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E. Gordienko, J. Ruiz de Chávez and E. Zaitseva (Mexico City)

ON CONVERGENCE OF THE EMPIRICAL MEAN

METHOD FOR NON-IDENTICALLY DISTRIBUTED

RANDOM VECTORS

Abstract. We consider the following version of the standard problem of
empirical estimates in stochastic optimization. We assume that the under-
lying random vectors are independent and not necessarily identically dis-
tributed but that they satisfy a “slow variation” condition in the sense of
the definition given in this paper. We show that these assumptions along
with the usual restrictions (boundedness and equicontinuity) on a class of
functions allow one to use the empirical mean method to obtain a consistent
sequence of estimates of infimums of the functional to be minimized. Also,
we provide certain estimates of the rate of convergence.

1. Motivation. In this paper we consider the following non-stationary
version of the usual one-stage stochastic optimization problem.

Let A be a given set, S ⊂ Rm be a given closed set, and f : A×Rm → R
be a fixed function measurable with respect to the second argument.

Suppose that on some probability space (Ω,F , P ) a sequence ξ1, ξ2, . . . of
independent random vectors with values in S is defined. The distribution (on
(S,BS)) of ξt is denoted by µt, t ≥ 1. These distributions are not supposed
to be identical.

The “original” problem of stochastic optimization considered in this pa-
per consists of evaluating the following sequence of “minimal risks” (or “min-
imal losses”)

(1.1) R∗t := inf
α∈A

Ef(α, ξt) ≡ inf
α∈A

�

S

f(α, x)µt(dx).

As is frequently the case in such optimization problems, it is assumed that
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µt, t ≥ 1, are unknown. Instead, at each (“time”) t = 1, 2, . . . the realizations
of ξ1, . . . , ξt (observations) are available, where ξk has distribution µk, k =
1, . . . , t.

Let µ̂t := t−1
∑t

k=1 δξk , t ≥ 1, be (as in the case of i.i.d. random vectors
ξ1, ξ2, . . . ) empirical measures, and define

(1.2) L∗t := inf
α∈A

�

S

f(α, x) µ̂t(dx) ≡ inf
α∈A

1

t

t∑
k=1

f(α, ξk), t ≥ 1.

Also we set

(1.3) ∆t := |R∗t − L∗t |, t ≥ 1.

The aim of the paper is to propose conditions on {µt, t ≥ 1} and on the
class of functions F := {f(α, ·) : α ∈ A} that allow proving that E∆t → 0
as t→∞.

The “classical” variant of this problem, when ξ1, ξ2, . . . are i.i.d. ran-
dom vectors and R∗t ≡ R∗ := infα∈AEf(α, ξ1), has been very well stud-
ied (under different names: “empirical estimation in stochastic optimiza-
tion”, “empirical mean method”, “empirical risk (or losses) minimization”,
“Monte Carlo approximation”, etc.). From a great variety of works on this
topic, we just mention the books [1, 15, 18]. In many cases, under differ-
ent conditions the consistency (L∗t − R∗ → 0) or asymptotic normality of
L∗t − R∗ (along with asymptotic normality of the approximation to opti-
mal solutions) has been proved, and also numerous exponential bounds on
P (|L∗t −R∗| > ε) have been obtained. (Merely as examples we point out the
works [1, 5, 7, 9–12,14–16,18,19].)

Concerning the wide field of non-stationary stochastic optimization, it
is often assumed that in (1.1) the function f can depend on “time” t, that
is, for each t ≥ 1 in (1.1) a function ft appears (instead of f). Also in some
works it is assumed that in (1.2) in place of ft(α, ξt) one has ft(α, ξt) + ηt,
where ηt is a random “measurement error”.

In general, to obtain consistent estimates of the infimums in (1.1) in
the non-stationary case (using, for example, empirical measures as in (1.2),
stochastic approximation involving the Kiefer–Wolfowitz procedure, meth-
ods of stochastic quasigradient (see, e.g., [6]), or other algorithms of stochas-
tic optimization, learning and control (see, e.g., [1, 2, 6, 15, 18]), in many
works the presence of certain “parametric models” of a drift {ft, t ≥ 1} (or
“regression”), or some asymptotic properties of {ft, t ≥ 1} are assumed.

To ensure some consistency of estimators (for example, the convergence
to zero of the sequence ∆t, t ≥ 1, from (1.3) in some sense), the aforemen-
tioned random sequences {ξt} and {ηt} should either vanish as t → ∞, or
satisfy some “stationary-like” and “independence-like” conditions which al-
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low one to make use of laws of large numbers (for martingales, for instance)
and their uniform versions.

There are many different settings of non-stationary problems in stochas-
tic approximation, estimation and control theory, etc., where the above men-
tioned “regularity properties” of random disturbances are not assumed. In
such cases, as a rule, instead of consistency only some upper bounds on the
asymptotic error of estimators can be obtained (for example, in applications
of algorithms of stochastic approximation in problems such as tracking or
stabilizing control; see e.g. [2] and [17]).

In this paper we are not concerned with methods of finding the infimum
in (1.2). Rather we put forward a simpler question: Under what conditions
the random variables ∆t, t = 1, 2, . . . , in (1.3) converge to zero (say, in prob-
ability)? It is clear that this is not the case in general (even when A consists
of a unique element). Moreover, if µt varies with t = 1, 2, . . . in an arbitrary
and unpredictable way, then it is impossible to estimate (by any method)
R∗t in (1.1) consistently (as t→∞) using the observations ξ1, ξ2, . . . .

In the next section we define slowly varying sequences {µt, t ≥ 1} of
probability measures. For such sequences, additionally assuming tightness
of {µt, t ≥ 1}, and boundedness and equicontinuity of the set F of functions,
we prove that in (1.3), E∆t → 0 as t→∞.

In Section 3 we establish some estimates of the rate of vanishing of
κ(0, ∆t), where κ is the Ky Fan metric (that metrizes convergence in prob-
ability).

2. Convergence in L1. It is well-known that even in the case of i.i.d.
vectors ξt, t ≥ 1, the values of L∗t in (1.2) converge (as t→∞) to R∗ ≡ R∗t in
(1.1) only under certain restrictions on the class of functions f(α, ·) : S → R
in (1.1), which in what follows is denoted by

(2.1) F := {f(α, ·) : α ∈ A}.
(See [18] for necessary and sufficient conditions of convergence in probability
and with probability one.)

In this section we consider the following class F .

Assumption 1. Functions f from F are uniformly bounded and equi-
continuous at each point x ∈ S.

LetM denote the set of all probability measures on (S,B) (where B ≡ BS
is the Borel σ-algebra), and ρ be any given semimetric on M.

Definition 1. We say that a sequence {µt} ⊂ M is slowly varying with
respect to ρ if

(2.2) lim
t→∞

1

t

t∑
k=1

ρ(µk, µt) = 0.
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Let us set

(2.3) ρF (µ, ν) := sup
{∣∣∣ �

S

f dµ−
�

S

f dν
∣∣∣ : f ∈ F

}
, µ, ν ∈M,

where F is from (2.1), and let | · | denote the Euclidean norm in Rm.

Theorem 1. Let Assumption 1 hold, let {µt} be slowly varying with
respect to ρF , and let {µt} be tight, i.e.

(2.4) lim
n→∞

sup
t≥1

µt(x ∈ S : |x| > n) = 0.

Then

(2.5) lim
t→∞

E∆t = 0.

Remark 1. (a) Measurability of ∆t (defined in (1.3)) follows from the
assumptions of Theorem 1 and its proof.

(b) Since {∆t} is a bounded sequence, under the above conditions the
sequence ∆t, t ≥ 1, converges to zero in Lp, for every p > 0.

It is not difficult to give examples showing that, in general, all assump-
tions of Theorem 1 (i.e. Assumption 1, slow variation and tightness) are
essential for (2.5) to hold.

Under Assumption 1 the sequence {µt} is slowly varying in ρF if, for
example, {µt} is slowly varying with respect to the total variation metric
ρ = V . If F consists of bounded Lipschitzian functions (with the same
Lipschitz constant for all f ∈ F), then ρF ≤ cd for some c <∞, where

d = d(µ, ν)

:= sup

{∣∣∣�
S

f dµ−
�

S

f dν
∣∣∣ : f with ‖f‖∞ + sup

x 6=y

|f(x)− f(y)|
|x− y|

≤ 1

}
,

is the Dudley metric, [4]. Thus, the second condition in Theorem 1 is satisfied
if {µt} is slowly varying with respect to d (or with respect to the Lévy–
Prokhorov metric, see [4]).

Note that if {µt} converges in ρ, then it is slowly varying with respect
to ρ. The following example provides slowly varying sequences which may
not be convergent.

Example 1. Let S = R, and suppose that for every t ≥ 1 the distribu-
tion µt has a density gt(x) = g(x − at), x ∈ R, where g is a fixed density
and at ∈ R is a shift parameter. Assume that

at = h(logp(t)), t = 1, 2, . . . , where p ∈ (0, 1),

and that the function h satisfies the Lipschitz condition (say, with a con-
stant L).
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It follows that {µt} is slowly varying with respect to the Dudley metric d.
Moreover, if h is bounded, then {µt} is tight. (The simplest example: µt ∼
Norm(at, σ) where at = sin(logp(t)).)

Indeed, let 1 < m < t. Then for every function ϕ : R→ R with

(2.6) ‖ϕ‖BL := ‖ϕ‖∞ + ‖ϕ‖L := ‖ϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|

≤ 1

we have

(2.7)
∣∣∣ �ϕ(x)g(x− am) dx−

�
ϕ(x)g(x− at) dx

∣∣∣
≤ L|logp(m)− logp(t)| ≤ Lp

log1−p(m)

t−m
m

.

A sequence {εt} of nonnegative numbers can be chosen in such a way that
εt → 0 and εt log1−p(tεt) → ∞ (for example, εt := 1/logα(t) with small
enough positive α).

We set m = m(t) := [tεt] + 1, where [·] stands for integer part.

Then since d ≤ 1 we obtain in (2.2) with ρ = d (using (2.7))

1

t

t∑
k=1

d(µκ, µt) ≤
m(t)

t
+

Lp

log1−p(tεt)

(t− tεt)2

t2εt
→ 0 as t→∞.

3. Rate of convergence estimation. Estimation of the rate of van-
ishing of ∆t can be important from the computational point of view, and
in some problems of probabilistic pattern recognition and learning (see,
e.g., [1, 18]).

We will measure the distance between zero and ∆t in terms of the Ky
Fan metric:

(3.1) κ(0, ∆t) := inf{ε : P (∆t > ε) < ε}.

The conditions of Theorem 2 below impose rather strong restrictions on
the moments of µt, but allow unbounded functions f in the set F .

Assumption 2. There are nonnegative finite numbers a, b, γ and σ such
that each function f from F in (2.1) satisfies the following conditions (α ∈ A;
n = 1, 2, . . . ):

(3.2) |f(x, α)| ≤ anγ , |f(x, α)− f(y, α)| ≤ bnσ|x− y|

for every x, y ∈ S such that |x|, |y| ≤ n.

Theorem 2. Let Assumption 2 hold, and for every λ > 0,

(3.3) sup
t≥1

�

S

|x|λ µt(dx) ≤ Kλ <∞.
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Then for each fixed δ ∈ (0, (2 + m)−1) there exists a sequence c(δ, t), t =
1, 2, . . . , such that

lim
t→∞

c(δ, t) = 0,(3.4)

κ(0, ∆t) ≤ c(δ, t)t−δ + min
{

1, t−1
t∑

k=1

ρF (µk, µt)
}
, t = 1, 2, . . . .(3.5)

In the last theorem the semimetric ρF is defined by (2.3) with the family
of functions F specified in Assumption 2. If F contains unbounded functions,
then the property of “slow variation” of {µt} in ρF in general does not hold
when {µt} is slowly varying, say, with respect to the total variation metric.
Nevertheless, the less restrictive moment conditions than in (3.3) allow one
to prove the following assertion.

Proposition 1. Suppose Assumption 2 holds, and for some λ > 1 + γ
(where γ is from (3.2)) inequality (3.3) is satisfied. Then, if {µt} is slowly
varying with respect to the Dudley metric d, then it is slowly varying with
respect to ρF .

Moreover, for each 1 ≤ k < t,

ρF (µk, µt) ≤ inf
N=1,2,...

{
[aNγ + bNσ] d(µk, µt)(3.6)

+ 2aKλ

[ ∞∑
n=N+1

nγ(n− 1)−λ +Nγ−λ
]}
.

Corollary 1. Suppose that {µt} is slowly varying with respect to the
Dudley metric. Then under the conditions of Theorem 2,

(3.7) κ(0, ∆t)→ 0 as t→∞.
Remark 2. Combining (3.5) and (3.6) yields an estimate on the vanish-

ing rate of κ(0, ∆t) (which, in particular, depends on t−1
∑t

k=1 d(µk, µt)).

4. Proofs

4.1. The proof of Theorem 1. In view of Assumption 1 the set of
functions F in (2.1) is relatively compact in the topology of uniform conver-
gence on bounded sets from S. Let us show that under (2.4) this topology
can be metrized by the following metric:

(4.1) r(ϕ,ψ) := sup
t≥1

∞∑
n=1

hn,t sup
x∈Qn

|ϕ(x)− ψ(x)|, ϕ, ψ ∈ F ,

where

Qn := {x ∈ S : n− 1 ≤ |x| < n}, n = 1, 2, . . . ,(4.2)

hn,t := max{n−2, µt(Qn)}, n, t = 1, 2, . . . .(4.3)
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Note that for every n, t,

(4.4) 0 < hn,t ≤ 1.

First, suppose ϕm → ϕ uniformly on each bounded set, and ε > 0. From
(2.4) it follows that there exists N1 such that supt≥1

∑∞
n=N1

µt(Qn) < ε,
or for some N ≥ N1, supt≥1

∑∞
n=N hn,t < ε. Then from (4.1)–(4.3) we find

that for all large enough m, r(ϕm, ϕ) < ε+ 2bε, where b is a constant that
bounds the functions from F .

Second, if r(ϕm, ϕ)→ 0 then (since hn,t ≥ 1/n2) for every n,

sup
x∈Qn

|ϕm(x)− ϕ(x)| → 0,

and the uniform convergence on bounded sets holds.

Now, denote by L(F) the set of all functions g : F → R bounded by the
above defined constant b and satisfying the Lipschitz condition with respect
to the metric r in (4.1).

For every integer 1 ≤ j ≤ t, let

Yj,t := {ϕ(ξj)− Eϕ(ξt) : ϕ ∈ F},(4.5)

Zj := {ϕ(ξj)− Eϕ(ξj) : ϕ ∈ F}.(4.6)

(That is, Yj,t and Zj are real valued “random processes” indexed by ϕ ∈ F .)

Let us show that for each ω ∈ Ω (where (Ω,F , P ) is the probability
space where ξt, t ≥ 1, are defined), Yj,t, Zj ∈ L(F).

If ϕ,ψ ∈ F and ξj ∈ Qn then

|ϕ(ξj)− ψ(ξj)| ≤ h−1n,jhn,j sup
x∈Qn

|ϕ(x)− ψ(x)|,

or (see (4.1), (4.3))

(4.7) |ϕ(ξj)− ψ(ξj)| ≤ `(ξj)r(ϕ,ψ)

for arbitrary ξj . In (4.7),

(4.8) `(ξj) := h−1n,j when ξj ∈ Qn.

On the other hand, in view of (4.3),

(4.9) |Eϕ(ξj)− Eψ(ξj)| =
∣∣∣ ∞∑
n=1

E{[ϕ(ξj)− ψ(ξj)], ξj ∈ Qn}
∣∣∣

≤
∞∑
n=1

h−1n,jP (ξj ∈ Qn)hn,j sup
x∈Qn

|ϕ(x)− ψ(x)| ≤ r(ϕ,ψ).

From (4.7) and (4.9) we see that the random functions Yj,t(ϕ), Zj(ϕ) in
(4.5), (4.6) satisfy the Lipschitz condition with the random constant L ≡
L(ξj) := 1 + `(ξj), where `(ξj) was defined in (4.8).
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For every function Z ∈ L(F) let us set

(4.10) ‖Z‖ := sup{|Z(ϕ)| : ϕ ∈ F}.

From the definitions given in (1.1)–(1.3),

∆t ≤ sup
α∈A

∣∣∣t−1 t∑
j=1

f(ξj , α)−
�

S

f(x, α)µt(dx)
∣∣∣(4.11)

= sup
ϕ∈F

∣∣∣t−1 t∑
j=1

[ϕ(ξj)− E(ξt)]
∣∣∣.

Thus by (4.5), (4.6), (4.10) and (4.11) we get

∆t ≤
∥∥∥t−1 t∑

j=1

Yj,t

∥∥∥ =
∥∥∥t−1 t∑

j=1

Zj − t−1
t∑

j=1

(Zj − Yj,t)
∥∥∥(4.12)

≤
∥∥∥t−1 t∑

j=1

Zj

∥∥∥+ t−1
t∑

j=1

‖Zj − Yj,t‖

=
∥∥∥t−1 t∑

j=1

Zj

∥∥∥+ t−1
t∑

j=1

ρF (µj , µt).

The last equality follows from the definition of ρF in (2.3).

By (4.12) we will prove (2.5) if we show that

(4.13) lim
t→∞

E
∥∥∥t−1 t∑

j=1

Zj

∥∥∥ = 0.

Note that Z1, Z2, . . . are i.i.d. bounded zero-mean random vectors with val-
ues in the normed space (L(F), ‖ · ‖).

Let G be the space of all bounded continuous real-valued functions on
S equipped with the topology of uniform convergence on bounded subsets
of S. And let (F , r) be the closure of (F , r) in G. Then (F , r) is a compact
metric space. It is known (see e.g. [4]) that every function Z ∈ L(F) can
be extended to a real-valued function Z defined on F without changing its
supremum and Lipschitz norms (see (2.6) for the definition of the last one).

Let C(F) be the Banach space of all bounded continuous real-valued
functions on the compact set F (equipped with the uniform norm), and let
L(F) ⊂ C(F) be the subset consisting of all the above mentioned extensions
of functions from L(F).

Let also Zj := {ϕ(ξj) − Eϕ(ξj) : ϕ ∈ F} be extensions to F of the
random functions from (4.6), (4.13). Then Z1, Z2, . . . are i.i.d. zero-mean
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bounded random vectors in C(F), and (4.13) will be proved if we show that

(4.14) lim
t→∞

E
∥∥∥t−1 t∑

j=1

Zj

∥∥∥ = 0.

For every c ≥ 1 the set

(4.15) K(c) := {Z ∈ C(F) : ‖Z‖ ≤ b and

|Z(ϕ)− Z(ψ)| ≤ cr(ϕ,ψ) for all ϕ,ψ ∈ F}

is closed, uniformly bounded and uniformly continuous. Thus K(c) is com-
pact in C(F).

We will show that

(4.16) lim
c→∞

sup
j≥1

�

{Zj 6∈K(c)}

‖Zj‖ dP = 0.

Then we can apply Theorem 2.4 from [8], which states that under condition
(4.16) the relation (4.14) holds true.

Because the uniform and the Lipschitzian norms of Zj and Zj are the
same, the event {Zj 6∈ K(c)} implies (in view of (4.15) and the fact that Zj is
Lipschitzian with constant 1+`(ξj)) the event {`(ξj) > c−1}. When ξj ∈ Qn
the last event (see (4.3), (4.8)) means that [max{n−2, µj(Qn)}]−1 > c − 1,
or n > c− 1. Thus,

{`(ξj) > c− 1} ⊂ {|ξj | ≥
√
c− 1− 1}.

By (2.4) limc→∞ supj≥1 P (|ξj | ≥
√
c− 1− 1) = 0.

Finally, observe that according to the above argument,

sup
j≥1

�

{Zj 6∈K(c)}

‖Zj‖ dP ≤ b sup
j≥1

P (`(ξj) > c− 1).

Thus we have checked (4.16).

4.2. On the proof of Theorem 2. Denoting in (4.12),

(4.17) Xt :=
∥∥∥t−1 t∑

j=1

Zj

∥∥∥, βt := t−1
t∑

j=1

ρF (µj , µt),

we see that

(4.18) ∆t ≤ Xt + βt, t ≥ 1.

It is easy to show that

κ(0, Xt + βt) ≤ κ(0, Xt) + κ(0, βt),(4.19)

κ(0, βt) = min{1, βt}.(4.20)
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Thus inequality (3.5) in Theorem 2 will follow from (4.18)–(4.20), provided
we show that

(4.21) κ(0, Xt) ≤ c(δ, t)t−δ, t ≥ 1.

Note that by (4.6) and (4.10),

(4.22) Xt = sup
ϕ∈F

∣∣∣t−1 t∑
j=1

ϕ(ξj)− Eϕ(ξj)
∣∣∣.

In the case of i.i.d. random vectors ξ1, ξ2, . . . in (4.22), under different
hypotheses about the class F (for instance under certain entropy condi-
tions or boundedness and Lipschitz conditions) there are many results on
bounding (often exponential in t ≥ 1) the probabilities P (Xt > ε) (see for
instance [1, 5, 9–12,14–16,18,19]).

Under the conditions of Theorem 2 (but with i.i.d. random vectors
ξ1, ξ2, . . . ), in [7] it was proved that for each fixed δ ∈ (0, (2 +m)−1),

(4.23) lim
t→0

tδP (Xt ≥ t−δ) = 0.

As in many other works on this topic, to prove the results in [7] the following
procedure was performed:

(a) Making use of (3.3), the functions ϕ from F are reduced (in a certain
sense) to functions defined on balls of finite radius.

(b) Due to Assumption 2 on such balls these functions are bounded and
satisfy the Lipschitz condition.

(c) Therefore, the corresponding function subsets are compact in the
uniform metric.

(d) To estimate the size of ε-nets (for ‖ · ‖∞) the results from [13] were
used.

(e) To estimate P (supϕ∈Φm

∣∣1
t

∑t
j=1 ϕ(ξj)−Eϕ(ξj)

∣∣ > ε), where the Φm
are certain finite sets, the Hoeffding inequality was used.

The most important point is that the proof of (4.23) given in [7] basically
did not use the identity of the distributions of the random vectors ξ1, ξ2, . . . .
Thus, under the assumptions of Theorem 2 this proof can be easily adapted
(with minor changes) to the case of non-identically distributed ξ1, ξ2, . . . .
For these reasons we omit this rather lengthy proof.

Finally, note that (4.23) implies (4.21) with c(δ, t)→ 0 as t→∞.

4.3. The proof of Proposition 1. From the definitions (2.2) and
inequality (3.6) it readily follows that {µt} is slowly varying with respect to
ρF if it is slowly varying in the Dudley metric d.

Let ϕ ∈ F be arbitrary, but for now fixed.
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For every 1 ≤ k < t fixed we have (see (4.2))

Γ (ϕ) :=
∣∣∣�
S

ϕ [dµk − dµt]
∣∣∣(4.24)

≤
∣∣∣ �
SN

ϕ [dµk − dµt]
∣∣∣+

∞∑
n=N+1

�

Qn

|ϕ| [dµk + dµt],

where SN =
⋃N
n=1Qn and N is an arbitrary natural number. By Assump-

tion 2 on the set Qn the function ϕ is bounded by aNγ and ϕ satisfies the
Lipschitz condition with constant bNσ. Thus (see e.g. [4]) ϕ can be extended
to S in such a way that the resulting extension ϕ̂ is a function with the same
(as ϕ) uniform norm ‖ · ‖∞ and Lipschitz norm ‖ · ‖L (see (2.6)).

By the definition of the metric d (see [4]),∣∣∣�
S

ϕ̂ [dµk − dµt]
∣∣∣ ≤ CNd(µk, µt),

where CN := aNγ + bNσ. Thus,�

S

ϕ̂ [dµk − dµt] =
�

SN

ϕ [dµk − dµt] +
�

S\SN

ϕ̂ [dµk − dµt](4.25)

≤ CNd(µk, µt),

or �

SN

ϕ [dµk − dµt] ≤ CNd(µk, µt)−
�

S\SN

ϕ̂ [dµk − dµt].

Applying a similar inequality with opposite sign we obtain

(4.26)
∣∣∣ �
SN

ϕ[dµk − dµt]
∣∣∣ ≤ CNd(µk, µt) +

�

S\SN

|ϕ̂| [dµk + dµt].

Since ‖ϕ̂‖∞ ≤ aNγ , by (3.3) and the Chebyshev inequality the last integral
in (4.26) is less than

(4.27) 2aKλN
γN−λ.

Applying (3.3) and the Chebyshev inequality (together with Assumption 2)
to the second term on the right-hand side of (4.24), and gathering together
(4.24)–(4.27), we obtain the desired inequality (3.6).

Acknowledgements. The authors wish to thank the anonymous re-
viewers for suggestions on an earlier draft. The authors are grateful to Pro-
fessor G. Escarela for language editing.

References

[1] L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition,
Springer, New York, 1996.



12 E. Gordienko et al.

[2] M. Duflo, Random Iterative Models, Springer, Berlin, 1997.
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