
APPLICATIONES MATHEMATICAE
40,2 (2013), pp. 167–182

Wojciech Połowczuk and Tadeusz Radzik (Wrocław)

EQUILIBRIA IN CONSTRAINED CONCAVE
BIMATRIX GAMES

Abstract. We study a generalization of bimatrix games in which not
all pairs of players’ pure strategies are admissible. It is shown that under
some additional convexity assumptions such games have equilibria of a very
simple structure, consisting of two probability distributions with at most
two-element supports. Next this result is used to get a theorem about the
existence of Nash equilibria in bimatrix games with a possibility of payoffs
equal to −∞. The first of these results is a discrete counterpart of the Debreu
Theorem about the existence of pure noncooperative equilibria in n-person
constrained infinite games. The second one completes the classical theorem
on the existence of Nash equilibria in bimatrix games. A wide discussion of
the results is given.

1. Introduction. Games with constraints were introduced by Debreu [3].
His results were used in a model of a competitive economy by Arrow and
Debreu [1]. Their main result generalizes Glicksberg’s theorem [4] about the
existence of pure Nash equilibria in n-person games. Debreu considered the
case of n-person games in which the players are restricted in choosing their
strategies in such a way that the “effective” set of pure strategies of each
player depends on the decisions taken by the others. Thus, in such a game,
some multistrategies (vectors describing the choices of all players) are not
admissible, and the equilibria should be looked for only among admissible
ones. Games with constraints were often applied in economic models, in
particular the ones with a finite number of agents (see e.g. Ichiischi [5],
Shafer and Sonnenschein [13] and Wieczorek [14]).
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In another approach, instead of a game with a set of “forbidden” multi-
strategies, a generalized model of classical noncooperative game is considered
with some multistrategies determining players’ payoffs to be equal to −∞.
One of our results shows a very close relationship between these two ap-
proaches to constrained bimatrix games.

The Debreu Theorem (also referred to as the Debreu–Nash Theorem, see
Theorem 12.3 in [2]) will serve as the starting point for our considerations.
We will formulate it in one of the equivalent forms suited to the way we
present our results. First we need some terminology.

A (noncooperative) n-person game with constraints is a quadruple

(1) G = 〈N, {Xi}i∈N , {Si}i∈N , {Fi}i∈N 〉,
where N = {1, . . . , n} is the set of players, and for each i ∈ N ,

(a) Xi is the space of pure strategies of player i;
(b) Si is a multifunction from the set X−i =

∏
k 6=iXk to 2Xi (the set of

all subsets of Xi). Si(x−i) is the set of pure strategies admissible for
player i, when the remaining players act according to x−i;

(c) Fi :
∏n
k=1Xk → R is the payoff function of player i.

Such a game with constraints will also be called a constrained game.
A multistrategy x∗ = (x∗1, . . . , x

∗
n) ∈

∏n
i=1Xi is a (pure) equilibrium in an

n-person constrained game G of the form (1) if for all i ∈ N , x∗i ∈ Si(x∗−i),
and

(2) Fi(x
∗) = max

yi∈S(x∗−i)
Fi(x

∗
−i, yi).

Now the Debreu Theorem can be written in the following equivalent form.

Theorem A. Let G be an n-person game with constraints, of the
form (1), with n ≥ 2. Assume that

(a) each pure strategy space Xi is a convex and compact subset of a Eu-
clidean space Rki,

(b) each payoff function Fi is continuous on
∏n
i=1Xi and concave with

respect to the ith variable, and
(c) all the multifunctions Si are continuous and have nonempty, convex

values.

Then the game G has a pure equilibrium.

The main purpose of the paper is to find a discrete counterpart of the
Debreu Theorem for two-person games with constraints of the form (1), with
finite sets X1 and X2 of players’ pure strategies. We call such games con-
strained bimatrix games. To get discrete counterparts for the assumptions of
Theorem A we need to extend the classical notions of convexity and concav-
ity to finite sets and to functions with finite domains.
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Our results are presented as Theorems 1 and 2 in Section 3, together with
a wide discussion. The first result says that under some concavity assump-
tions, any constrained bimatrix game has an equilibrium of a very simple
structure, in the form of two probability distributions with supports consist-
ing of at most two “neighboring” pure strategies for each player. Theorem 1
can be seen as a discrete counterpart of the Debreu Theorem about the
existence of pure noncooperative equilibria in n-person constrained infinite
games.

The second result (Theorem 2) shows that, in fact, constrained bimatrix
games are equivalent to classical bimatrix games they generate, where the
players’ payoffs for all nonadmissible multistrategies are defined to be −∞
(the player loses “everything”). This shows that there exists a close relation-
ship between equilibria in such constrained games and Nash equilibria in the
bimatrix games generated by them. This result can be seen as completing
the classical theorem on the existence of Nash equilibria in bimatrix games.

We also show (in Example 5 in Section 4) that a generalization of our
results to n-person finite games is not possible even if the assumptions are
strengthened. This suggests that a fully discrete counterpart of the Debreu
Theorem in case n > 2 is an open problem. Section 5 is devoted to the
proofs.

2. Preliminary definitions and results. We will mainly concentrate
on constrained games of the form (1) where the pure strategy spaces Xi are
finite. Such games will be called finite constrained games, and players’ pure
strategy spaces will be of the form

(3) Xi = {1, . . . , ki}, 1 ≤ i ≤ n.

In general, there are no pure equilibria in such games, so we must extend
our considerations to mixed equilibria.

A mixed strategy of player i in the game G is a probability distribution µi
on the set Xi. Set µ = (µ1, . . . , µn) and µ−i = (µ1, . . . , µi−1, µi+1, . . . , µn).
For an arbitrary vector µ of players’ mixed strategies, we put

Fi(µ) =
�

x∈Xi

Fi(x) dµ1 . . . dµn, Si(µ−i) =
⋂

x−i∈supp(µ−i)

Si(x−i).

So Si(µ−i) describes the set of all pure strategies of player i that are admis-
sible for any pure multistrategy x−i ∈ supp(µ−i) of the remaining players.
Hence, we have the following two natural definitions.

Definition 1. A (mixed) multistrategy µ = (µ1, . . . , µn) is admissible
in a constrained game G if suppµi ⊂ Si(µ−i) for all i ∈ N .
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Definition 2. A (mixed) multistrategy µ∗ = (µ∗1, . . . , µ
∗
n) is called a

(mixed) equilibrium in a constrained game G if it is admissible and Fi(µ∗) =
maxyi∈S(µ∗−i)

Fi(µ
∗
−i, yi) for each player i ∈ N .

Remark 1. Notice that if we take Si in (1) satisfying Si(x−i) = Xi for
all x−i, then the constrained game G becomes a (classical) noncooperative
n-person game whose normal form can be simply written as

(4) Γ = 〈N, {Xi}i∈N , {Fi}i∈N 〉.

It is trivially seen that the set of equilibria in such a game coincides with the
set of its Nash equilibria. It is also worth mentioning that according to the
classical Glicksberg Theorem ([4]), if all the sets Xi are convex and compact
in a Euclidean space Rk, and each payoff function Fi is upper semicontinuous
in the ith variable, then the game Γ has a Nash equilibrium in pure strategies.

Now we give three basic definitions of properties of finite games and
strategies. Let Γ denote an n-person finite game described by (3) and (4).

Definition 3. A payoff function Fi of player i in the game Γ , i ∈ N , is
called concave with respect to the ith variable if for j = 1, . . . , n there exist
strictly increasing sequences yj = (yj1, y

j
2, . . . , y

j
kj
) in [0, 1], and a function

fi(y1, . . . , yn) from [0, 1]n to R, concave with respect to yi and such that
fi(y

1
x1 , . . . , y

n
xn) = Fi(x1, . . . , xn) for all (x1, . . . , xn) ∈

∏n
i=1Xi .

Remark 2. Concavity of functions with a finite domain is a basic as-
sumption in this paper, so it will be wider analyzed later. One thing worth
mentioning right now is that one could think that the above definition would
be more natural if [0, 1]n was replaced by conv(

∏n
i=1Xi) and the sequences

yji were taken from the strategy space Xi. It appears, however, that such a
modification is less general than Definition 3 and leads to a much smaller
class of functions Fi concave with respect to xi.

Definition 4. The game Γ is called concave if for each i ∈ N , the payoff
function Fi is concave with respect to xi.

Definition 5. A mixed strategy µ of player i in the game Γ is called
two-adjoining-pure if it is of the form µi = αδa + (1 − α)δa+1 for some
0 ≤ α ≤ 1 and a ∈ Xi, 1 ≤ i ≤ n. (Here δt denotes the degenerate probability
distribution concentrated at t.)

To end this section we will quote some basic results from [8], essential
for our paper. Some new notation concerning only two-person finite games
will be needed.

Let A = [aij ]p×q and B = [bij ]p×q (p, q ≥ 1) be payoff matrices of players
1 and 2 in a nonzero-sum two-person game Γ of the form (4) with
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(5) X1 = {1, . . . , p}, X2 = {1, . . . , q}
and

(6) aij = F1(i, j), bij = F2(i, j) for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Let Γ (A,B) denote the bimatrix game described by (5) and (6). We will
also use the notation Γ (A,B)p×q for the (p×q)-game Γ (A,B), to emphasize
the size of the payoff matrices in it.

For a given bimatrix game Γ (A,B), it is rather difficult to check directly
from Definition 3 whether the game is concave or not. It appears, however,
that this can be easily verified with the help of the following proposition ([8,
Theorem 4]).

Proposition 1. A bimatrix game Γ (A,B)p×q is concave if and only if
there exist positive numbers θ1, . . . , θp−1 and τ1, . . . , τq−1 such that

(7) θ1(a2j − a1j) ≥ θ2(a3j − a2j) ≥ · · · ≥ θp−1(apj − ap−1,j)
for j = 1, . . . , q,

and

(8) τ1(bi2 − bi1) ≥ τ2(bi3 − bi2) ≥ · · · ≥ τq−1(biq − bi,q−1)
for i = 1, . . . , p.

The second result we need is [8, Theorem 6]. We recall it in the form
sufficient for our considerations.

Theorem B. Every concave bimatrix game Γ (A,B) has a Nash equilib-
rium (µ∗, ν∗) in two-adjoining-pure strategies.

Remark 3. Theorem 6 from [8] gives the exact formulae for the two-
adjoining-pure strategies µ∗ and ν∗ in Theorem B (described by conditions
on elements of the payoff matrices A and B).

Remark 4. Theorem B can be seen as a discrete counterpart of the
Glicksberg Theorem for two-person games. It will be used in the proof of
our first main result (Theorem 1) in Section 4. The zero-sum version of
Theorem B (with the exact formulae for µ∗ and ν∗) was earlier proved in [11].

Remark 5. Matrix and bimatrix games with other properties weaker
than concavity were also studied in the literature. Namely, in [10] and [7],
one can find necessary and sufficient conditions for such games to have saddle
points and pure Nash equilibria, respectively.

3. Two main results. In this section we formulate our two main results
(Theorems 1 and 2) about the existence of equilibria in constrained bimatrix
games. Their proofs will be given in Section 5.
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Let p, q ≥ 1 be arbitrary natural numbers. Similarly to the case of un-
constrained bimatrix games, it is more convenient to replace the form (1) by
one making use of payoff matrices. Namely, a constrained bimatrix game (of
size p× q) will be denoted by

(9) G = G(A,B,EA, EB),

where A = [aij ]p×q and B = [bij ]p×q are two (p × q)-matrices for players 1
and 2 respectively, and EA and EB are nonempty subsets of the set {(i, j) :
i = 1, . . . , p, j = 1, . . . , q} of pairs of players’ pure strategies. Such a game
is interpreted as a two-person game with constraints of the form (1) with
N = {1, 2}, X1 = {1, . . . , p}, X2 = {1, . . . , q}, F1(i, j) = aij and F2(i, j) =
bij for 1 ≤ i ≤ p, 1 ≤ j ≤ q, and with multifunctions S1 and S2 defined
by the equivalences: i ∈ S1(j) ⇔ (i, j) ∈ EA and j ∈ S2(i) ⇔ (i, j) ∈ EB.
So in the description of the constrained bimatrix game G, A and B are the
payoff matrices for players 1 and 2, respectively, and EA and EB describe
admissible pairs of their pure strategies.

To formulate our main result about the existence of a mixed equilibrium
in the constrained bimatrix game G of the form (9), we need to assume the
following three conditions:

Z1 (symmetry) EA = EB 6= ∅.
Z2 (biconvexity)

(a) If (i, j) ∈ EA and (l, j) ∈ EA for some i < l and j, then (k, j) ∈
EA for all k with i ≤ k ≤ l.

(b) If (i, j) ∈ EB and (i, l) ∈ EB for some i and j < l, then (i, k) ∈
EB for all k with j ≤ k ≤ l.

Z3 (game concavity) The bimatrix game Γ (A,B) is concave.

Remark 6. Assumption Z1 does not have a counterpart in the Debreu
Theorem. We will justify it in Example 1 in the next section. Assumption
Z2 is a discrete counterpart of the assumption about the convexity of the
images of the multifunctions Si in the Debreu Theorem, and assumption
Z3 (see also Proposition 1) is a discrete counterpart of the assumption of
concavity of the payoff functions considered there.

Now we are ready to formulate our first main result.

Theorem 1. If a constrained bimatrix game G(A,B,EA, EB) satisfies
assumptions Z1–Z3, then it has an equilibrium consisting of two two-adjoin-
ing-pure strategies.

Remark 7. One could ask if constrained bimatrix games can well rep-
resent noncooperative games, that is, the following question seems to be
essential: can the players be “independent” if some of their joint multistrate-
gies are excluded? A positive answer to this question is given in Theorem 2
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below, our second main result. Namely, it appears that in fact, constrained
bimatrix games are equivalent to classical bimatrix games with possibly −∞
payoffs, constructed in such a way that the payoffs for all nonadmissible mul-
tistrategies are defined to be −∞. Theorem 2 says that under an additional
(not very restrictive) assumption, the set of equilibria in a constrained bima-
trix game coincides with the set of Nash equilibria in the generated bimatrix
game.

To formulate Theorem 2, we need to consider an additional (not very
restrictive) assumption (Z4).

Let G = G(A,B,EA, EB) be a constrained bimatrix game of size p × q.
A new generalized bimatrix game can be defined as ΓG = Γ (AG, BG)p×q,
with payoff matrices AG = [aij ] and BG = [bij ] given by

aij =

{
aij for (i, j) ∈ EA,
−∞ for (i, j) 6∈ EA,

bij =

{
bij for (i, j) ∈ EB,
−∞ for (i, j) 6∈ EB.

(for the game ΓG we use the convention 0 · (−∞) = 0). Obviously, this pro-
cedure can be reversed, and every bimatrix game with possibly −∞ payoffs
generates some constrained bimatrix game.

Z4 (full section) There exists j ∈ {1, . . . , q} such that (i, j) ∈ EB for
each i ∈ {1, . . . , p}, or there exists k ∈ {1, . . . , p} such that (k, l) ∈ EA
for each l ∈ {1, . . . , q}.

Theorem 2. Assume that a constrained game G = G(A,B,EA, EB)
satisfies assumptions Z1–Z3. Then the generalized bimatrix game ΓG has a
Nash equilibrium in two-adjoining-pure strategies with finite payoffs for both
players. Moreover, each equilibrium in G is a Nash equilibrium in ΓG.

If additionally assumption Z4 holds, then the set of all equilibria in G
coincides with the set of all Nash equilibria in ΓG.

Remark 8. By Definition 2 one can easily see that any equilibrium in the
constrained game G generates finite payoffs for both players (matrices A and
B in (9) have, by assumption, finite values). On the other hand, if assumption
Z4 is not satisfied, then any pair of completely mixed strategies is a Nash
equilibrium in the generalized bimatrix game ΓG with payoffs (−∞,−∞).
Therefore when assumption Z4 does not hold, the set of equilibria in G is
smaller than the set of Nash equilibria in ΓG. It is worth mentioning that
bimatrix games with possibly −∞ payoffs may have no Nash equilibria at
all, neither with finite nor infinite payoffs (Example 4 in the next section).

Remark 9. It is easily seen that for n > 2 any n-person finite con-
strained game (described by (1) and (3)) can be equivalently written in the
form

Gn = G(A1, . . . , An, EA1 , . . . , EAn),



174 W. Połowczuk and T. Radzik

a natural extension of (9), where A1, . . . , An are payoff “multimatrices” of size
k1×· · ·×kn each, and EA1 , . . . , EAn are subsets of the set of pure multistrate-
gies. Obviously, for such a game, the definition of three conditions Z1–Z3 can
be extended in an obvious way to n-person finite constrained games. By Defi-
nition 2.2, condition Z3 allows us to view each finite action set Xi as a subset
of [0, 1], and conversely, every pure strategy in [0, 1] is a convex combination
of two-adjoining-pure strategies in Xi. Therefore, one could think that under
Z1–Z3 for n-person finite constrained game, the game Gn generates (after
applying some multilinear interpolation arguments) a “continuous” n-person
game with constraints of the form (1) with all Xi = [0, 1], satisfying the
assumptions of the Debreu Theorem. Hence, the question arises if Theo-
rem 1 (and even its generalization with n ≥ 2) are implied by the Debreu
Theorem. Unfortunately, the answer is negative. A counterexample is given
in Example 5 where a certain 3-person finite constrained game is discussed
which satisfies assumptions Z1–Z3 for a 3-player game, but has no equilibria.
Thus the generalization of Theorem 1 to a greater number of players is not
true. These facts strongly suggest that Theorem 1 cannot be derived from
the Debreu Theorem, and its direct generalization to all n > 2 is not true.

To give the last remark we need to introduce the following notation. Let
p, q ≥ 2 and let Γ (A,B) be a (p× q)-bimatrix game. The game Γ (A1, B1) is
said to be a subgame of Γ (A,B) if the matrices A1 and B1 can be obtained by
removing some rows and/or columns from A and B (the same for A and B).

Now let Γ ijkl = Γ (Aijkl, B
ij
kl), 1 ≤ i ≤ k ≤ p, 1 ≤ j ≤ l ≤ q, where for any

matrix W = [wsr] of size p× q we put

W ij
kl =


wij wi,j+1 . . . wil

wi+1,j wi+1,j+1 . . . wi+1,l

...
...

...
wkj wk,j+1 . . . wkl

 .
(Obviously, each Γ ijkl is a subgame of Γ (A,B).)

Remark 10. An essential question is how to find the equilibrium de-
scribed in Theorem 1. The proof (given in Section 5) implies the following
procedure, which finds it in at most four steps (1)–(4):

(1) first check if there is a pure equilibrium in the constrained bimatrix
game G = G(A,B,EA, EB). If not,

(2) check if there is an admissible (2× 2)-subgame of the form Γ srs+1,r+1

in G which has no pure Nash equilibria. If it exists, the Nash equilibrium
for Γ srs+1,r+1 coincides with an equilibrium in G. If not then for the bimatrix
game Γ = Γ (A,B) defined by assumption Z3,
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(3) look for a (k × 2)-subgame of the form Γ srs+k−1,r+1 admissible in G
(k ≥ 3), which has no pure equilibria and satisfies blr = bl,r+1 for all l, s <
l < s + k − 1. If such a subgame exists, then it has an Nash equilibrium of
the form (δs+1, γδr+(1−γ)δr+1) for some 0 < γ < 1; this Nash equilibrium
coincides with an equilibrium in G. If there is no such subgame Γ srs+k−1,r+1,

(4) look for a (2×k)-subgame of the form Γ srs+1,r+k−1 in Γ and admissible
in G (k ≥ 3) which has no pure equilibria and satisfies asl = as+1,l for all
l, r < l < r + k − 1. Then it has a Nash equilibrium of the form (λδs + (1−
λ)δs+1, δr+1) for some 0 < λ < 1, which coincides with an equilibrium in G.

4. Counterexamples. In this section we present five examples. In the
first three examples we discuss assumptions Z1–Z3 of Theorem 1, show-
ing that none of them can be omitted. We will consider three constrained
bimatrix games and check the existence of equilibria consisting of two two-
adjoining-pure strategies. To increase the clarity of the examples, all “nonad-
missible payoffs” will be additionally marked by “?” in the payoff matrices.
We start by discussing assumption Z1.

Example 1. Consider the constrained bimatrix game G(A,B,EA, EB),
where

A =

 0? 3 0

1 0 1

2 −3? 0

 , B =

 0? 1 2

3 0 −3?
0 1 0

 .
In this case, EA = {1, 2, 3} × {1, 2, 3} \ {(1, 1), (3, 2)} and EB = {1, 2, 3} ×
{1, 2, 3} \ {(1, 1), (2, 3)}. One can easily check that the game G satisfies as-
sumptions Z2–Z3, but not Z1. A direct analysis shows that this game has no
equilibria, neither in pure nor in mixed strategies.

The next example shows that assumption Z2 cannot be omitted in The-
orem 1 either.

Example 2. Consider the constrained bimatrix game G(A,B,EA, EB),
where

A =

 3? 2 1

2 0 −2?
1 2? 2

 , B =

 −1? 0 1

0 2 4?

1 1? 0

 ,
and EA = EB = {1, 2, 3}×{1, 2, 3} \ {(1, 1), (2, 3), (3, 2)}. It is easy to check
that this game satisfies assumptions Z1 and Z3 (but not Z2), and that it
has no equilibrium with a pure strategy for one of the players. Nor are there
equilibria in mixed strategies, since they are not admissible, as a consequence
of the form of the sets EA and EB.
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The third example shows that assumption Z3 is also necessary in Theo-
rem 1.

Example 3. Consider the constrained bimatrix game G(A,B,EA, EB),
where

A =

 0 1 2?

0 0 1

1 0 0

 , B =

 1 0 2?

0 1 0

0 0 1

 ,
and EA = EB = {1, 2, 3}×{1, 2, 3}\{(1, 3)}. This game satisfies assumptions
Z1 and Z2, but not Z3. It is not difficult to check that it has no equilibrium.
Therefore, assumption Z3 about concavity of the game cannot be omitted in
Theorem 1.

Now we quote an interesting example (in the context of Remark 8) of
a bimatrix game with some payoffs −∞, having no Nash equilibria.This
example belongs to Rosenthal [12].

Example 4. Consider the generalized bimatrix game Γ (A,B), where

A =

−∞ 3 0

1 0 1

2 −∞ 0

 , B =

−∞ 1 2

3 0 −∞
0 1 0

 .
It is not difficult to check that in this game there is no Nash equilibrium (with
finite or infinite payoffs). Note that the corresponding constrained bimatrix
game does not satisfy the assumption of Theorem 2 (conditions Z1 and Z2
do not hold).

One could hope that Theorem 1 can be generalized to the case of n-person
finite games with n ≥ 2. The last example given below shows that this is
impossible.

Example 5. Consider the 3-person constrained game in which each of
the players has exactly two pure strategies, described graphically in Fig. 1:

(1,1,0) (0,1,1)
�
�
�
�
�
�

(1, 1, 1)?

�
�
�
�
�
�

(1,0,1)

(1,0,1) (0,0,0)

(0,1,1)

�
�
�
�
�
�

(1,1,0)

�
�
�
�
�
�

I

II

�
�
�

III

Fig. 1
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Player 1 chooses one of his two pure strategies along line I, player 2 along
line II, and player 3 along line III. Triplets of numbers in the figure denote
payoffs for players 1, 2 and 3, respectively, associated with triples of pure
strategies, except the one “forbidden” common multistrategy, denoted by “?”.
Therefore this 3-person constrained game can be described (see Remark 9)
by G3 = G(A1, A2, A3, EA1 , EA2 , EA3) and we easily deduce that G3 satisfies
the extension of conditions Z1, Z2 and Z3 to 3-person games. It is also easy
to verify that this game has no pure equilibrium.

Moreover, it cannot have an equilibrium in completely mixed strategies
either. There is also no equilibrium where only one of the players uses a mixed
strategy, since under fixed strategies of the other two players, the third player
will always choose exactly one of his pure strategies (since one of them is
dominated). Therefore we should only check equilibria in which one of the
players uses a pure strategy, and two others use mixed strategies. But it is
not difficult to verify that, also in this case, one of these two players has a
strictly better strategy, no matter what the second player does. Therefore,
in fact, this game has no equilibrium. This demonstrates that Theorem 1
cannot be directly generalized to n-person constrained finite games.

5. Proofs of the theorems. For p, q ≥ 1, let a constrained bimatrix
game G = G(A,B,EA, EB) of size p× q with two matrices A = [aij ]p×q and
B = [bij ]p×q satisfy assumptions Z1–Z3. By assumption Z1 (EA = EB), we
can simplify the description of G to

(10) G = G(A,B,E)

(instead of (9)), putting E = EA = EB. We will also use the notation Gp×q
to emphasize that G is of size p× q.

Let naturals i, k, j and l satisfy 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ l ≤ q. The
matrices Aijkl and B

ij
kl (see notation of W ij

kl before Remark 8 in Section 3) are
of the same size (k− i+1)× (l−j+1), so we can consider a new constrained
bimatrix game

Gij
kl = G(Aijkl, B

ij
kl, E

ij
kl),

where Eijkl = E ∩ ({i, i + 1, . . . , k} × {j, j + 1, . . . , l}). It will be called a
(constrained) subgame of G.

In general, constrained subgames of G arise when we “remove” some
fixed rows or/and columns in the matrices A and B, and appropriate pairs
(i, j) from the set E. Obviously, an arbitrary constrained subgame G′ =
G′(A′, B′, E′) of G with E′ 6= ∅ still satisfies assumptions Z1–Z3. The justi-
fication for Z1 and Z2 is trivial, and Z3 follows easily from Definition 3.

Proof of Theorem 1. One can easily see from Definition 2 that the set
of equilibria of the constrained game G (of the form (10)) is independent of
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aij and bij for (i, j) /∈ E. By assumption Z3 and Proposition 1, inequalities
(7) and (8) hold for some positive numbers θ1, . . . , θp−1 and τ1, . . . , τq−1.
Now, considering (7) for each j separately and (8) for each i separately, we
easily conclude with the help of assumption Z2 that the values aij and bij
for (i, j) /∈ E can be changed in such a way that

(11) aij < min
(k,l)∈E

akl and bij < min
(k,l)∈E

bkl for (i, j) 6∈ E,

and inequalities (7) and (8) remain true. Therefore, for the rest of the proof
we can additionally assume (without loss of generality) that the entries of
the matrices A and B satisfy (11).

Further, one can easily deduce from (7) and (8) that for every j, 1 ≤ j
≤ q, there are 1 ≤ k ≤ l ≤ p such that

(12) a1j < · · · < akj = · · · = alj > · · · > apj ,

and for every i, 1 ≤ i ≤ p, there are 1 ≤ t ≤ u ≤ q such that

(13) bi1 < · · · < bit = · · · = biu > · · · > biq.

Now suppose that there is an i, 1 ≤ i ≤ p, such that (i, j) /∈ E for
j = 1, . . . , q, and let G′ = G(A′, B′, E′) be the constrained subgame of G
obtained from G by removing the ith rows in A and B, with E′ = E. One
can easily conclude from Definition 2 that if (µ, ν) is an equilibrium in G
then i /∈ supp(µ), and hence the sets of equilibria in G and G′ coincide. We
get the same conclusion when there is an j, 1 ≤ i ≤ q, such that (i, j) /∈ E
for i = 1, . . . , p and the subgame G′ of G is obtained from G by removing
the jth columns in A and B. Therefore, we can additionally assume that

∀i ∈ {1, . . . , p} ∃j ∈ {1, . . . , q} such that (i, j) ∈ E,(14)
∀j ∈ {1, . . . , q} ∃i ∈ {1, . . . , p} such that (i, j) ∈ E.(15)

Now we give four lemmata needed for the proof of Theorem 1. The first
two are easy consequences of (11)–(13). The details are omitted.

Lemma 1. Let (i, j) ∈ E, (k, j) 6∈ E and (k + 1, j) 6∈ E. Then
(a) aij > akj > ak+1,j if i < k,
(b) akj < ak+1,j < aij if i > k + 1.

Lemma 2. Let (i, j) ∈ E, (i, k) 6∈ E and (i, k + 1) 6∈ E. Then
(a) bij > bik > bi,k+1 if j < k,
(b) bik < bi,k+1 < bij if j > k + 1.

Lemma 3. Let Gij
kl = G(Aijkl, B

ij
kl, E

ij
kl) be a subgame of G of the form

(10) and let Eijkl 6= ∅. If G satisfies assumptions Z1–Z3 then so does Gij
kl.

Proof. Obviously, Gij
kl satisfies Z1 and Z2. The fact that it also satisfies

Z3 immediately follows from Proposition 1.
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Lemma 4. Let G be a constrained bimatrix game of the form (10) satis-
fying assumptions Z1–Z3, and (11), (14) and (15). Assume that the bimatrix
game Γ = Γ (A,B) has a (2× 2)-subgame of the form Γ srs+1,r+1 without pure
Nash equilibria, such that {(s, r), (s+1, r), (s, r+1), (s+1, r+1)} ∩ E = ∅.
Then one of the following two cases must hold:

(a) The constrained subgame G11
s,r−1 of G satisfies assumptions Z1–Z3

and each equilibrium in G11
s,r−1 (if any) is an equilibrium in G.

(b) Constrained subgame G11
s−1,r of G satisfies assumptions Z1–Z3 and

each equilibrium in G11
s−1,r (if any) is an equilibrium in G.

Proof. Let Γ srs+1,r+1 satisfy the assumption. By (14) and (15), there exist
i, j, k and l such that four pairs of pure strategies, (i, r), (k, r + 1), (s, j)
and (s+ 1, l), belong to E. Since Γ srs+1,r+1 has no pure Nash equilibrium, it
follows that either

(16) asr < as+1,r, as,r+1 > as+1,r+1, bsr > bs,r+1, bs+1,r < bs+1,r+1,

or

(17) asr > as+1,r, as,r+1 < as+1,r+1, bsr < bs,r+1, bs+1,r > bs+1,r+1.

First suppose that (16) holds. Then by assumption:

(C1) (i, r) ∈ E, (s, r) 6∈ E, (s+ 1, r) 6∈ E and asr < as+1,r,
(C2) (k, r+1) ∈ E, (s, r+1) 6∈ E, (s+1, r+1) 6∈ E and as,r+1 > as+1,r+1,
(C3) (s, j) ∈ E, (s, r) 6∈ E, (s, r + 1) 6∈ E and bs,r > bs,r+1,
(C4) (s+1, l) ∈ E, (s+1, r) 6∈ E, (s+1, r+1) 6∈ E and bs+1,r < bs+1,r+1.

Now applying Lemma 1 to conditions (C1) and (C2), and Lemma 2 to
(C3) and (C4), we get the inequalities

i > s+ 1, k < s, and j < r, l > r + 1.

Cosider now the constrained subgame G11
s,r−1 = G(A11

s,r−1, B
11
s,r−1, E

11
s,r−1)

of G. Since 1 ≤ j < r and (s, j) ∈ E, the subgame is well-defined and
(s, j) ∈ E11

s,r−1, whence E11
s,r−1 6= ∅. Therefore, by Lemma 3, G11

s,r−1 satisfies
assumptions Z1–Z3.

We also have (s, r) 6∈ E, (i, r) ∈ E and i > s+ 1. Therefore assumption
Z2 implies

(18) (t, r) 6∈ E ∀t ≤ s.

In a similar way we show that

(19) (s+ 1, t) 6∈ E ∀t ≤ r.

With the help of (18), (19) and assumption Z2 for the set E, it is not difficult
to verify that each equilibrium of G11

s,r−1 (if any) is also an equilibrium in G.
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The proof of the lemma when (17) holds is analogous and leads to
case (b). The details are omitted.

Now we return to the proof of Theorem 1. Obviously the conclusion is
true for any game G1×1. Let p ≥ 1 and q ≥ be natural numbers. Assume
now that Theorem 1 holds for all constrained games of the form Gk×l with
1 ≤ k ≤ p, 1 ≤ l ≤ q, (k, l) 6= (p, q). We will show that this implies the
validity of the theorem for every game of the form G = Gp×q. This, by
induction, will complete the proof.

For the rest of the proof let us fix G = Gp×q of the form (10). In view of
the reasoning given before Lemma 1, we can assume that (11), (14) and (15)
hold. Let Γ = Γ (A,B) be the bimatrix game associated with G. Obviously,
by assumption Z3, Γ is a concave bimatrix game. Therefore Theorem B
(in Section 2) implies that Γ has a Nash equilibrium (µ∗, ν∗) of the form
µ∗ = λδs+(1−λ)δs+1, ν∗ = γδr+(1−γ)δr+1, for some 1 ≤ s ≤ p, 1 ≤ r ≤ q
and 0 ≤ λ, γ ≤ 1. Using this fact, we will show (in four cases) that G also
has an equilibrium of the same form.

Case 1: (µ∗, ν∗) is a pure Nash equilibrium in Γ . Then (µ∗, ν∗) = (δs, δr)
for some s and r. Thus either (s, r) ∈ E and (µ∗, ν∗) is an equilibrium in G,
or (s, r) 6∈ E, which is impossible because of (11).

Case 2: (µ∗, ν∗) = (λδs+(1−λ)δs+1, γδr+(1−γ)δr+1) is a mixed Nash
equilibrium in Γ , for some 0 < λ, γ < 1, and the subgame Γ srs+1,r+1 has no
pure Nash equilibria.

First assume that all the four pairs of pure strategies in Γ srs+1,r+1 belong
to E. Then obviously, the pair (µ∗, ν∗) of mixed strategies is an equilibrium
in Gt×u.

Next, assume that among the pairs of pure strategies in Γ srs+1,r+1, there
are both pairs in E and pairs off this set. Now, a simple analysis of all
possible configurations shows with the help of (11) that Γ srs+1,r+1 has a pure
Nash equilibrium. But this is impossible by assumption. Therefore, we can
assume that all the pairs of pure strategies in Γ srs+1,r+1 are outside of E.

The induction assumption implies that both G11
s,r−1 and G11

s−1,r have equi-
libria consisting of two-adjoining-pure strategies. Hence, by Lemma 4, the
proof in Case 2 is complete.

Case 3: (µ∗, ν∗) = (δs, γδr + (1 − γ)δr+1) is a mixed Nash equilibrium
in Γ , for some 0 < γ < 1. From the properties of Nash equilibrium we know
that in that case we have

(20) bs,r = bs,r+1 and bs,j ≤ bs,r for j = 1, . . . , q.

First suppose that both pairs of pure strategies, (s, r) and (s, r + 1),
belong to the set E of admissible strategies in G. Then obviously, the pair
(µ∗, ν∗) of mixed strategies is an equilibrium in G.
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Assume next that only one pair of pure strategies, (s, r) or (s, r + 1),
belongs to E in Gt×u. Then it follows from (11) that b∗s,r 6= b∗s,r+1, which
is impossible in the present case. Therefore (s, r) 6∈ E and (s, r + 1) 6∈ E.
But this, in view of (11) and (20), is also impossible, completing the proof
in Case 3.

Case 4: (µ∗, ν∗) = (λδs + (1 − λ)δs+1, δr) is a mixed Nash equilibrium
in Γ , for some 0 < λ < 1. The proof in this case is analogous to that of
Case 3. The details are omitted.

This completes the proof that Gp×q has an equilibrium in two-adjoining-
pure strategies. Thus, by induction, Theorem 1 has been proved for any
constrained bimatrix game.

Proof of Theorem 2. It follows from Theorem 1 that the constrained
bimatrix game G(A,B,E) has an equilibrium (µ∗, ν∗) in two-adjoining-pure
strategies, with finite payoffs for both players (since the payoff matrices A
and B have finite payoffs). Hence, we conclude immediately that (µ∗, ν∗) is a
Nash equilibrium in the bimatrix game ΓG = Γ (AG, BG), since the matrices
AG and BG have all entries equal to −∞ outside E.

Now assume that additionally assumption Z4 is satisfied. Then AG and
BG have a row or a column without −∞. If (µ∗, ν∗) is any equilibrium of ΓG,
then, obviously, this equilibrium generates finite payoffs for both players.
Hence it is not difficult to deduce that the cartesian product of the supports
of the probability distributions µ∗ and ν∗ must be contained in E, since
otherwise both payoffs would be equal to −∞. Therefore (µ∗, ν∗) is also an
equilibrium in G(A,B,EA, EB). This completes the proof of Theorem 2.
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