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INTEGRAL REPRESENTATIONS OF RISK FUNCTIONS
FOR BASKET DERIVATIVES

Abstract. The risk minimizing problem E[l((H − Xx,π
T )+)]

π→ min in
the multidimensional Black–Scholes framework is studied. Specific formulas
for the minimal risk function and the cost reduction function for basket
derivatives are shown. Explicit integral representations for the risk functions
for l(x) = x and l(x) = xp, with p > 1 for digital, quantos, outperformance
and spread options are derived.

1. Introduction. The paper is devoted to the stochastic control prob-
lem arising in the risk analysis of financial markets. Let H be a random
variable representing future random payoff which is traded on the market.
Denote by p(H) its price determined by the no arbitrage method. If the ini-
tial capital x of the writer exceeds p(H) then he is able to hedge H perfectly,
i.e. he can follow some trading strategy π such that the wealth process at
the final time is greater than H, i.e.

P (Xx,π
T ≥ H) = 1.

If x < p(H) then the above equality fails for each π and as a consequence
shortfall risk appears. The aim of the trader is to find a strategy which
is optimal in some sense. Let l : [0,∞) → [0,∞) be a loss function which
describes the attitude of the trader to hedging losses. The goal is to minimize

E[l((H −Xx,π
T )+)].(1.1)

This problem was studied with various model settings in many papers. The
ones mentioned below do not form a complete list. Existence of the optimal
strategy for the case when l(x) = x in a complete market with the stock
prices modeled by diffusion processes was shown in [3]. These results were
generalized to incomplete markets in [2] where existence of solution with the
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use of dual methods was shown. Existence of the optimal strategy in a general
semimartingale model was shown in [9]. In [5] two aspects of the problem
are studied. The first is, as above, to find the minimal value of (1.1) which
will be denoted here by Φl1(x) and called the minimal risk function. The
second aspect is to minimize the initial costs when (1.1) is smaller than or
equal to v. The corresponding cost minimizing function is denoted by Φl2(v).
Proposition 3.1 and Theorem 3.2 of [5] provide a description of the solution
to the first problem in a general semimartingale framework and Section 7
in [5] shows its relation to the solution of the second problem. In fact these
results can be treated as a general method for finding Φl1(x), Φl2(v), but
they do not provide explicit formulas in the general situation. Then using
regularity of the one-dimensional Black–Scholes model both problems have
been solved explicitly for a call option (see Section 6 of [5]).

In this paper we examine a multidimensional Black–Scholes model and
extend the results of [5] towards more direct formulas for the functions Φl1 and
Φl2. First we treat the case when l is linear, i.e. l(x) = x. Using the general
results from [5] and the fact that the density of the martingale measure is
regular, we show that

Φl1 = Ψ1 ◦ Ψ−12 , Φl2 = Ψ2 ◦ Ψ−11 ,

where Ψ1, Ψ2 are certain deterministic functions (for precise formulation see
Theorem 3.6). This shows in particular that Φl2 is the inverse of Φl1. We
show similar results for a strictly convex loss function l. As an immediate
consequence of Theorem 3.2 in [5] we obtain the following characterization
of the risk minimizing function:

Φl1 = Ψ l1 ◦ (Ψ l2)−1,

where again Ψ l1, Ψ l2 are certain deterministic functions. The analogous result
for Φl2 requires an auxiliary result, Proposition 3.8. Finally, in Theorem 3.9
we show that

Φl2 = Ψ l2 ◦ (Ψ l1)−1.

The risk functions Φ1, Φ2, Φ
l
1, Φ

l
2 are thus determined provided that the aux-

iliary functions Ψ1, Ψ2, Ψ l1, Ψ l2 are given. We present concrete integral forms of
these functions for some widely traded derivatives like digital option, quan-
tos, outperformance and spread options. The cases when l is a linear loss
function or l(x) = xp, p > 1, are treated as well.

Let us stress that both functions Φl1, Φl2 reflect the interplay between
hedging risk and trading costs and thus they serve as an important tool for
risk management. Although the model under consideration is a particular
case of a general framework studied in [5], it is commonly used in practice due
to its tractability (see [6, p. 104]). Thus more explicit computing methods



Risk functions for basket derivatives 491

for finding Φl1 and Φl2 seem to be important for practitioners. The results
presented in this paper extend the results from [1], where analogous integral
representations for the quantile hedging problem for basket derivatives have
been shown.

The paper is organized as follows. In Section 2 we describe the model
settings and formulate the problem precisely. Section 3 contains the main
results which consist of two parts concerning a linear and a convex loss
function respectively. Section 4 is devoted to presenting an explicit integral
form for the risk functions in the two-dimensional model when l(x) = x and
l(x) = xp with p > 1.

2. Problem formulation. Let (Ω,F ,Ft, t ∈ [0, T ], P ) be a filtered
probability space supporting a d-dimensional Wiener processW = (W 1, . . . ,
W d) with a positive definite correlation matrix of the form

Q =


1 ρ1,2 ρ1,3 . . . ρ1,d

ρ2,1 1 ρ2,3 . . . ρ2,d
...

...
...

...
...

ρd,1 ρd,2 ρd,3 . . . 1

 ,
where

ρi,j = cor{W i
1,W

j
1 }, i, j = 1, . . . , d.

The process W as above will be called a Q-Wiener process. The multidimen-
sional Black–Scholes model is specified by the dynamics of d stocks,

dSit = Sit(αidt+ σidW
i
t ), i = 1, . . . , d, t ∈ [0, T ],

and evolution of the money market account

dBt = rBtdt, t ∈ [0, T ].

Above, αi ∈ R, σi > 0, i = 1, . . . , d, and r stands for a constant interest rate.
It is known that such a market is complete and that the unique martingale
measure P̃ is given by the density

(2.1)
dP̃

dP
= Z̃T := e−(Q

−1[
α−r1d
σ

],WT )−1/2|Q−1/2[
α−r1d
σ

]|2T , t ∈ [0, T ],

with the notation

Q−1
[
α− r1d

σ

]
:= Q−1


α1−r
σ1

...
αd−r
σd

 , t ∈ [0, T ]

(for more details see, for instance, [1]). Moreover,

W̃t :=Wt +
α− r1d

σ
t, t ∈ [0, T ],
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is aQ-Wiener process under P̃ . The dynamics of the prices under the measure
P̃ can be written as

dSit = Sit(rdt+ σidW̃
i
t ), i = 1, . . . , d, t ∈ [0, T ].

The wealth process corresponding to the initial endowment x and the trading
strategy π is given by

Xx,π
0 = x, Xx,π

t := π0tBt +
d∑
i=1

πitS
i
t , t ∈ [0, T ].

Each strategy is assumed to be admissible, i.e. Xx,π
t ≥ 0 for each t ∈ [0, T ]

almost surely, and self-financing, i.e.

dXx,π
t = π0t dBt +

d∑
i=1

πitdS
i
t , t ∈ [0, T ].

A contingent claim is represented by an FT -measurable random variable H
which is assumed to be nonnegative, i.e. H ≥ 0 and E[e−rT Z̃TH] < ∞. As
the market is complete, the price of H defined by

p(H) := inf{x : P (Xx,π
T ≥ H) = 1 for some π}

is given by p(H) = Ẽ[e−rTH] = E[e−rT Z̃TH].
The trader’s attitude towards risk is measured by

E[l((H −Xx,π
T )+)],

where l : [0,∞)→ [0,∞) is a loss function which is assumed to be increasing
with l(0) = 0. It is clear that if x ≥ p(H) then the risk equals zero for the
replicating strategy. In the opposite case the risk is strictly positive and the
question under consideration is to find a strategy such that

E[l((H −Xx,π
T )+)]→

π
min.

We will refer to the corresponding function Φ1 : [0,∞) → [0,E[l(H)]] given
by

(2.2) Φl1(x) := min
π

E[l((H −Xx,π
T )+)]

as the minimal risk function. The strategy π̂ such that E[l((H −Xx,π̂
T )+)] =

Φl1(x) will be called the risk minimizing strategy for x. If x ≥ p(H) then
Φl1(x) = 0, and Φl1(x) > 0 otherwise.

We also consider the cost reduction problem. Let v ≥ 0 be a fixed number
describing the level of shortfall risk accepted by the trader. We are searching
for a minimal initial cost such that there exists a strategy with risk not
exceeding v, i.e.

x→ min; E[l((H −Xx,π
T )+)] ≤ v for some π.
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The cost reduction function Φl2 : [0,∞)→ [0, p(H)] is thus defined by

(2.3) Φl2(v) := min{x : E[l((H −Xx,π
T )+)] ≤ v for some π}.

The strategy π̂ such that E[l((X
Φl2(v),π̂
T −H)+)] ≤ v will be called the cost

minimizing strategy for v. Notice that Φl2(0) = p(H).

3. Main results

3.1. Linear loss function. In this section we examine the case when
l(x) = x. Denote for simplicity the corresponding functions Φl1, Φl2 by Φ1, Φ2

respectively.
Let us start with two auxiliary results.

Lemma 3.1. Let X,Y ≥ 0 be random variables such that EX <∞. Then
the function g : [0,∞)→ [0,∞) given by

g(c) := E[X1{Y≥c}]

is:

(a) left continuous on (0,∞) with right limits on [0,∞),
(b) right continuous on [0,∞) if the cumulative distribution function of

Y is continuous,
(c) strictly decreasing if for any 0 ≤ a < b <∞,

(3.1) P (X > 0, Y ∈ [a, b)) > 0.

Proof. The function g is decreasing and thus it has right and left limits.
If X = 0 then the assertion follows trivially. In the opposite case let us
consider an auxiliary probability measure P̂ defined by

dP̂

dP
=

X

E[X]
,

which is absolutely continuous with respect to P , i.e. P̂ � P .
(a) For any c > 0 we have⋂

n

{c− 1/n ≤ Y < c} = ∅,

and thus

|g(c− 1/n)− g(c)| = E(X1{c−1/n≤Y <c}) = E[X]P̂ (c− 1/n ≤ Y < c)→
n

0.

(b) For any c ≥ 0 we have⋂
n

{c ≤ Y < c+ 1/n} = {Y = c},
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and thus

|g(c)− g(c+ 1/n)| = E(X1{c≤Y <c+1/n})

= E[X]P̂ (c ≤ Y < c+ 1/n)→
n

E[X]P̂ (Y = c) = 0,

as P̂ � P and P (Y = c) = 0.
(c) Let us notice that (3.1) is equivalent to the condition

P (X > ε, Y ∈ [a, b)) > 0 for some ε > 0,

and thus for 0 ≤ a < b <∞ we have

|g(a)− g(b)| = E(X1{a≤Y <b})

= E(X1{a≤Y <b}1{X=0}) +E(X1{a≤Y <b}1{X>0})

≥ E(X1{a≤Y <b}1{X>ε}) ≥ εP (X > ε, a ≤ Y < b) > 0.

Remark 3.2. Let us notice that condition (3.1) implies that Y has a
strictly increasing cumulative distribution function.

Corollary 3.3. If the cumulative distribution function of Y is contin-
uous then the function g in Lemma 3.1 is continuous on (0,∞) and right
continuous at 0.

Proposition 3.4. Let (Z1, Z2) be a random vector with nondegenerate
normal distribution on the plane. Let f, h be functions such that

f : R2 → (0,∞), h : R→ (0,∞) is strictly monotone.

Let α, β, γ, δ ∈ R be such that the vectors (α, β), (γ, δ) are not parallel,
(α, β) ∦ (γ, δ). Let

X := f(Z1, Z2)1{αZ1+βZ2>k}, Y := h(γZ1 + δZ2),

where k is some constant. Then the function g(c) := E[X1{Y≥c}] is strictly
decreasing on [0,∞).

Proof. We will show that (3.1) in Lemma 3.1 holds. We have

P (X > 0, Y ∈ [a, b)) = P
(
αZ1 + βZ2 > k, h−1(a) ≤ γZ1 + δZ2 < h−1(b)

)
whennever h is strictly increasing. The probability above is positive because
the set

{(x, y) : αx+ βy > k, h−1(a) ≤ γx+ δy < h−1(b)}
is of positive Lebesgue measure and (Z1, Z2) has a nondegenerate distribu-
tion.

We will need two auxiliary functions defined by

Ψ1(c) := E(H1Ac),(3.2)

Ψ2(c) := Ẽ(H1Ac),(3.3)
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where
Ac := {Z̃−1T ≥ c}, c ≥ 0,

and Z̃T is given by (2.1). Let us notice that since Q is nonsingular, the
random variable

(3.4) Z̃−1T := e(Q
−1[

α−r1d
σ

],WT )+
1
2
|Q−1/2[

α−r1d
σ

]|2T

has a continuous cumulative distribution function with respect to P and P̃ .
Thus it follows from Corollary 3.3 that the functions Ψ1, Ψ2 are continuous for
any H ≥ 0. It is clear that both are decreasing. For some special contingent
claims these functions are strictly decreasing. Indeed, using Proposition 3.4
one can show that this is the case for the following payoffs.

Example 3.5. The functions Ψ1, Ψ2 are strictly decreasing if

(a) H is a digital option, i.e.

H = K1{S1
T≥S

2
T }

and (σ1,−σ2) ∦ Q−1
[
α− r1d

σ

]
,

(b) H is a quanto domestic option, i.e.

H = S2
T (S

1
T −K)+ and (σ1, 0) ∦ Q−1

[
α− r1d

σ

]
,

(c) H is a quanto foreign option, i.e.

H =

(
S1
T −

K

S2
T

)+

and (σ1, σ2) ∦ Q−1
[
α− r1d

σ

]
.

Below we present the description of the risk functions Φ1, Φ2.

Theorem 3.6.

(a) Let c = c(x) be a solution of the equation

(3.5) Ψ2(c) = erTx, x ∈ [0, p(H)).

Then

Φ1(x) =

{
Ψ1(0)− Ψ1(c) for x ∈ [0, p(H)),
0 for x ≥ p(H).

Moreover, the replicating strategy for the payoff H1Ac(x) is a risk
minimizing strategy for x.

(b) Let c = c(v) be a solution of the equation

(3.6) Ψ1(c) = Ψ1(0)− v, v ∈ [0,E[H]).

Then

Φ2(v) =

{
e−rTΨ2(c) for v ∈ [0,E[H]),
0 for v ≥ E[H].
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Moreover, the replicating strategy for the payoff H1Ac(v) is a cost
minimizing strategy for v.

Proof. First let us notice that the equations (3.5), (3.6) actually have
solutions. Indeed, this follows from the fact that Ψ1, Ψ2 are continuous and
decreasing with images [0,E[H]], [0, erT p(H)] respectively.

For any admissible strategy (x, π) let us defin the success function

ϕx,π := 1{Xx,π
T ≥H} +

Xx,π
T

H
1{Xx,π

T <H}.

One can check the identity

(H −Xx,π
T )+ = H −Xx,π

T ∧H = H −Hϕx,π,
which implies that

(3.7) E[(H −Xx,π
T )+] = E[H]−E[Hϕx,π].

(a) In view of (3.7) the problem (2.2) of finding Φ1(x) is equivalent to
that of finding a strategy π satisfying

E[Hϕx,π]→
π

max .

If x ≥ p(H) then ϕx,π = 1 for the replicating strategy and Φ1(x) = 0, so
consider the case 0 ≤ x < p(H). Let us formulate an auxiliary problem of
determining ϕ ∈ R solving

(3.8)
{
E[Hϕ]→ max,

Ẽ[e−rTHϕ] ≤ x,
where

(3.9) R := {ϕ : 0 ≤ ϕ ≤ 1 and ϕ is FT -measurable}.
It is clear that if ϕ̂ such that Ẽ[e−rTHϕ̂] = x is a solution of (3.8) then the
replicating strategy π̃ for the payoff Hϕ̂ is a risk minimizing strategy for x
and

(3.10) Φ1(x) = E[(H −Xx,π̃
T )+] = E[H]−E[Hϕ̂].

Now let us focus on determining a solution ϕ̂ of (3.8). To this end introduce
two probability measures P1, P2 with densities

dP1

dP
=

H

E[H]
,

dP2

dP
=

e−rT Z̃TH

E[e−rT Z̃TH]
.

Then (3.8) reads

(3.11)
{
EP1 [ϕ]→ max,

EP2 [ϕ] ≤ x/p(H),

which is a standard problem in the theory of statistical tests. One should try
to search for a solution in the class of 0-1 valued functions of the form 1Ac ,
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c ≥ 0, where

Ac :=

{
dP1

dP2
≥ c
}

=

{
dP1

dP

dP

dP2
≥ c
}

=

{
H

E[H]

E[Z̃TH]

Z̃TH
≥ c
}

=

{
Z̃−1T ≥ c E[H]

E[Z̃TH]

}
.

For simplicity we can reparametrize Ac by denoting cE[H]/E[Z̃TH] above
just by c. Then Ac = {Z̃−1T ≥ c}. It is known by the Neyman–Pearson lemma
that if there exists c = c(x) such that

(3.12) EP2 [1Ac ] = P2(Ac) = x/p(H),

then the solution of (3.11), or equivalently (3.8), is given by ϕ̂ = 1Ac(x) . But
(3.12) is equivalent to

Ψ2(c) = erTx,

and the existence of the required constant c follows from (3.5). Finally, com-
ing back to (3.10) and using the definition of Ψ1, we obtain

Φ1(x) = E[H]−E[Hϕ̂] = E[H]−E[H1Ac ] = Ψ1(0)− Ψ1(c).

(b) If v ≥ E[H] then the cost minimizing strategy is trivial, i.e. (x = 0,
π = 0), and thus Φ2(v) = 0. Let us focus on the case when v ∈ [0,E[H]).
In view of (3.7) the cost minimizing strategy is the one which solves the
problem {

E[Hϕx,π] ≥ E[H]− v,
Ẽ[e−rTHϕx,π]→ min.

We are thus looking for a solution ϕ̂ ∈ R of the problem

(3.13)
{
E[Hϕ] ≥ E[H]− v,
Ẽ[e−rTHϕ]→ min.

If (3.13) has a solution satisfying E[Hϕ̂] = E[H]−v then the cost minimizing
strategy is the one which replicates Hϕ̂, and the cost minimizing function
equals

(3.14) Φ2(r) = e−rT Ẽ[Hϕ̂].

Let us focus on determining the solution ϕ̂ of (3.13). Using the notation
from part (a) we can reformulate (3.13) as

(3.15)

EP1 [ϕ] ≥ E[H]− v
E[H]

,

EP2 [ϕ]→ min.

It can be shown in the same way as in the proof of the Neyman–Pearson
lemma that the solution should be searched among the 0-1 valued functions
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of the form 1Bc , c ≥ 0, where

Bc :=

{
dP2

dP1
≤ c
}

=

{
dP2

dP

dP

dP1
≤ c
}

=

{
Z̃−1T ≥ 1

c

E[H]

E[Z̃TH]

}
.

Denoting, for simplicity, the constant 1
c

E[H]

E[Z̃TH]
above by c, we have

Bc = {Z̃−1T ≥ c}.
If there exists a constant c = c(v) satisfying

(3.16) EP1 [1Bc ] = P1(Bc) =
E[H]− v
E[H]

then ϕ̂ = 1Bc is a solution of (3.15) or, equivalently, (3.13). Let us notice
that (3.16) can be written as

Ψ1(c) = Ψ1(0)− v
and existence of the required constant c(v) follows from (3.6). Coming back
to (3.14) we obtain

Φ2(v) = e−rT Ẽ[H1Bc ] = e−rTΨ2(c).

3.2. Convex loss function. In this section we study the case when
l : [0,∞) → [0,∞) is an increasing, strictly convex function such that
l(0) = 0. We assume that l ∈ C2(0,∞) and that l′ is strictly increasing
with l′(0+) = 0, l′(∞) = ∞. The inverse of the first derivative will be
denoted by I, i.e.

I = (l′)−1.

Moreover, the contingent claim H is assumed to satisfy E[l(H)] < ∞. The
functions Φl1, Φl2 can be characterized in terms of the functions

Ψ l1(c) := E[l((1− ϕc)H)],(3.17)

Ψ l2(c) := Ẽ[Hϕc],(3.18)
where ϕc is defined by

(3.19) ϕc :=

{
1−

(
I(cZ̃T )

H
∧ 1

)}
1{H>0}, c ≥ 0.

It was shown in [5, Theorem 5.1] that the problem of determining Φl1 is
equivalent to finding a solution ϕ̃ of the problem

(3.20)

{
E[l((1− ϕ)H)] −−−→

ϕ∈R
min,

Ẽ[e−rTHϕ] ≤ x,
where R is defined in (3.9). Then Φl1(x) = E[l((1 − ϕ̃)H)] and the risk
minimizing strategy is the one which replicates Hϕ̃. Moreover, since the
function Ψ l2 is continuous with image [0, erT p(H)] (see the proof of Theorem
5.1 in [5]), it follows that for any x ∈ [0, erT p(H)] there exists a constant
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c such that Ψ l2(c) = Ẽ[Hϕc] = erTx. This ϕc solves the auxiliary problem
(3.20) and thus

Φl1(x) = E[l((1− ϕc)H)],

and the minimal risk strategy is that replicating the payoffHϕc (see Theorem
3.2 in [5]). Thus the results from [5] can be expressed in our notation as
follows.

Theorem 3.7. Let c = c(x) be a solution of the equation

Ψ l2(c) = erTx, x ∈ [0, p(H)).

Then

Φl1(x) =

{
Ψ l1(c) for x ∈ [0, p(H)),
0 for x ≥ p(H).

Although Theorem 3.7 is only a reformulation of Theorem 3.2 in [5], it
provides an effective method for practical applications if one is able to derive
the functions Ψ l1, Ψ l2 for concrete derivatives.

We will show that the function Φl2 can be characterized in terms of the
functions Ψ l1, Ψ l2 as well. It is easy to show that the cost reduction problem
is equivalent to that of finding ϕ ∈ R such that

(3.21)
{
E[l((1− ϕ)H)] ≤ v,
Ẽ[e−rTHϕ]→ min.

Let us notice that (3.21) cannot be solved with the same method as (3.20).
In (3.20) the constraints are linear and thus the solution could be found
via the Neyman–Pearson approach to the variational problem (see the proof
of Theorem 5.1 in [5] and p. 210 in [8]). The constraints in (3.21) are no
longer linear and the method above fails. Below we present the proof based
on Lagrange multipliers.

Proposition 3.8. Let l′′ be increasing and let H additionally satisfy
E[l′(H)H] <∞ and E[l′′(H)H2] <∞. Then the random variable

ϕ̃ :=

{
1−

(
I(cZ̃T )

H
∧ 1

)}
1{H>0}

with a constant c such that E[l((1− ϕ̃)H)] = v is a solution of the problem
(3.21).

Proof. First, if ϕ ∈ R is a solution to (3.21) then E[l((1−ϕ)H)] = v. In-
deed, assume to the contrary that ϕ is a solution to (3.21) with E[l((1−ϕ)H)]
< v and consider the family of random variables ϕα := ϕ ∧ α, α ∈ [0, 1].
Then the function α 7→ E[l((1 − ϕα)H)] is continuously decreasing from
E[l(H)] to 0. Thus there exists α̃ ∈ [0, 1] such that E[l((1 − ϕα̃)H)] = v.
Then ϕα̃ ≤ ϕ and thus Ẽ[Hϕα̃] < Ẽ[Hϕ], which is a contradiction.
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Let ϕ 6= ϕ̃ be any element of R such that E[l((1 − ϕ)H)] = v. We need
to show that Ẽ[Hϕ̃] ≤ Ẽ[Hϕ]. Let us define

ϕε := (1− ε)ϕ̃+ εϕ, ε ∈ [0, 1],

and
Fϕ(ε) := Ẽ(Hϕε) = E(Z̃THϕε).

We need to show that Fϕ(0) ≤ Fϕ(1). We will show that Fϕ has a minimum
at 0. Let us define the auxiliary function

Gϕ(ε) := E[l((1− ϕε)H)],

and notice that due to the convexity of l we haveGϕ(ε) ≤ v for each ε ∈ [0, 1].
Thus the problem of minimizing Fε on [0, 1] is equivalent to

Fϕ(ε)→ min,

Gϕ(ε) ≤ v,
ε ≥ 0,

1− ε ≥ 0.

(3.22)

In view of the assumptions on l and H, both Fϕ, Gϕ are smooth, with

F ′ϕ(ε) ≡ E[Z̃T (ϕ− ϕ̃)H],

G′ϕ(ε) = E[l′((1− ϕε)H) · (ϕ̃− ϕ)H],

G′′ϕ(ε) = E[l′′((1− ϕε)H) · (ϕ̃− ϕ)2H2],

and thus the Lagrange function for (3.22) is of the form

L(ε, λ1, λ2, λ3) = Fϕ(ε)− λ1(v −Gϕ(ε))− λ2ε− λ3(1− ε).

As the function Fϕ is linear, it attains its minimal value at 0 or 1. We will
show that the first and the second order differential conditions are satisfied
for ε = 0.

The first order conditions are

(3.23) L′ε(ε, λ1, λ2, λ3)

= E[Z̃T (ϕ− ϕ̃)H] + λ1E[l′((1− ϕε)H) · (ϕ̃− ϕ)H]− λ2 + λ3 = 0.

(3.24) λ1, λ2, λ3 ≥ 0, λ1(v −Gϕ(ε)) = 0, λ2ε = 0, λ3(1− ε) = 0.

By the definition of ϕ̃ we have

ϕ̃ = 1− I(cZ̃T )/H and cZ̃T = l′((1− ϕ̃)H) on A,

ϕ̃ = 0 on A{,

where A := {cZ̃T < l′(H)} and A{ stands for the complement of A. For
ε = 0 it follows from (3.24) that λ3 = 0 and the equation (3.23) is of the
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form

(3.25) E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃T (ϕ− ϕ̃)H1A{ ] + cλ1E[Z̃T (ϕ̃− ϕ)H1A]

+ λ1E[l′((1− ϕ̃)H)(ϕ̃− ϕ)H1A{

= (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1A{ ]− λ1E[l′(H)ϕH1A{ ] = λ2.

The left side of (3.25) satisfies the estimate

(1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1A{ ]− λ1E[l′(H)ϕH1A{ ]

≥ (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1A{ ]− λ1cE[Z̃TϕH1A{ ]

≥ (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A + Z̃TϕH1A{ ].

If E[Z̃T (ϕ− ϕ̃)H1A+ Z̃TϕH1A{ ] > 0 then we take λ1 such that 1− cλ1 > 0;
in the opposite case we take λ1 such that 1− cλ1 < 0. In both cases λ2 given
by (3.25) is nonnegative.

The second order condition for ε = 0 is

L′′ε(ε, λ1, λ2, λ3) = λ1E[l′′((1− ϕ̃)H) · (ϕ̃− ϕ)2H2] ≥ 0,

and thus the solution of (3.22) is ε = 0.

Proposition 3.8 and the definitions of Ψ l1, Ψ l2 lead us to the following
result.

Theorem 3.9. Assume that l′′ is increasing and H satisfies E[l′(H)H] <
∞ and E[l′′(H)H2] <∞. Let c = c(v) be a solution of the equation

Ψ l1(c) = v, v ∈ [0,E[l(H)]).

Then

Φl2(v) =

{
e−rTΨ l2(c) for v ∈ [0,E[l(H)]),
0 for v ≥ E[l(H)].

4. Two-dimensional model. In this section we determine explicit in-
tegral formulas for the functions Ψ l1, Ψ l2 for several popular options in the
case d = 2. Some of the results can be generalized to higher dimensions.

First let us introduce some notation relating to the multidimensional
normal distribution. The fact that an Rd-valued random vector X has a
normal distribution with mean m ∈ Rd and covariance matrix Σ will be
denoted by X ∼ Nd(m,Σ) or L(X) = Nd(m,Σ). We denote by fX the
density of X. If d = 1 then the subscript is omitted and N(m,σ) denotes
the normal distribution with mean m and variance σ. If X ∼ Nd(m,Σ) and
A is a k × d matrix, then

(4.1) AX ∼ Nk(Am,AΣA
T );

in particular if a ∈ Rd then

(4.2) aTX ∼ N(aTm, aTΣa).
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Let X be a random vector taking values in Rd and fix an integer 0 <
k < d. Let us divide X into two vectors X(1) and X(2) of lengths k, d − k
respectively, i.e.

X(1) = (X1, . . . , Xk)
T , X(2) = (Xk+1, . . . , Xd)

T .

Analogously, divide the mean vector m and the covariance matrix Σ:

m =

(
m(1)

m(2)

)
, Σ =

[
Σ(11) Σ(12)

Σ(21) Σ(22)

]
,

so that EX(1) = m(1), EX(2) = m(2), CovX(1) = Σ(11), CovX(2) = Σ(22),
Cov(X(1), X(2)) = Σ(12) = Σ(21)T . Denote by L(X(1) |X(2) = x(2)) the con-
ditional distribution ofX(1) givenX(2) = x(2) ∈ Rd−k. If Σ(22) is nonsingular
then

(4.3) L(X(1) |X(2) = x(2)) = Nk(m
(1)(x(2)), Σ(11)(x(2))),

where

m(1)(x(2)) = m(1) +Σ(12)Σ(22)−1(x(2) −m(2)),

Σ(11)(x(2)) = Σ(11) −Σ(12)Σ(22)−1Σ(21).

Actually the conditional variance Σ(11)(x(2)) does not depend on x(2) but we
keep the notation for consistency. The conditional density will be denoted
by fX(1)|X(2)=x(2)(x

(1)), where x(1) ∈ Rk. In particular if (X,Y ) is a two-
dimensional normal vector with parameters

m =

(
m1

m2

)
, Σ =

[
σ11 σ12

σ21 σ22

]
,

then
L(X |Y = y) = N(m1(y), σ1(y)),

where

m1(y) := m1 +
σ12
σ22

(y −m2), σ1(y) := σ11 −
σ212
σ22

.

If X is a random vector then its distribution with respect to the measure
P̃ will be denoted by L̃(X) and its density by f̃X . Also, f̃X(1)|X(2)=x(2)(x

(1))

stands for the conditional density with respect to P̃ .
In the case d = 2 the correlation matrix is of the form

Q =

[
1 ρ

ρ 1

]
,
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and thus

Q−1 =
1

ρ2 − 1

[
−1 ρ

ρ −1

]
, Q−1/2 =

1

2

[
1√
1+ρ

+ 1√
1−ρ

1√
1+ρ
− 1√

1−ρ
1√
1+ρ
− 1√

1−ρ
1√
1+ρ

+ 1√
1−ρ

]
.

Hence the density of the martingale measure (2.1) can be written as

(4.4) Z̃T = e−A1W 1
T−A2W 2

T−BT = e−A1W̃ 1
T−A2W̃ 2

T−B̃T ,

where

A1 :=
1

ρ2 − 1

(
−α1 − r

σ1
+ ρ

α2 − r
σ2

)
A2 :=

1

ρ2 − 1

(
ρ
α1 − r
σ1

− α2 − r
σ2

)
B :=

1

8

(((
1√
1 + ρ

+
1√
1− ρ

)
α1 − r
σ1

+

(
1√
1 + ρ

− 1√
1− ρ

)
α2 − r
σ2

)2

+

((
1√
1 + ρ

− 1√
1− ρ

)
α1 − r
σ1

+

(
1√
1 + ρ

+
1√
1− ρ

)
α2 − r
σ2

)2)
B̃ := B −A1

α1 − r
σ1

−A2
α2 − r
σ2

.

In the following subsections we will use the universal constants A1, A2,
B, B̃ appearing in (4.4) as well as a1, a2, b, ã1, ã2, b̃ introduced below.

Fix numbers K > 0, c ≥ 0. One can check the following:

{S1
T ≥ K} = {W 1

T ≥ a1} = {W̃ 1
T ≥ ã1},(4.5)

{S2
T ≥ K} = {W 2

T ≥ a2} = {W̃ 2
T ≥ ã2},(4.6)

{S1
T ≥ S2

T } = {σ1W 1
T − σ2W 2

T ≥ b} = {σ1W̃ 1
T − σ2W̃ 2

T ≥ b̃},(4.7)

{Z̃−1T ≥ c} = {A1W
1
T +A2W

2
T ≥ ln c−BT}(4.8)

= {A1W̃
1
T +A2W̃

2
T ≥ ln c− B̃T},

where

a1 :=
1

σ1

(
ln
K

S1
0

−
(
α1 −

1

2
σ21

)
T

)
, ã1 :=

1

σ1

(
ln
K

S1
0

−
(
r − 1

2
σ21

)
T

)
,

a2 :=
1

σ2

(
ln
K

S2
0

−
(
α2 −

1

2
σ22

)
T

)
, ã2 :=

1

σ2

(
ln
K

S2
0

−
(
r − 1

2
σ22

)
T

)
,

b := ln
S2
0

S1
0

+

(
α2 − α1 −

1

2
(σ22 − σ21)

)
T, b̃ := ln

S2
0

S1
0

− 1

2
(σ22 − σ21)T.

In all the formulas below it is understood that ln 0 = −∞ and Φ stands for
the distribution function of N(0, 1).

For each derivative we calculate the risk functions for the cases when
l(x) = x and when l(x) = xp/p, p > 1. In the latter case we use the notation
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Ψp1 = Ψ l1, Ψ
p
2 = Ψ l2. For l(x) = xp/p we have I(x) = x1/(p−1) and in view of

(3.19),

Ψp1 (c) =
1

p
E[Hp1A{

c
] +

1

p
E[(cZ̃T )

p
p−11Ac ],(4.9)

Ψp2 (c) = Ẽ[(H − (cZ̃T )
1
p−1 )1Ac ],(4.10)

where

(4.11) Ac := {cZ̃T ≤ Hp−1},

and A{
c stands for the complement of Ac.

4.1. Digital option. Digital option is a contract with payoff function
of the form

H = K · 1{S1
T≥S

2
T }
, K > 0.

Let (X,Y ), (X̃, Ỹ ) be random vectors defined by X := σ1W
1
T − σ2W

2
T ,

Y := A1W
1
T +A2W

2
T , X̃ := σ1W̃

1
T − σ2W̃ 2

T , Ỹ := A1W̃
1
T +A2W̃

2
T . They are

normally distributed under P , resp. P̃ and their parameters are given by
(4.1).

Linear loss function. Using (4.7) and (4.8) we obtain

Ψ1(c) = KE(1{S1
T≥S

2
T }
1{Z̃−1

T ≥c}
)

= KP (σ1W
1
T − σ2W 2

T ≥ b, A1W
1
T +A2W

2
T ≥ ln c−BT ),

and thus

Ψ1(c) = K

∞�

b

∞�

ln c−BT
fX,Y (x, y) dy dx.

An analogous computation yields

Ψ2(c) = KP̃ (σ1W̃
1
T − σ2W̃ 2

T ≥ b̃, A1W̃
1
T +A2W̃

2
T ≥ ln c− B̃T )

= K

∞�

b̃

∞�

ln c−B̃T

f̃X̃,Ỹ (x, y) dy dx.

Power loss function. In view of (4.7) and (4.4) we have

Ac := {cZ̃T ≤ Hp−1} = {cZ̃T ≤ Kp−11{σ1W 1
T−σ2W

2
T≥b}
}(4.12)

= {σ1W 1
T − σ2W 2

T ≥ b, cZ̃T ≤ Kp−1}
= {σ1W 1

T − σ2W 2
T ≥ b, A1W

1
T +A2W

2
T ≥ ln(Kp−1/c)−BT}

= {σ1W̃ 1
T − σ2W̃ 2

T ≥ b̃, A1W̃
1
T +A2W̃

2
T ≥ ln(Kp−1/c)− B̃T},

and thus
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Ψp1 (c) =
1

p
E[Kp1{σ1W 1

T−σ2W
2
T≥b}

1A{
c
] +

1

p
c

p
p−1E[Z̃

p
p−1

T 1Ac ],

Ψp2 (c) = Ẽ[K1{σ1W̃ 1
T−σ2W̃

2
T≥b̃}

1Ac ]− c
1
p−1 Ẽ[Z̃

1
p−1

T 1Ac ].

In view of (4.12) we have

Ψp1 (c) =
Kp

p
P (σ1W

1
T − σ2W 2

T ≥ b, A1W
1
T +A2W

2
T < ln(Kp−1/c)−BT )

+
1

p
c

p
p−1E[Z̃

p
p−1

T 1Ac ]

=
Kp

p

∞�

b

ln(Kp−1/c)−BT�

−∞
fX,Y (x, y) dy dx

+
1

p
c

p
p−1

∞�

b

∞�

ln(Kp−1/c)−BT

e
− p(y+BT )

p−1 fX,Y (x, y) dy dx,

and

Ψp2 (c) = KP̃ (Ac)− c
1
p−1 Ẽ[e−A1W̃ 1

T−A2W̃ 2
T−B̃T1Ac ]

= K

∞�

b̃

∞�

ln(Kp−1/c)−B̃T

f̃X̃,Ỹ (x, y) dy dx

− c
1
p−1

∞�

b̃

∞�

ln(Kp−1/c)−B̃T

e
− y+B̃T

p−1 f̃X̃,Ỹ (x, y) dy dx.

4.2. Quantos

4.2.1. Quanto domestic. The contingent claim is of the form

H = S2
T (S

1
T −K)+, K > 0.

Linear loss function. Using (4.5) we obtain

Ψ1(c) = E[S2
T (S

1
T −K)+1{Z̃−1

T ≥c}
]

= E[S2
T (S

1
T −K)1{Z̃−1

T ≥c}
|S1

T > K]P (S1
T > K)

= E[S2
T (S

1
T −K)1{A1W 1

T+A2W 2
T≥ln c−BT}

|W 1
T > a1]P (W

1
T > a1)

=

∞�

a1

E
[
S2
0e

(α2− 1
2
σ2
2)T+σ2W

2
T (S1

0e
(α1− 1

2
σ2
1)T+σ1W

1
T −K)

· 1
{W 2

T≥
ln c−BT−A1W

1
T

A2
}

∣∣W 1
T = x

]
fW 1

T
(x)dx
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= S2
0e

(α2− 1
2
σ2
2)T
∞�

a1

∞�

ln c−BT−A1x
A2

(S1
0e

(α1− 1
2
σ2
1)T+σ1x −K)eσ2y

· fW 2
T |W

1
T=x

(y)fW 1
T
(x) dy dx,

and

Ψ2(c) = Ẽ[S2
T (S

1
T −K)+1{Z̃−1

T ≥c}
]

= Ẽ[S2
T (S

1
T −K)1{Z̃−1

T ≥c}
|S1

T > K]P̃ (S1
T > K)

= Ẽ[S2
T (S

1
T −K)1{A1W̃ 1

T+A2W̃ 2
T≥ln c−B̃T}

| W̃ 1
T > ã1]P̃ (W̃

1
T > ã1)

=

∞�

ã1

Ẽ
[
S2
0e

(r− 1
2
σ2
2)T+σ2W̃

2
T (S1

0e
(r− 1

2
σ2
1)T+σ1W̃

1
T −K)

· 1
{W̃ 2

T≥
ln c−B̃T−A1W̃

1
T

A2
}

∣∣W̃ 1
T = x

]
f̃
W̃ 1
T
(x) dx

= S2
0e

(r− 1
2
σ2
2)T
∞�

ã1

∞�

ln c−B̃T−A1x
A2

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)eσ2y

· f̃
W̃ 2
T |W̃

1
T=x

(y) dy f̃
W̃ 1
T
(x) dx.

Power loss function. The set (4.11) is of the form

Ac =

{
(ce−A1W 1

T−A2W 2
T−BT )

1
p−1

S2
0e

(α2− 1
2
σ2
2)T+σ2W

2
T

≤ (S1
T −K)+

}

=

{
c

1
p−1

S2
0

e
− A1
p−1

W 1
T−(

A2
p−1

+σ2)W 2
T−(B+α2− 1

2
σ2
2)T ≤ S1

T −K,S1
T ≥ K)

}
.

For simplicity we assume that A2
p−1 + σ2 > 0. In the opposite case one has

to modify the form of the set Ac and thus also the integration limits in the
formulas below. We obtain

Ac = {W 2
T ≥ w(W 1

T ), W
1
T ≥ a1} = {W̃ 2

T ≥ w̃(W̃ 1
T ), W̃

1
T ≥ ã1},

where

w(x) :=

A1
p−1x+ ln

(S2
0(S

1
0e

(α1−σ
2
1)T+σ1x−K)

c1/(p−1)

)
+ (B + α2 − 1

2σ
2
2)T

−
(
A2
p−1 + σ2

) ,

w̃(x) :=

A1
p−1x+ ln

(S2
0(S

1
0e

(r−σ21)T+σ1x−K)

c1/(p−1)

)
+ (B̃ + α2 − 1

2σ
2
2)T

−
(
A2
p−1 + σ2

) .
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In view of the above, (4.9), (4.10) and using conditional densities we ob-
tain

Ψp1 (c) =
(S2

0)
pe(α2− 1

2
σ2
2)pT

p

(∞�
a1

∞�

−∞
epσ2y(S1

0e
(α1− 1

2
σ2
1)T+σ2x −K)p

· fW 2
T |W

1
T=x

(y)fW 1
T
(x) dy dx

−
∞�

a1

∞�

w(x)

epσ2y(S1
0e

(α1− 1
2
σ2
1)T+σ2x −K)pfW 2

T |W
1
T=x

(y)fW 1
T
(x) dy dx

)

+
c

p
p−1 e

−BTp
p−1

p

∞�

a1

∞�

w(x)

e
−(A1p

p−1
x+

A2p
p−1

y)
fW 2

T |W
1
T=x

(y)fW 1
T
(x) dy dx,

and

Ψp2 (c) = S2
0e

(r− 1
2
σ2
2)T
∞�

ã1

∞�

w̃(x)

eσ2y(S1
0e

(r− 1
2
σ2
1)T+σ2x −K)

· f̃
W̃ 2
T |W̃

1
T=x

(y)f̃
W̃ 1
T
(x) dy dx

− c
1
p−1 e

− BT
p−1

∞�

ã1

∞�

w̃(x)

e
− 1
p−1

(A1x+A2y)f̃
W̃ 2
T |W̃

1
T=x

(y)f̃
W̃ 1
T
(x) dy dx.

4.2.2. Quanto foreign. The payoff is of the form

H = (S1
T −K/S2

T )
+, K > 0.

Linear loss function. First let us notice that

(4.13) {S1
T−K/S2

T ≥ 0} = {σ1W 1
T+σ2W

2
T ≥ d} = {σ1W̃ 1

T+σ2W̃
2
T ≥ d̃},

where

(4.14)
d := ln

K

S1
0S

2
0

−
(
α1 + α2 −

1

2
(σ21 + σ22)

)
T,

d̃ := ln
K

S1
0S

2
0

−
(
2r − 1

2
(σ21 + σ22)

)
T.

We have

Ψ1(c) = E

[(
S1
T −

K

S2
T

)+

1{Z̃−1
T ≥c}

]
= E

[(
S1
T −

K

S2
T

)
1
{W 2

T≥
ln c−BT−A1W

1
T

A2
}

∣∣∣∣ σ1W 1
T + σ2W

2
T ≥ d

]
· P (σ1W 1

T + σ2W
2
T ≥ d).
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Denoting Z := σ1W
1
T + σ2W

2
T and taking into account the conditional dis-

tribution L(W 1
T ,W

2
T | Z) we obtain

Ψ1(c) =

∞�

d

∞�

−∞

∞�

ln c−BT−A1x
A2

(S1
0e

(α1− 1
2
σ2
1)T+σ1x −KS2

0e
(−α2+

1
2
σ2
2)T−σ2y)

· f(W 1
T ,W

2
T )|Z=z

(x, y) dy dx fZ(z) dz.

Using the same argument under the measure P̃ with Z̃ := σ1W̃
1
T + σ2W̃

2
T

yields

Ψ2(c) = Ẽ

[(
S1
T −

K

S2
T

)
1
{W̃ 2

T≥
ln c−B̃T−A1W̃

1
T

A2
}

∣∣∣∣ σ1W̃ 1
T + σ2W̃

2
T ≥ d̃

]
· P̃ (σ1W̃ 1

T + σ2W̃
2
T ≥ d̃)

=

∞�

d̃

∞�

−∞

∞�

ln c−B̃T−A1x
A2

(S1
0e

(r− 1
2
σ2
1)T+σ1x −KS2

0e
(−r+ 1

2
σ2
2)T−σ2y)

· f̃
(W̃ 1

T ,W̃
2
T )|Z̃=z

(x, y) dy dx f̃Z̃(z) dz.

Power loss function. Using (4.13) one can check the following:

Ac :=

{
cZ̃T ≤

((
S1
T −

K

S2
T

)+)p−1
, S1

T −
K

S2
T

> 0

}
=

{
cZ̃T ≤

((
S1
T −

K

S2
T

)+)p−1
, σ1W

1
T + σ2W

2
T > d

}
=

{
A1

p− 1
W 1
T +

(
A2

p− 1
− σ2

)
W 2
T(4.15)

≥ v(σ1W 1
T + σ2W

2
T ), σ1W

1
T + σ2W

2
T > d

}
=

{
A1

p− 1
W̃ 1
T +

(
A2

p− 1
− σ2

)
W̃ 2
T(4.16)

≥ ṽ(σ1W̃ 1
T + σ2W̃

2
T ), σ1W̃

1
T + σ2W̃

2
T > d̃

}
,

where d, d̃ are given by (4.14) and

v(x) = ln

{
S1
0S

2
0e

(α1+α2− 1
2
(σ2

1+σ
2
2))T+x −K

c
1
p−1S2

0e
(α2− 1

2
σ2
2−

B
p−1

)T

}
,

ṽ(x) = ln

{
S1
0S

2
0e

(2r− 1
2
(σ2

1+σ
2
2))T+x −K

c
1
p−1S2

0e
(r− 1

2
σ2
2−

B̃
p−1

)T

}
.

To calculate Ψ l1, Ψ l2 we use the conditional distributions L(X |Y ), L(X̃ | Ỹ ),
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where X := A1
p−1W

1
T +

(
A2
p−1 − σ2

)
W 2
T , Y := σ1W

1
T + σ2W

2
T , Ỹ := A1

p−1W̃
1
T +(

A2
p−1−σ2

)
W̃ 2
T , Ỹ := σ1W̃

1
T+σ2W̃

2
T . Denote by k1, k2, k3, k4 constants satisfy-

ingW 1
T = k1X+k2Y ,W 2

T = k3X+k4Y , W̃ 1
T = k1X̃+k2Ỹ , W̃ 2

T = k3X̃+k4Ỹ .
Then we have

Ψp1 (c) =
1

p

∞�

d

v(y)�

−∞

(
S1
0e

(α1− 1
2
σ2
1)T+σ1(k1x+k2y) − K

S1
0e

(α2− 1
2
σ2
2)T+σ1(k3x+k4y)

)p
· fX|Y=y(x)fY (y) dx dy

+
1

p
c

p
p−1 e

− pBT
p−1

∞�

d

∞�

v(y)

e
− pA1
p−1

(k1x+k2y)− pA2
p−1

(k3x+k4y)fX|Y=y(x)fY (y) dx dy,

and

Ψp2 (c) =

∞�

d̃

∞�

ṽ(y)

(
S1
0e

(r− 1
2
σ2
1)T+σ1(k1x+k2y) − K

S1
0e

(r− 1
2
σ2
2)T+σ1(k3x+k4y)

)
· f̃X̃|Ỹ=y(x)f̃Ỹ (y) dx dy

− c
1
p−1 e

− B̃T
p−1

∞�

d̃

∞�

ṽ(y)

e
− A1
p−1

(k1x+k2y)− A2
p−1

(k3x+k4y)f̃X̃|Ỹ=y(x)f̃Ỹ (y) dx dy.

4.3. Outperformance option. The problem is studied for

H = (max{S1
T , S

2
T } −K)+, K > 0.

Linear loss function. By (4.5)–(4.7) we get

Ψ1(c) = E[(S1
T −K)1{Z̃−1

T ≥c}
|S1

T ≥ K, S1
T ≥ S2

T ]P (S
1
T ≥ K,S1

T ≥ S2
T )

+E[(S2
T −K)1{Z̃−1

T ≥c}
|S2

T ≥ K, S1
T < S2

T ]P (S
2
T ≥ K,S1

T < S2
T )

= E[(S1
T −K)1{Z̃−1

T ≥c}
|W 1

T ≥ a1, σ1W 1
T − σ2W 2

T ≥ b]

· P (W 1
T ≥ a1, σ1W 1

T − σ2W 2
T ≥ b)

+E[(S2
T −K)1{Z̃−1

T ≥c}
|W 2

T ≥ a2, σ1W 1
T − σ2W 2

T < b]

· P (W 2
T ≥ a2, σ1W 1

T − σ2W 2
T < b),

and further

Ψ1(c) =

∞�

a1

∞�

b

(S1
0e

(α1− 1
2
σ2
1)T+σ1x −K)1{A1x+A2

σ1x−z
σ2
≥ln c−BT}

· fW 1
T ,σ1W

1
T−σ2W

2
T
(x, z) dz dx
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+

∞�

a2

b�

−∞
(S2

0e
(α2− 1

2
σ2
2)T+σ2y −K)1{A1

z+σ2y
σ1

+A2y≥ln c−BT}

· fW 2
T ,σ1W

1
T−σ2W

2
T
(y, z) dz dy.

Similarly,

Ψ2(c) = Ẽ[(S1
T −K)1{Z̃−1

T ≥c}
|S1

T ≥ K, S1
T ≥ S2

T ]P̃ (S
1
T ≥ K,S1

T ≥ S2
T )

+ Ẽ[(S2
T −K)1{Z̃−1

T ≥c}
|S2

T ≥ K, S1
T < S2

T ]P̃ (S
2
T ≥ K,S1

T < S2
T )

= Ẽ[(S1
T −K)1{Z̃−1

T ≥c}
| W̃ 1

T ≥ ã1, σ1W̃ 1
T − σ2W̃ 2

T ≥ b̃]

· P̃ (W̃ 1
T ≥ ã1, σ1W̃ 1

T − σ2W̃ 2
T ≥ b̃)

+ Ẽ[(S2
T −K)1{Z̃−1

T ≥c}
| W̃ 2

T ≥ ã2, σ1W̃ 1
T − σ2W̃ 2

T < b̃]

· P̃ (W̃ 2
T ≥ ã2, σ1W̃ 1

T − σ2W̃ 2
T < b̃),

which leads to

Ψ2(c) =

∞�

ã1

∞�

b̃

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)1{A1x+A2

σ1x−z
σ2
≥ln c−B̃T}

· f̃
W̃ 1
T ,σ1W̃

1
T−σ2W̃

2
T
(x, z) dz dx

+

∞�

ã2

b̃�

−∞
(S2

0e
(r− 1

2
σ2
2)T+σ2y −K)1{A1

z+σ2y
σ1

+A2y≥ln c−B̃T}

· f̃
W̃ 2
T ,σ1W̃

1
T−σ2W̃

2
T
(y, z) dz dy.

Power loss function. Taking into account (4.5)–(4.7) we can write

Ac = {cZ̃T ≤ (S1
T ∨ S2

T −K)p−1, S1
T ∨ S2

T −K > 0}
= {cZ̃T ≤ (S1

T −K)p−1, S1
T > K, S1

T ≥ S2
T }

∪ {cZ̃T ≤ (S2
T −K)p−1, S2

T > K, S1
T ≤ S2

T }.

We consider the case when A1 > 0, A2 > 0:

Ac =

{
W 2
T ≥ −

(
A1W

1
T +BT + ln

(
1

c
(S1
T −K)p−1

))
, W 1

T > a1,(4.17)

σ1W
1
T − σ2W 2

T ≥ b
}

∪
{
W 1
T ≥ −

(
A2W

2
T +BT + ln

(
1

c
(S2
T −K)p−1

))
,

W 2
T > a2, σ1W

1
T − σ2W 2

T ≤ b
}
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=

{
W 2
T ≥ v1(W 1

T ), W
1
T > a1, W

2
T ≤

σ1W
1
T − b
σ2

}
∪
{
W 1
T ≥ v2(W 2

T ), W
2
T > a2, W

1
T ≤

σ2W
2
T − b
σ1

}
=

{
W̃ 2
T ≥ ṽ1(W̃ 1

T ), W̃
1
T > ã1, W̃

2
T ≤

σ1W̃
1
T − b̃
σ2

}
∪
{
W̃ 1
T ≥ ṽ2(W̃ 2

T ), W̃
2
T > ã2, W̃

1
T ≤

σ2W̃
2
T − b̃
σ1

}
,

where

v1(x) = −
1

A2

(
A1x+BT + ln

(
1

c
(S1

0e
(α1− 1

2
σ2
1)T+σ1x −K)p

))
,

v2(x) = −
1

A1

(
A2x+BT + ln

(
1

c
(S2

0e
(α2− 1

2
σ2
2)T+σ2x −K)p

))
,

ṽ1(x) = −
1

A2

(
A1x+ B̃T + ln

(
1

c
(S1

0e
(r− 1

2
σ2
1)T+σ1x −K)p

))
,

ṽ2(x) = −
1

A1

(
A2x+ B̃T + ln

(
1

c
(S2

0e
(r− 1

2
σ2
2)T+σ2x −K)p

))
.

Using the representation (4.17) and adopting the convention that the integral
over the empty set is zero, we obtain

Ψp1 (c) =

∞�

a1

v1(x)∧σ1x−bσ2�

−∞
(S1

0e
(α1− 1

2
σ2
1)T+σ1x −K)pfW 2

T |W
1
T=x

(y) dy fW 1
T
(x) dx

+
1

p
c

p
p−1 e

− pB
p−1

∞�

a1

σ1x−b
σ2�

v1(x)

e
− pA1
p−1

x− pA2
p−1

y
fW 2

T |W
1
T=x

(y) dy fW 1
T
(x) dx

+

∞�

a2

v2(x)∧σ2x−bσ1�

−∞
(S2

0e
(α2− 1

2
σ2
2)T+σ2x −K)pfW 1

T |W
2
T=x

(y) dy fW 2
T
(x) dx

+
1

p
c

p
p−1 e

− pB
p−1

∞�

a2

σ2x−b
σ1�

v2(x)

e
− pA1
p−1

x− pA2
p−1

y
fW 1

T |W
2
T=x

(y) dy fW 2
T
(x) dx,

Ψp2 (c) =

∞�

ã1

σ1x−b̃
σ2�

ṽ1(x)

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)f̃

W̃ 2
T |W̃

1
T=x

(y) dy f̃
W̃ 1
T
(x) dx
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− c
1
p−1 e

− B̃
p−1

T
∞�

ã1

σ1x−b̃
σ2�

ṽ1(x)

e
− A1
p−1

x− A2
p−1

y
f̃
W̃ 2
T |W̃

1
T=x

(y) dy f̃
W̃ 1
T
(x) dx

+

∞�

ã2

σ2x−b̃
σ1�

ṽ2(x)

(S2
0e

(r− 1
2
σ2
2)T+σ2x −K)f̃

W̃ 1
T |W̃

2
T=x

(y) dy f̃
W̃ 2
T
(x) dx

− c
1
p−1 e

− B̃
p−1

T
∞�

ã2

σ1x−b̃
σ1�

ṽ2(x)

e
− A1
p−1

x− A2
p−1

y
f̃
W̃ 1
T |W̃

2
T=x

(y) dy f̃
W̃ 2
T
(x) dx.

4.4. Spread option. The payoff is of the form

H = (S1
T − S2

T −K)+, K > 0.

One can check the following:

{S1
T ≥ S2

T +K} = {W 1
T ≥ d(W 2

T )} = {W̃ 1
T ≥ d̃(W̃ 2

T )},

where

d(y) :=
1

σ1
ln
S2
0e

(α2− 1
2
σ2
2)T+σ2y +K

S1
0e

(α1− 1
2
σ2
1)T

, d̃(y) :=
1

σ1
ln
S2
0e

(r− 1
2
σ2
2)T+σ2y +K

S1
0e

(r− 1
2
σ2
1)T

.

Linear loss function. We have

Ψ1(c) = E[(S1
T − S2

T −K)+1{Z̃−1
T ≥c}

]

=

∞�

−∞
E
[
(S1
T − S2

T −K)+1{Z̃−1
T ≥c}

|W 2
T = y

]
fW 2

T
(y) dy

=

∞�

−∞

∞�

d(y)

(S1
0e

(α1− 1
2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K)

· 1{A1x+A2y≥ln c−BT}fW 1
T |W

2
T=y

(x) dx fW 2
T
(y) dy

and

Ψ2(c) = Ẽ[(S1
T − S2

T −K)+1{Z̃−1
T ≥c}

]

=

∞�

−∞
Ẽ[(S1

T − S2
T −K)+1{Z̃−1

T ≥c}
| W̃ 2

T = y]f̃
W̃ 2
T
(y) dy

=

∞�

−∞

∞�

d̃(y)

(S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K)

· 1{A1x+A2y≥ln c−B̃T}f̃W̃ 1
T |W̃

2
T=y

(x) dx fW 2
T
(y) dy.
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Power loss function. We have

Ac := {cZ̃T ≤ (S1
T − S2

T −K)p−1, S1
T − S2

T −K > 0}(4.18)

= {c
1
p−1 e

− A1
p−1

W 1
T−

A2
p−1

W 2
T−

B
p−1

T ≤ S1
0e

(α1− 1
2
σ2
1)T+σ1W

1
T

− S2
0e

(α2− 1
2
σ2
2)T+σ2W

2
T −K, W 1

T ≥ d(W 2
T )}

= {W 1
T ∈ A(W 2

T )} = {W̃ 1
T ∈ Ã(W̃ 2

T )},

where

A(y) := {x : c
1
p−1 e

− A1
p−1

x− A2
p−1

y− B
p−1

T

≤ S1
0e

(α1− 1
2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K, x ≥ d(y)},

Ã(y) := {x : c
1
p−1 e

− A1
p−1

x− A2
p−1

y− B̃
p−1

T

≤ S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K, x ≥ d̃(y)}.

Let us notice that the set A{
c ∩ {H > 0} is of the form

(4.19) A{
c ∩ {H > 0} = {W 1

T ∈ B(W 2
T )},

where

B(y) := {x : c
1
p−1 e

− A1
p−1

x− A2
p−1

y− B
p−1

T

> S1
0e

(α1− 1
2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K, x ≥ d(y)}.

Taking into account (4.18) and (4.19) we obtain

Ψp1 (c) =
1

p

∞�

−∞

�

B(y)

(S1
0e

(α1− 1
2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K)p

· fW 1
T |W

2
T=y

(x) dx fW 2
T
(y) dy

+
1

p
c

p
p−1 e

− pBT
p−1

∞�

−∞

�

A(y)

(
e
− pA1
p−1

x− pA2
p−1

y)
fW 1

T |W
2
T=y

(x) dx fW 2
T
(y) dy,

Ψp2 (c) =

∞�

−∞

�

Ã(y)

(S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K)

· f̃
W̃ 1
T |W̃

2
T=y

(x) dx f̃
W̃ 2
T
(y) dy

+ c
1
p−1 e

− B̃T
p−1

∞�

−∞

�

Ã(y)

(
e
− A1
p−1

x− A2
p−1

y)
f̃
W̃ 1
T |W̃

2
T=y

(x) dx f̃
W̃ 2
T
(y) dy.
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