈[0,T ].

In contrast to discrete time (see item 2 of Theorem 3.1), in continuous
time we cannot always find (g, γ) satisfying the assumptions of item 2 of
Theorem 4.1.

Proposition 4.1. Let D be the set defined in Theorem 4.1. In the Cox–
Ingersoll–Ross interest rate model we cannot find g ≥ 0 and γ = 1/(egTD(0))
such that P(D) = 0.

Proof. We have to find g ≥ 0 such that sup0≤t≤T {e−gtD(t)/D(0)} ≤ 1.
If it were possible, then

egt ≥ en(t)−m(t)r(t)

en(0)−m(0)r(0)
, 0 ≤ t ≤ T,

would hold with some continuous functions n,m defining the bond price in
the CIR model (see Cairns (2004)), and equivalently the following condition
would hold:

(4.4) r(t) ≥ gt− n(t) + n(0)−m(0)r(0)

−m(t)
, 0 ≤ t ≤ T0 < T.

Consider the continuous function

h(t) =
gt− n(t) + n(0)−m(0)r(0)

−m(t)
on [0, T0] with h(0) = r(0) > 0.
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For any finite g, due to continuity of t 7→ h(t), we have h(t) ≥ ε > 0 on
some small time interval [0, λ]. However, r(λ) < ε with positive probability.
Hence, the condition (4.4) is violated with positive probability.

What appears most interesting in continuous time is an extension of items
3 and 4 of Theorem 3.1. First, we show how to construct a process X which
satisfies the condition X(t) ≥ γ sups≤t{X(s)eg(T−s)}D(t), which has to be
satisfied by (4.3).

Our next result concerns an extension of the dynamics under a drawdown
constraint from Cvitanić and Karatzas (1995). Compared to Cvitanić and
Karatzas (1995) we require that the controlled process X is above a fraction
of its running maximum where the running maximum involves the process
X accumulating with a growth rate and not the process X itself, and the
fraction is a stochastic process and not a constant.

Proposition 4.2. Assume that (A1)–(A3) hold, together with

γegTD(0) < 1, γ sup
0≤t≤T

{eg(T−t)D(t)} ≤ 1, sup
0≤t≤T

|σ(t)| ≤ K.

Choose an F-predictable process U such that

E
[ T�

0

∣∣∣∣U(s)

D(s)

∣∣∣∣2 ds] <∞,
and consider a process S under the control U with the forward dynamics

dS(t) = U(t)
dD(t)

D(t)
+ (S(t)− U(t))

dB(t)

B(t)
, S(0) = s0 > 0.

There exists a unique, continuous, P-square integrable solution to the forward
SDE

dX(t) =
(
γ sup

0≤s≤t
{X(s)eg(T−s)}D(t)

)dD(t)

D(t)

+
(
X(t)− γ sup

0≤s≤t
{X(s)eg(T−s)}D(t)

)
1{S(t) > 0}dS(t)

S(t)
,

X(0) = x > 0,(4.5)

which satisfies X(t) ≥ γ sups≤t{X(s)eg(T−s)}D(t) on [0, T ].

Proof. We follow the idea from Cvitanić and Karatzas (1995). We deal
with the discounted processes V (t) = X(t)/D(t) and R(t) = S(t)/D(t). By
Itô’s formula we obtain the dynamics

dV (t) =
(
V (t)− γ sup

0≤s≤t
{V (s)D(s)eg(T−s)}

)
1{R(t) > 0}dR(t)

R(t)
,(4.6)
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dR(t) =

(
−R(t)θ(t)σ(t) +R(t)σ2(t) +

U(t)

D(t)
θ(t)σ(t)− U(t)

D(t)
σ2(t)

)
dt(4.7)

+

(
U(t)

D(t)
σ(t)−R(t)σ(t)

)
dW (t).

Let

M(t) = sup
0≤s≤t

{
V (s)D(s)eg(T−s)

D(0)egT

}
.

Consider the sequence (τn)n∈N of stopping times defined by τn = τDn ∧τRn ∧T
where τDn = inf{t : γeg(T−t)D(t) = 1 − 1/n} and τRn = inf{t : R(t) = 1/n}.
We first solve the equation (4.5) on [0, τn]. We rewrite the dynamics (4.6) as

dV (t) = (V (t)− γM(t)D(0)egT )
dR(t)

R(t)
.(4.8)

By applying Itô’s formula we derive

d

(
V (t)

M(t)

)
=

(
V (t)

M(t)
− γD(0)egT

)
dR(t)

R(t)
− V (t)

dM(t)

M2(t)

=

(
V (t)

M(t)
− γD(0)egT

)
dR(t)

R(t)
− D(0)egt

D(t)

dM(t)

M(t)
,

and

d

(
log

(
V (t)

M(t)
− γD(0)egT

))
=
dR(t)

R(t)
− 1

2

d[R](t)

R2(t)
− 1

V (t)
M(t) − γD(0)egT

D(0)egt

D(t)

dM(t)

M(t)

=
dR(t)

R(t)
− 1

2

d[R](t)

R2(t)
− 1

1− γD(t)eg(T−t)
dM(t)

M(t)
,

where we use the localizing sequence

τm = inf{t : V (t)/M(t)− γD(0)egT = 1/m}

and let m→∞. Notice that V (t) > M(t)D(0)egT on [0, τn]. We next obtain
the key relation

log

(
V (t)

M(t)
− γD(0)egT

)
− log

(
D(0)

D(t)
egt − γD(0)egT

)
= log

(
1− γD(0)egT

)
− log

(
D(0)

D(t)
egt − γD(0)egT

)
+ logR(t)− logR(0)

−
t�

0

1

1− γD(s)eg(T−s)
dM(s)

M(s)
, 0 ≤ t ≤ τn.
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By applying the Skorokhod equation we find the unique processes (K,L)
such that

L(t) = log
(
1− γD(0)egT

)
− log

(
D(0)

D(t)
egt − γD(0)egT

)
(4.9)

+ logR(t)− logR(0),

K(t) =

t�

0

1

1− γD(s)eg(T−s)
dM(s)

M(s)
= sup

0≤s≤t
L(t),

L(t)−K(t) = log

(
V (t)

M(t)
− γD(0)egT

)
− log

(
D(0)

D(t)
egt − γD(0)egT

)
,

for 0 ≤ t ≤ τn. Notice that L(0) = K(0) = 0 and K(t) ≥ 0. From the
equations (4.9) we can derive a unique solution to (4.5) in the form

M(t) = V (0)e
	t
0(1−γD(s)eg(T−s)) dK(s), 0 ≤ t ≤ τn,

(4.10)
V (t) =M(t)

[
γD(0)egT

+ (1− γD(0)egT )
R(t)

R(0)
e−K(t)

]
, 0 ≤ t ≤ τn.

Let τD,R∞ = limn→∞ τ
D
n ∧ τRn . We extend the solution to [0, τD,R∞ ∧ T ].

By taking the limits we can consider measurable processes (L,K) and
(M,V ) on [0, τD,R∞ ∧ T ] defined by (4.9) and (4.10). It is straightforward
to show that M(t) ≤ V (0)eK(t) on [0, τD,R∞ ∧ T ] under the condition that
γ sup0≤t≤T {eg(T−t)D(t)} ≤ 1. Hence

0 ≤ ψ(t) = V (t)− γM(t)D(0)egT(4.11)

≤ (1− γD(0)egT )V (0)
R(t)

R(0)
, 0 ≤ t ≤ τD,R∞ ∧ T.

We now investigate the process Ṽ defined by

Ṽ (t) = V (0) +

t�

0

ψ(s)1{R(s) > 0} dR(s)
R(s)

, 0 ≤ t ≤ τD,R∞ ∧ T,

which coincides with the solution (4.10) to the equation (4.8) on [0, τn]. One
can show that Ṽ is a continuous square integrable semimartingale under
the assumptions of our proposition and the derived bound (4.11). Hence we
obtain the convergence

Ṽ (t) = lim
n→∞

Ṽ (t ∧ τn) = lim
n→∞

V (t ∧ τn), 0 ≤ t ≤ τD,R∞ ∧ T.
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This also implies thatM can be extended as an a.s. finite process to [0, τD,R∞
∧T ]. We can now conclude that V (t) ≥ γM(t)D(0)egT on [0, τD,R∞ ∧T ], which
follows from (4.10). If τD,R∞ > T , then R(T )e−K(T ) > 0. If τD,R∞ ≤ T , then
R(τD,R∞ )e−K(τD,R

∞ ) = 0 and we end up with V (τD,R∞ ) = γM(τD,R∞ )D(0)egT .
This implies that dV (t) = 0 for t > τD,R∞ and our solution V is defined to
be constant after time τD,R∞ . One can easily check that M(t) =M(τD,R∞ ) for
t ≥ τD,R∞ . Indeed, we have

M(t) = sup
0≤s≤t

{
V (s)D(s)eg(T−s)

D(0)egT

}
= max

{
M(τD,R∞ ), sup

τD,R
∞ ≤s≤t

{
V (s)D(s)eg(T−s)

D(0)egT

}}
= max

{
M(τD,R∞ ),M(τD,R∞ ) sup

τD,R
∞ ≤s≤t

{γeg(T−s)D(s)}
}

=M(τD,R∞ ), t ≥ τD,R∞ .

Thus V (t) ≥ γM(t)D(0)egT and X(t) ≥ γ sups≤t{X(s)eg(T−s)}D(t) on
[0, T ]. Finally, square integrability of X is easily deduced from square in-
tegrability of V .

We now give counterparts of items 3–5 of Theorem 3.1

Theorem 4.2. Let the assumptions of Proposition 4.2 hold. Consider
the time-delayed BSDE

(4.12)
dX(t) = π(t)

dD(t)

D(t)
+ (X(t)− π(t))dB(t)

B(t)
,

X(T ) = γ sup
0≤s≤T

{X(s)eg(T−s)}.

Set

D =
{
ω ∈ Ω : γ sup

0≤t≤T
{eg(T−t)D(t)} > 1

}
,

E =
{
ω ∈ Ω : γ sup

0≤t≤T
{eg(T−t)D(t)} = 1

}
.

The equation (4.12) has the following P-square integrable solutions under the
requirement that X(0) ≥ 0:

1. If P(D) = 0, γegTD(0) < 1, P(E) = 1, then there exist multiple so-
lutions (X,π). The process X is defined in Proposition 4.2 and may
have different (X(0), S); the control process π is given by
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π(t) = γ sup
0≤s≤t

{X(s)eg(T−s)}D(t)

+
U(t)

S(t)

(
X(t)− γ sup

0≤s≤t
{X(s)eg(T−s)}D(t)

)
1{S(t) > 0}, 0 ≤ t ≤ T.

2. If P(D) = 0, γegTD(0) < 1, 0 < P(E) < 1, P(S(t) = 0 for some
t ∈ [0, T ] | Dc\E) = 1, then there exist multiple solutions (X,π) defined
in item 1.

3. In the remaining cases, there exists a unique solution Y = Z = 0.

The solution X is strictly positive provided that X(0) > 0.

Proof. The result follows from Proposition 4.2. We have to investigate
the terminal value

V (T ) =M(T )

[
γD(0)egT + (1− γD(0)egT )

R(T )

R(0)
e−K(T )

]
1{τR,D∞ > T}

+M(T )γD(0)egT1{τR,D∞ ≤ T}

and the terminal condition ξ̃ = γM(T )D(0)egT . Hence, V (T ) = ξ̃ if and
only if P(τR,D∞ ≤ T ) = 1. We conclude as in the proof of Theorem 3.1.

The conclusions and interpretations for hedging the ratchet in continuous
time are analogous to those stated in Section 3. The most common guarantee
of paying back the initial premium and the highest earned investment gain,
γ = 1, g = 0, fits item 1 of Theorem 4.2.

5. Hedging a pay-off contingent on the average value of the
portfolio. Apart from the ratchet studied in the previous sections, an-
other common path-dependent pay-off in finance is the pay-off of Asian type.
Many participating contracts have profit sharing schemes which are based
on an average value of the asset portfolio, and such averaging of returns is
called smoothing (see Ballotta and Haberman (2009)). There exist variable
annuities/unit-linked products in the market under which a bonus as an
average value of the policyholder’s account is paid additionally at maturity.

Let us consider a participating contract or a unit-linked contract which
provides a return linked to a benchmark process S and offers a terminal
bonus under a profit-sharing scheme. The profit sharing scheme or bonus is
based on the average value of the assets managed by the insurer within the
duration of the policy. We deal with the claim

ξ = βX(0)S + γ
1

T

T�

0

e
	T
s r(u) duX(s) ds.(5.1)

We derive the corresponding investment strategy.
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Theorem 5.1. Assume that (A1)–(A3) hold, S ≥ 0, Q(S > 0) > 0 and
EQ[|S̃|2] <∞. The time-delayed BSDE

(5.2) Y (t) = βY (0)S̃ + γ
1

T

T�

0

Y (s) ds−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,

has the following square integrable solutions under the requirement that
Y (0) ≥ 0 and

	T
0 Y (s) ds ≥ 0:

1. If βEQ[S̃] + γ = 1, then there exist multiple solutions (Y,Z), which
differ in Y (0), of the form

Y (t) = Y (0) +

t�

0

Z(s) dWQ(s), 0 ≤ t ≤ T,

with the F-predictable control

Z(t) =
1

1− γ + γ t
T

M(t), 0 ≤ t ≤ T,

and the process M derived from the martingale representation

βY (0)S̃ = βY (0)EQ[S̃] +

T�

0

M(t) dWQ(t).

The solution Y is strictly positive provided that Y (0) > 0.
2. If βEQ[S̃] + γ 6= 1, then there exists a unique solution Y = Z = 0.

Remark. The requirement
	T
0 Y (s) ds ≥ 0 is imposed as the bonus can-

not be negative.

Proof. By evaluating (5.2) at t = 0 we conclude that (Y, Z) must satisfy

Y (0) +

T�

0

Z(s) dWQ(s) = βY (0)S̃ + γ
1

T

T�

0

Y (s) ds.(5.3)

By recalling the forward dynamics of the discounted portfolio value (2.6) we
can calculate by Fubini’s theorem for stochastic integrals that

1

T

T�

0

Y (s) ds =
1

T

T�

0

(
Y (0) +

s�

0

Z(u) dWQ(u)
)
ds(5.4)

= Y (0) +

T�

0

(
1− s

T

)
Z(s) dWQ(s).

By substituting the above relation into (5.3) we find that the pair (Y,Z)
must satisfy
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(5.5) Y (0)(1− γ) +
T�

0

(
1− γ + γ

s

T

)
Z(s) dWQ(s) = βY (0)S̃.

1. Choose the process M to satisfy the martingale representation of
βY (0)S̃ and the process Z to satisfy (5.5). We assume that β > 0, hence
1 − γ > 0. The denominator in the definition of Z is strictly positive
and square integrability of M implies square integrability of Z. We now
prove that Y satisfies the requirements of our proposition. This is trivial if
Y (0) = 0. Assume that Y (0) > 0. We show that Y is strictly positive. By
substituting the derived solution into (5.4) we can calculate

1

T

T�

0

Y (t) dt = Y (0) +

T�

0

(
1− t

T

)
1

1− γ + γ t
T

M(t) dWQ(t)(5.6)

= Y (0) +

T�

0

h(t)M(t) dWQ(t),

with

h(t) =
T − t

T − γT + γt
, 0 ≤ t ≤ T.

By integration by parts we obtain

0 = h(T )

T�

0

M(t) dWQ(t)

=

T�

0

h(t)M(t) dWQ(t) +

T�

0

t�

0

M(s) dWQ(s)h′(t) dt,

and using the martingale representation of βY (0)S̃ we conclude that
T�

0

h(t)M(t) dWQ(t) = −
T�

0

t�

0

M(s) dWQ(s)h′(t) dt(5.7)

= −
T�

0

(V (t)− V (0))h′(t) dt,

where V (t) = βY (0)EQ[S̃ | Ft]. Rearranging (5.7) and substituting into (5.6)
we arrive at

1

T

T�

0

Y (s) ds = Y (0) + βY (0)EQ[S̃](h(T )− h(0))−
T�

0

V (t)h′(t) dt

= −
T�

0

V (t)h′(t) dt > 0.
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The inequality is deduced from non-negativity of V , continuity of t 7→ V (t),
strict positivity of V (0) = βY (0)EQ[S̃] and strict negativity of h′(t) =
−T/(T + γt− γT )2. Strict positivity of Y follows by taking the conditional
expected value in (5.2), taking into account strict positivity of the bonus
under the strategy and non-negativity of the benchmark return.

2. By taking the expected value in (5.5) we arrive at a contradiction unless
Y (0) = 0. Taking the expected value in (5.3) we obtain EQ[

	T
0 Y (s) ds] = 0

and by the non-negativity requirement we arrive at Y (t) = 0, 0 ≤ t ≤ T .
We can allow β = 0 as well. In this case we conclude that if γ = 1 then

Z(t) = 0, Y (t) = Y (0), and if γ 6= 1 then Z(t) = Y (t) = 0. This case is
included in our proposition.

We can also provide a similar result for the claim

(5.8) ξ = S + γ
1

T

T�

0

e
	T
s r(u) duX(s) ds.

Theorem 5.2. Assume that (A1)–(A3) hold, S ≥ 0, Q(S > 0) > 0 and
EQ[|S̃|2] <∞. The time-delayed BSDE

(5.9) Y (t) = S̃ + γ
1

T

T�

0

Y (s) ds−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,

has the following square integrable solutions under the requirement that
Y (0) ≥ 0 and

	T
0 Y (s) ds ≥ 0:

1. If γ < 1, then there exists a unique solution (Y, Z) of the form

Y (t) =
EQ[S̃]

1− γ
+

t�

0

Z(s) dWQ(s), 0 ≤ t ≤ T,

with the F-predictable control

Z(t) =
1

1− γ + γ t
T

M(t), 0 ≤ t ≤ T,

and the process M derived from the martingale representation of

S̃ = EQ[S̃] +

T�

0

M(t) dWQ(t).

The solution Y is strictly positive provided that Y (0) > 0.
2. If γ ≥ 1, then there exists no solution.

Item 1 of Theorem 5.1 with β ∈ (0, 1) is practically relevant and pro-
vides a replicating strategy for the claim (5.1) for any initial premium. Our
investment strategy is to split the contribution X(0) into two parts: the first
part βX(0) is used to replicate the base return βX(0)S, the second part
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γX(0) is used to hedge the bonus (notice that EQ[S̃] = 1 as S models the
benchmark return S(T )/S(0) in the arbitrage-free market). The investment
strategy H for hedging the participation bonus and the value of the corre-
sponding replicating portfolio G can be derived by solving the time-delayed
BSDE

G(t) = γβX(0)
1

T

T�

0

S̃(t) dt+ γ
1

T

T�

0

G(s) ds−
T�

t

H(s) dWQ(s), 0 ≤ t ≤ T,

which is of the form (5.9). The investment portfolio X backing the contract
is of the form X(t) = βX(0)S(t) + G(t)e

	t
0 r(s) ds where S(t) is the value of

the benchmark investment providing the base return, and G(t)e
	t
0 r(s) ds is

the value of the replicating portfolio hedging the participation bonus. Such
a decomposition is important as Solvency II Directive requires a disclosure
of the value of all guarantees and participation benefits (see TP.2.87 in QIS5
(2010)). By construction, the assets and the liabilities are matched.

6. Hedging a stream of payments based on the maximum value
of the portfolio. In this final section we give an example of a claim which
leads to an equation with a time delay entering the generator of a BSDE.

Under a variable annuity with a guaranteed minimum withdrawal benefit
the policyholder is allowed to withdraw guaranteed amounts over the dura-
tion of the contract and receives the remaining value of the account at ma-
turity. Huang et al. (2009) investigated a variable annuity with a withdrawal
benefit set as a fraction of the running maximum of the account value. In-
spired by Huang et al. (2009) we consider an insurance product under which
the policyholder can withdraw a guaranteed amount set as a fraction γ of the
running maximum of the investment account, and at maturity the remaining
value is converted into a life-time annuity with a guaranteed consumption
rate L. Such a product would allow for higher consumption in the times
of booming financial markets before locking the accumulated money into a
fixed life-time annuity. This is an example of an income drawdown option in
retirement planning (see Emms and Haberman (2008)). We have to find an
investment strategy π under which the dynamics of the investment account
satisfies

(6.1)

dX(t) = π(t)(µ(t) dt+ σ(t) dW (t)) + (X(t)− π(t))r(t) dt
− γ sup

s∈[0,t]
{X(s)} dt,

X(T ) = La(T ),

where a denotes the annuity factor

a(T ) = EQ
[T0�
T

e−
	s
T r(u) du ds

∣∣∣ FT ], T < T0 <∞.
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In the traditional approach, the account value X follows an uncontrolled
process and a hedging fee is deducted fromX in order to cover the withdrawal
rate and the annuity. Our approach is to find a strategy π under which X is
controlled to cover the liabilities.

We can prove the following result.

Theorem 6.1. Assume that (A1)–(A3) hold. The time-delayed BSDE

Y (t) = Lã(T ) +

T�

t

γ sup
u∈[0,s]

{
Y (u)e−

	s
u r(v)dv

}
ds(6.2)

−
T�

t

Z(s) dWQ(s), 0 ≤ t ≤ T,

has a unique square integrable solution (Y,Z) for sufficiently small γ or T .
The solution Y is strictly positive.

Proof. The existence, uniqueness and integrability follow from Theo-
rem 2.1 in Delong and Imkeller (2010a). The generator of the time-delayed
BSDE (6.2) does not fit exactly the framework of that theorem but one can
see that it is possible to replace the time-delayed generator of integral form
with a time-delayed generator dependent on the supremum norm and prove
the existence of a unique solution to (6.2) by the contraction method (see
Theorem 2.1 in Delong (2011)). To prove strict positivity notice that the
time-delayed BSDE

Ŷ (t) = Lã(T ) +

T�

t

γmax

{
0, sup
u∈[0,s]

{
Ŷ (u)e−

	s
u r(v)dv

}}
ds(6.3)

−
T�

t

Ẑ(s) dWQ(s), 0 ≤ t ≤ T,

has a unique solution (by Theorem 2.1 in Delong and Imkeller (2010a) and
Theorem 2.1 in Delong (2011)) which satisfies

Ŷ (t) = EQ
[
Lã(T ) +

T�

t

γmax
{
0, sup
u∈[0,s]

{
Ŷ (u)e−

	s
u r(v) dv

}}
ds
∣∣∣ Ft] > 0.

By the uniqueness of solution to (6.2), we conclude that Y = Ŷ .

We remark that for such a retirement product the withdrawal rate γ is
usually low (see Milevsky and Posner (2001) and Milevsky and Salisbury
(2006)).

Unfortunately, we cannot solve the equation (6.2) analytically. For an at-
tempt at solving (6.2) numerically and related difficulties see Delong (2011).
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Moving a step further, we could also try to find an investment strategy
π under which the dynamics of the investment account satisfies

(6.4)

dX(t) = π(t)(µ(t) dt+ σ(t) dW (t)) + (X(t)− π(t))r(t) dt
− γ sup

s∈[0,t]
{X(s)} dt,

X(T ) = γ sup
0≤s≤T

{X(s)}a(T ).

Compared to (6.1) the last withdrawal rate is now locked in the life-time
annuity (see Huang et al. (2009)). The unique solution derived under Theo-
rem 2.1 of Delong and Imkeller (2010a) and Theorem 2.1 of Delong (2011) is
X = π = 0 and it is not clear at the moment how to derive a non-zero solu-
tion (if any). If multiple solutions exist, then an additional criterion has to
be introduced in order to make the pricing and hedging problem numerically
well-posed.

7. Conclusion. In this paper we have investigated novel applications of
time-delayed backward stochastic differential equations. Time-delayed BS-
DEs may arise when seeking an investment strategy and an investment
portfolio which should replicate a liability or meet a target depending on
the strategy applied or the past values of the portfolio. We have solved new
pricing, hedging and portfolio management problems for participating con-
tracts and variable annuities. Our results can be extended to cover to the
cases where the time horizon and the time delay are different entities and
such a differentiation may be useful in actuarial and financial applications.
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