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STABILITY OF FINITE DIFFERENCE SCHEMES
FOR CERTAIN PROBLEMS IN BIOLOGY

Abstract. We consider a generalized 1-D von Foerster equation. We
present two discretization methods for the initial value problem and study
stability of finite difference schemes on regular meshes.

1. Introduction. Suppose that c: E × R+ → R and λ: E × R2
+ → R,

where E = [0, a]×R+, a > 0. We study the initial-boundary value problem

∂tu(t, x) + c(t, x, z(t))∂xu(t, x) = λ(t, x, u(t, x), z(t)),(1)

where

z(t) = z[u(t, ·)] =
∞�

0

u(t, x) dx, t ∈ [0, a].(2)

Equation (1), which generalizes the classical von Foerster biological model
[3, 4, 13], will be considered with the initial condition

u(0, x) = v(x), x ∈ R+,(3)

where v: R+ → R+ is a given continuous integrable function. If c(t, x, z(t))
≥ 0, then the well-posedness of problem (1)–(3) demands the condition
c(t, 0, z(t)) ≤ 0, that is: the characteristics either go out of the set through
the lateral boundary or meet the boundary and remain there.

Some existence, uniqueness and qualitative theorems for the von Foerster
problem and other problems of mathematical biology have been established
in [1]–[7], [9] and [12]–[13]. We are interested in discretization of problem
(1)–(3). The Lax equivalence theorem splits this task into investigating sta-
bility and consistency. We analyze convergence of finite difference schemes
for problem (1)–(3) on rectangular meshes. Some results connected with
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stability and convergence of finite difference schemes for differential and
functional differential equalities can be found in [8, 11, 15].

The von Foerster equation is a classical model for description of age-
dependent population dynamics. In the biological interpretation of this equa-
tion, t ≥ 0 denotes time, and x ≥ 0 the maturity of the population. The
unknown function u(t, x) ≥ 0 stands for the density of the population, hence
it has to be integrable with respect to x for all t ≥ 0. The function z(t) given
by (2) denotes the global number of individuals at time t ≥ 0. Although it is
clear that the maturity of the population is bounded, we consider the case
where the maturity is arbitrarily large.

For some historical background of mathematical biology models we refer
to [1, 5, 12, 16, 17] and [6, 7, 10, 14].

The paper is organized as follows. First we introduce the mesh in the
domain E and present two discretization methods for problem (1)–(3): by
using forward and backward spatial difference quotients. The nonlocal term
is approximated by the extended trapezoidal rule and its finite version. We
introduce appropriate normed spaces and give main assumptions. Next, we
prove stability lemmas for both schemes by considering perturbations with
respect to the right side and the initial condition. We prove the stability of
these schemes with respect to the quadrature, that is, check how sensitive the
scheme is with regard to restricting the extended trapezoidal rule to certain
finite subregions. The main stability theorem is a simple consequence of
these lemmas. Finally, we prove a consistency theorem of backward schemes
and give illustrative numerical examples.

2. Discretization of the differential problem. We introduce in E =
[0, a] × R+ a rectangular mesh as follows. For two given steps h0 ∈ (0, a)
and h1 ∈ (0,∞) we denote by (t(i), x(j)) the knots (h0i, h1j). Define Nh =
{(t(i), x(j)) : i, j ∈ N} and Eh = E ∩ Nh. The value of any discrete function
u: Eh → R+ at the knot (t(i), x(j)) will be denoted by u(i,j) = u(t(i), x(j)).

Define the discrete operators δ0, δ+, δ−, Qh by

δ0u
(i,j) =

u(i+1,j) − u(i,j)

h0
,

δ+u
(i,j) =

u(i,j+1) − u(i,j)

h1
, δ−u(i,j) =

u(i,j) − u(i,j−1)

h1
,

(Qhu)i = h1

∞∑

j=0

u(i,j) + u(i,j+1)

2
(extended trapezoidal rule).

The operator δ0u
(i,j) approximates the derivative ∂tu(t(i), x(j)), whereas δ+

and δ− approximate ∂xu(t(i), x(j)). The quadrature (Qhu)i is a second-order
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approximation of the integral (2) at t = t(i). When performing practical
computations we replace (Qhu)i by

(QNhh u)i = h1

Nh∑

j=0

u(i,j) + u(i,j+1)

2
,

where Nh is a sufficiently large number (usually proportional to 1
h1

log 1
h1

).
It is important that h1Nh →∞ as h1 → 0.

We consider two finite difference problems for (1)–(3). The first forward
scheme consists of the difference equation

δ0u
(i,j) + c(i,j)[z]δ+u

(i,j) = λ(i,j)[u, z] on E+
h(4)

with

z(i) = (Qhu)i,(5)

where

c(i,j)[z] = c(t(i), x(j), z(i)), λ(i,j)[u, z] = λ(t(i), x(j), u(i,j), z(i)),

E+
h = E ∩ N+

h , N+
h = {(t(i), x(j)) : i, j ≥ 0},

and the initial condition

u(0,j) = v(j) for j ∈ N.(6)

The backward scheme consists of the difference equation

δ0u
(i,j) + c(i,j)[z]δ−u(i,j) = λ(i,j)[u, z] on E−h ,(7)

where E−h = E ∩ N−h , N−h = {(t(i), x(j)) : i ≥ 0, j > 0}, and

δ0u
(i,0) = λ(i,0)[u, z], u(0,0) = v(0) (i = 0, 1, . . . , N0 − 1),(8)

with the quadrature (5) and the initial condition

u(0,j) = v(j) for j ∈ N.(9)

The analysis of the finite difference problems (4)–(6) and (7)–(9) can be
divided into two steps: stability and consistency. We are mainly interested
in stability. The treatment of consistency is standard.

Denote by L∞(R+) and L1(R+) the spaces of essentially bounded mea-
surable functions and Lebesgue integrable functions defined on R+, and let
C(X,R) denote the class of all continuous functions u: X → R.

The problem considered is nonlocal, hence we have to introduce the
following normed spaces. In the space l∞ of bounded sequences ψ = (ψj)j∈N,
we have the norm

‖ψ‖∞ = sup
j∈N
|ψj | for (ψj) ∈ l∞.
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The space l1 of summable sequences ϕ = (ϕj)j∈N is equipped with the norm

‖ϕ‖1 = h1

∞∑

j=0

|ϕj| for (ϕj) ∈ l1.

Definition 1. A function f : R→ R is l1-bounded if

∃C>0 ∀h1>0 ‖f|Eh1
‖1 ≤ C,

where Eh1 is the mesh generated by the step h1.

The l1-boundedness is slightly stronger than the usual Riemann integra-
bility condition.

We state the main assumptions on the given functions:

Assumption [V ]. The initial function v: R+ → R+ is continuous,
bounded and l1-bounded.

Assumption [C]. The function c: E×R+ → R is bounded, continuous,
and there exists Lc > 0 such that

|c(t, x, q)− c(t, x, q)| ≤ Lc(|x− x|+ |q − q|)
for (t, x, q), (t, x, q) ∈ E × R+. Moreover,

c(t, 0, q) ≤ 0 for t ∈ [0, a], q ∈ R+.

Assumption [Λ]. The function λ: E×R2
+ → R is continuous and there

is a constant Lλ > 0 and an l1-bounded function Lz(·) ∈ L∞(R+)∩L1(R+)
such that

|λ(t, x, p, q)− λ(t, x, p, q)| ≤ Lλ|p− p|+ Lz(x)|q − q|
for (t, x) ∈ E and p, q, p, q ∈ R+.

3. Stability of forward and backward schemes. To prove the sta-
bility of problems (4)–(6) and (7)–(9) we consider a perturbed scheme, which
for the forward scheme looks as follows:

δ0u
(i,j) + c(i,j)[z]δ+u

(i,j) = λ(i,j)[u, z] + ξ(i,j) on E+
h(10)

with
z(i) = (Qhu)i,(11)

and perturbed initial conditions

u(0,j) = v(j) + ξ̂ (0,j) for j ∈ N,(12)

where the perturbations ξ(i,j) are the discretization errors for (1) and ξ̂ (0,j)

are perturbations of (3).
We also consider the perturbed difference equations for the backward

scheme on the mesh E−h :

δ0u
(i,j) + c(i,j)[z]δ−u(i,j) = λ(i,j)[u, z] + ξ(i,j)(13)
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with the perturbed quadrature (11), initial condition (12) and boundary
condition

δ0u
(i,0) = λ(i,0)[u, z] + ξ(i,0) for i = 0, 1, . . . , N0 − 1.(14)

We now prove the stability lemma for scheme (4)–(6).

Lemma 2. Suppose that u, u : Eh → R+ and

(i) u is a bounded and l1-bounded solution of problem (4)–(6), satisfying
the discrete Lipschitz condition

|u(i,j+1) − u(i,j)| ≤ Luh1 with some Lu > 0,

(ii) u is a bounded and l1-bounded solution of problem (10)–(12) with

‖ξ(i)‖∞ ≤ Ch, ‖ξ̂ (0)‖∞ ≤ C0,h, ‖ξ(i)‖1 ≤ Ch, ‖ξ̂ (0)‖1 ≤ C0,h,

i = 0, 1, . . . , N0, where C0,h, Ch, C0,h, Ch → 0 as ‖h‖ = max{h0, h1}
→ 0,

(iii) c satisfies the stability conditions

1 +
h0

h1
c(t, x, q) ≥ 0, c(t, x, q) ≤ 0 for (t, x, q) ∈ E × R+,

(iv) Assumptions [C] and [Λ] hold.

Then |u(i,j) − u(i,j)| converges uniformly to 0 as ‖h‖ → 0 in both the supre-
mum norm and l1 norm.

Remark 3. If c does not depend on the last variable, then the discrete
Lipschitz condition in (i) can be omitted.

Proof. Set ω(i,j) = u(i,j) − u(i,j) (the error of the scheme). Subtracting
(10) and (4) we obtain the explicit recurrence error equation

ω(i+1,j) = ω(i,j)
(

1 +
h0

h1
c(i,j)[z]

)
− h0

h1
c(i,j)[z]ω(i,j+1)(15)

+
h0

h1
(u(i,j+1) − u(i,j))(c(i,j)[z]− c(i,j)[z])

+ h0(λ(i,j)[u, z]− λ(i,j)[u, z]) + h0ξ
(i,j).

Using Assumption [Λ] and the stability condition (iii) we get

|ω(i+1,j)| ≤ |ω(i,j)|
(

1 +
h0

h1
c(i,j)[z]

)
− h0

h1
c(i,j)[z]|ω(i,j+1)|(16)

+
h0

h1
|u(i,j+1) − u(i,j)| |c(i,j)[z]− c(i,j)[z]|

+ h0Lλ|ω(i,j)|+ h0Lz(x(j))|z(i) − z(i)|+ h0|ξ(i,j)|.
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Recall that

z(i) =
h1

2

∞∑

j=0

(u(i,j+1) + u(i,j)) =
h1

2
u(i,0) + h1

∞∑

j=1

u(i,j),

z(i) =
h1

2

∞∑

j=0

(u(i,j+1) + u(i,j)) =
h1

2
u(i,0) + h1

∞∑

j=1

u(i,j).

Hence

|z(i) − z(i)| ≤ h1

∞∑

j=0

|u(i,j) − u(i,j)| = ‖ω(i)‖1.(17)

By (17), Assumptions [C], [Λ] and (i) we write (16) in the form

|ω(i+1,j)| ≤ |ω(i,j)|
(

1 +
h0

h1
c(i,j)[z]

)
− h0

h1
c(i,j)[z]|ω(i,j+1)|

+ h0LuLc‖ω(i)‖1 + h0Lλ|ω(i,j)|+ h0‖Lz‖∞‖ω(i)‖1 + h0|ξ(i,j)|.
Hence

‖ω(i+1)‖∞ ≤ (1 + h0Lλ)‖ω(i)‖∞ + h0(LuLc + ‖Lz‖∞)‖ω(i)‖1(18)

+ h0‖ξ(i)‖∞.
From Assumption [C] we obtain

∞∑

j=0

c(i,j)[z](|ω(i,j)| − |ω(i,j+1)|) ≤ Lc‖ω(i)‖1.(19)

Multiplying (16) by h1, summing over j = 0, 1, . . . and taking into con-
sideration (i), (17), (19), Assumptions [C] and [Λ] we obtain

‖ω(i+1)‖1 ≤ ‖ω(i)‖1(1 + h0Lλ + h0Lc + 2h0LcU + h0‖Lz‖1)(20)

+ h0‖ξ(i)‖1,
where

U = max
i=0,...,N0

h1

∞∑

j=0

u(i,j).

Consider the comparison recurrence equations with respect to (18) and (20):

(21)
η(i+1) = η(i)(1 + h0Lλ) + h0(LuLc + ‖Lz‖∞)η̃(i) + h0‖ξ(i)‖∞
η̃(i+1) = η̃(i)(1 + h0Lλ + h0Lc + 2h0LcU + h0‖Lz‖1) + h0‖ξ(i)‖1.

Taking into consideration the initial conditions

‖ω(0)‖1 ≤ η̃(0) = C0,h → 0, ‖ω(0)‖∞ ≤ η(0) = C0,h → 0,

we obtain the estimates ‖ω(i)‖∞ ≤ η(i) and ‖ω(i)‖1 ≤ η̃(i), hence the solu-
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tions of (18), (20) satisfy

‖ω(i)‖1 ≤ η̃(i) ≤ eLa
(
C0,h +

Ch
L

)
=: Ĉh,

‖ω(i)‖∞ ≤ η(i) ≤ eLλa
(
C0,h +

(LuLc + ‖Lz‖∞)Ĉh + Ch
Lλ

)

for i = 0, 1, . . . , N0, where L = Lλ+Lc+2LuU+‖Lz‖1. The right-hand sides
of these estimates are derived from (21), because η(i) ≤ η(N0), η̃(i) ≤ η̃(N0)

and (1 + h0L)i ≤ eh0iL ≤ eaL.

We now prove the stability lemma for the backward scheme (7)–(9). The
discretization error for problem (1)–(3) on the mesh E−h is defined in the
same way as for the forward scheme.

Lemma 4. Suppose that u, u: Eh → R+ and

(i) u is a bounded and l1-bounded solution of problem (7)–(9), satisfying
the discrete Lipschitz condition with some Lu > 0,

(ii) u is a bounded and l1-bounded solution of problem (11)–(14) with

‖ξ(i)‖∞ ≤ Ch, ‖ξ̂ (0)‖∞ ≤ C0,h, ‖ξ(i)‖1 ≤ Ch, ‖ξ̂ (0)‖1 ≤ C0,h,

where C0,h, Ch, C0,h, Ch → 0 as ‖h‖ → 0,
(iii) c satisfies the stability conditions

1− h0

h1
c(t, x, q) ≥ 0, c(t, x, q) ≥ 0 for (t, x, q) ∈ E × R+,

(iv) Assumptions [C] and [Λ] hold.

Then |u(i,j) − u(i,j)| converges uniformly to 0 as ‖h‖ → 0 in both the supre-
mum norm and l1 norm.

Remark 5. As in the forward scheme, if c does not depend on the last
variable, then the discrete Lipschitz condition in (i) can be omitted.

Remark 6. From Assumption [C] and (iii) it follows that c(t, 0, q) = 0
for t ∈ [0, a], q ∈ R+, that is, the characteristic which meets the lateral
boundary at the point (t0, 0) is tangent to it there. By the Lipschitz condi-
tion, η(t) ≡ 0 is the only characteristic which meets the lateral boundary.

Proof of Lemma 4. Set ω(i,j) = u(i,j) − u(i,j). As in Lemma 2, we obtain

ω(i+1,j) = ω(i,j)
(

1− h0

h1
c(i,j)[z]

)
+
h0

h1
c(i,j)[z]ω(i,j−1)(22)

+
h0

h1
(u(i,j) − u(i,j−1))(c(i,j)[z]− c(i,j)[z])

+ h0(λ(i,j)[u, z]− λ(i,j)[u, z]) + h0ξ
(i,j)

for j = 1, 2, . . . . By Assumption [Λ] and (iii) we obtain
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|ω(i+1,j)| ≤ |ω(i,j)|
(

1− h0

h1
c(i,j)[z]

)
+
h0

h1
c(i,j)[z]|ω(i,j−1)|(23)

+
h0

h1
|u(i,j) − u(i,j−1)| |c(i,j)[z]− c(i,j)[z]|

+ h0Lλ|ω(i,j)|+ h0Lz(x(j))|z(i) − z(i)|+ h0|ξ(i,j)|
for j = 1, 2, . . . . Using Assumptions [C], [Λ], (i) and (17) we get

|ω(i+1,j)| ≤ |ω(i,j)|
(

1− h0

h1
c(i,j)[z]

)
+
h0

h1
c(i,j)[z]|ω(i,j−1)|(24)

+ h0LuLc‖ω(i)‖1 + h0Lλ|ω(i,j)|
+ h0‖Lz‖∞‖ω(i)‖1 + h0|ξ(i,j)|

for j = 1, 2, . . . . We also write an analogous conclusion for (8):

|ω(i+1,0)| ≤ |ω(i,0)|+ h0Lλ|ω(i,0)|+ h0Lz(0)‖ω(i)‖1 + h0|ξ(i,0)|.(25)

Using the stability condition (iii) and adding (24) and (25) we obtain the
recurrence inequality

‖ω(i+1)‖∞ ≤ (1 + h0Lλ)‖ω(i)‖∞ + h0(LuLc + ‖Lz‖∞)‖ω(i)‖1(26)

+ h0‖ξ(i)‖∞.
Multiplying (23) by h1, summing over j = 1, 2, . . . , using Assumption

[C] and (17), we obtain

(27) h1

∞∑

j=1

|ω(i+1,j)|

≤ h1

∞∑

j=1

(
1− h0

h1
c(i,j)[z]

)
|ω(i,j)|+ h0

∞∑

j=1

c(i,j)[z]|ω(i,j−1)|

+ h0Lc‖ω(i)‖1
∞∑

j=1

|u(i,j) − u(i,j−1)|+ h0h1Lλ

∞∑

j=1

|ω(i,j)|

+ h0h1 ‖ω(i)‖1
∞∑

j=1

Lz(xj) + h0h1

∞∑

j=1

|ξ(i,j)|.

By Assumption [C] we get
∞∑

j=1

c(i,j)[z](|ω(i,j−1)| − |ω(i,j)|) ≤ Lc‖ω(i)‖.(28)

Taking into consideration (28), multiplying (25) by h1 and adding to (27),
we obtain

‖ω(i+1)‖1 ≤ (1 + h0Lc + h0Lλ + 2h0LcU + h0‖Lz‖1)‖ω(i)‖1(29)

+ h0‖ξ(i)‖1,
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where

U = max
i=0,...,N0

h1

∞∑

j=0

u(i,j).

The initial conditions for inequalities (26) and (29) have the estimates

‖ω0‖1 ≤ C0,h → 0, ‖ω0‖∞ ≤ C0,h → 0.

Hence, as in Lemma 2, we have estimates for any solution of (26), (29):

‖ω(i)‖1 ≤ eLa
(
C0,h +

Ch
L

)
=: Ĉh,

‖ω(i)‖∞ ≤ eLλa
(
C0,h +

l(LuLc + ‖Lz‖∞)Ĉh + Ch
Lλ

)

for i = 0, 1, . . . , N0, where L = Lλ + Lc + 2LcU + ‖Lz‖1.

3.1. Stability—the case of finite quadrature. Since only a finite number
of terms can be involved in practical computations, we shall prove a lemma
on stability with respect to cut-offs of the quadrature for the forward scheme.
Denoting by uh the solution of this scheme with the finite quadrature QNh

h ,
we write it as follows:

δ0u
(i,j)
h + c(i,j)[zh]δ+u

(i,j)
h = λ(i,j)[uh, zh] on E+

h(30)

with

z
(i)
h = (QNhh uh)i,(31)

and the initial condition

u
(0,j)
h = v(j) for j ∈ N.(32)

Lemma 7. Suppose that

(i) h1Nh →∞ as ‖h‖ → 0,
(ii) c satisfies the stability conditions

1 +
h0

h1
c(t, x, q) ≥ 0, c(t, x, q) ≤ 0 for (t, x, q) ∈ E × R+,

(iii) Assumptions [C] and [Λ] hold.

Then the scheme (4)–(6) is stable with respect to cut-offs of the quadrature.

Proof. Suppose that a discrete function u: E+
h → R+ is a bounded and

l1-bounded solution of problem (4)–(6), satisfying the discrete Lipschitz con-
dition |u(i,j+1) − u(i,j)| ≤ Luh1 with some Lu > 0. Denote by uh the unique
solution of (30)–(32), which clearly exists. Observe that uh is also bounded
and l1-bounded. Set ε(i,j) = u(i,j)−u(i,j)

h . Subtracting (4) and (30), we obtain
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the explicit recurrence error equation

ε(i+1,j) = ε(i,j)
(

1 +
h0

h1
c(i,j)[zh]

)
− h0

h1
c(i,j)[zh]ε(i,j+1)(33)

+
h0

h1
(u(i,j+1) − u(i,j))(c(i,j)[z]− c(i,j)[zh])

+ h0(λ(i,j)[u, z]− λ(i,j)[uh, zh])

with the initial condition ε(0,j) = 0 for j = 0, 1, . . . . By Assumptions [C],
[Λ] and (ii) we get

|ε(i+1,j)| ≤ |ε(i,j)|
(

1 +
h0

h1
c(i,j)[zh]

)
− h0

h1
c(i,j)[zh]|ε(i,j+1)|(34)

+ h0(Lz(x(j)) + LuLc)|z(i)
h − z(i)|+ h0Lλ|ε(i,j)|.

Notice that

|z(i) − z̃(i)| ≤ ‖ε(i)‖1 + Ũ
(i)
h ,(35)

where

Ũ
(i)
h = h1

∞∑

j=Nh+1

u(i,j),

and the remainder Ũ
(i)
h tends to 0 as h1 → 0. Using Assumption [Λ]

and (35), we obtain

‖ε(i+1)‖∞ ≤ (1 + h0Lλ)‖ε(i)‖∞ + h0(‖Lz‖∞ + LcLu)(‖ε(i)‖1 + Ũh),(36)

where Ũh = maxi=0,...,N0 Ũ
(i)
h .

Multiplying (33) by h1, summing over j = 0, 1, . . . , taking into conside-
ration (19), Assumptions [Λ], [C] and (35), we obtain

‖ε(i+1)‖1 ≤ (1 + h0Lλ + h0Lc + 2h0LcU + h0‖Lz‖1)‖ε(i)‖1(37)

+ h0(‖Lz‖1 + 2LcU)Ũh,

where U = maxi=0,...,N0

∑∞
j=1 u

(i,j). Writing, as in Lemma 2, the comparison
recurrence equations with respect to (36) and (37) and taking into consider-
ation the initial conditions ‖ε(0)‖∞ = 0, ‖ε(0)‖1 = 0, we obtain the estimates

‖ε(i)‖1 ≤ eaL
(2LcU + ‖Lz‖1)Ũh

L
=: Ĉh,

‖ε(i)‖∞ ≤ eaLλ
(‖Lz‖∞ + LcLu)(Ĉh + Ũh)

Lλ
,

where L = Lλ+Lc+2LcU+‖Lz‖1. Since h1Nh →∞, it follows that Ũh → 0
as ‖h‖ → 0, and we have the desired assertion ‖ε(i)‖∞ → 0, ‖ε(i)‖1 → 0 as
‖h‖ → 0.
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Now we state the main result of our paper.

Theorem 8. If the assumptions of Lemmas 2 and 7 are satisfied , then
the forward schemes are stable with respect to the right-hand side, the initial
condition and the cuts-off of the quadrature.

Proof. This follows immediately from the proofs of Lemmas 2 and 7.

Remark 9. Results similar to Lemma 7 and Theorem 8 can also be
formulated for the backward scheme. We skip the details.

4. Consistency of backward schemes. Denote by ξ(i,j) the defect of
the difference scheme (7), (8). The scheme is consistent with the differential
equation (1) if

max
i
‖ξ(i)‖∞ → 0, max

i
‖ξ(i)‖1 → 0 as ‖h‖ → 0

for each bounded solution u ∈ C1(E,R+) such that u(t, ·) ∈ L∞(R+) and

(a) ∂tu(·, x), ∂tu(x, ·) are uniformly continuous on R+,
(b) [0, a] 3 t 7→ ∂tu(t, ·) ∈ L1(R+) is bounded and continuous,
(c) there is an integrable modulus of continuity for ∂xu(t, ·).
We now prove a consistency theorem for backward schemes. The proof

of consistency for forward schemes is similar.

Theorem 10. Suppose that u ∈ C1(E) and

(i) ∂tu(·, x), ∂xu(t, ·) are uniformly continuous,
(ii) Assumption [Λ] holds,

(iii) u(t, ·), ∂xu(t, ·) ∈ L1(R+) for t ∈ [0, a],
(iv) there is a modulus of continuity ωt: [0, a)×E → R+ of the function

∂tu(·, x) which satisfies

‖ωt(h0; ·, ·)‖∞ + sup
s∈[0,a]

∞�

0

ωt(h0; s, x) dx→ 0 as h0 → 0,

(v) there is a modulus of continuity ωx: [0, a)×E → R+ of the function
∂xu(s, ·) which satisfies

‖ωx(h1; ·, ·)‖∞ + sup
s∈[0,a]

∞�

0

ωx(h1; s, x) dx→ 0 as h1 → 0,

(vi) c is bounded ,
(vii) [0, a] 3 t 7→ ‖∂xu(t, ·)‖L1 is bounded.

Then the difference scheme (7)–(9) is consistent with the differential problem
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(1)–(3) on the solution u. Moreover , we have the estimate

|(Qhu)i − (QNhh u)i| ≤ h1

∞∑

j=Nh+1

|u(ti, xj)|,

which tends to 0 as ‖h‖ → 0 and h1Nh →∞.

Proof. Notice that (5) is an extended trapezoidal rule for (2) at the point
t = ti. The error of the trapezoidal rule on the interval [xj, xj+1] is given by

%ij =
xj+1�

xj

u(ti, x) dx− u(ti, xj) + u(ti, xj+1)
2

h1(38)

for i = 0, . . . , N0 and j = 0, 1, . . . . Denote by

%i =
∞∑

j=0

%ij

the error of discretization for (2) at t = ti. From the Taylor formula we
obtain

h1[u(ti, xj) + u(ti, xj+1)] =
xj+1�

xj

[u(ti, xj) + u(ti, xj+1)] dx

=
xj+1�

xj

[
2u(ti, x) +

xj�

x

∂xu(ti, η) dη +
xj+1�

x

∂xu(ti, η) dη
]
dx.

By (38) we have the estimate

|%ij | ≤
h1

2

xj+1�

xj

|∂xu(ti, η)| dη,

and consequently

|%i| ≤
h1

2

∞∑

j=0

xj+1�

xj

|∂xu(ti, η)| dη =
h1

2
‖∂xu(ti, ·)‖L1

for ti ∈ [0, a], i = 0, . . . , N0.
The defect ξ(i,j) of the discretization of scheme (13)–(14) is defined by

the equation

(39)
u(ti+1, xj)− u(ti, xj)

h0
+ c(ti, xj , z̃(ti))

u(ti, xj)− u(ti, xj−1)
h1

= λ(ti, xj , u(ti, xj), z̃(ti)) + ξ(i,j),

where

z̃(ti) =
h1

2

∞∑

j=0

(u(ti, xj) + u(ti, xj+1)).
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We show that supi,j |ξ(i,j)| → 0 as ‖h‖ → 0. By the Taylor formula we
have

u(ti+1, xj) = u(ti, xj) + h0∂tu(ti + θih0, xj),

where θi ∈ [0, 1] for i = 0, 1, . . . , N0 − 1, j = 0, 1, . . . , and

u(ti, xj−1) = u(ti, xj)− h1∂xu(ti, xj − θjh1),

where θj ∈ [0, 1] for i = 0, 1, . . . , N0, j = 1, 2, . . . . If we substitute u(ti+1, xj)
and u(ti, xj−1) in (39) we get

ξ(i,j) = ∂tu(ti + h0θi, xj)− ∂tu(ti, xj)(40)

+ c(ti, xj , z̃(ti))(∂xu(ti, xj − θjh1)− ∂xu(ti, xj))

+ λ(ti, xj, u(ti, xj), z(ti))− λ(ti, xj , u(ti, xj), z̃(ti)).

From Assumption [Λ] it follows that ‖Lz‖∞ <∞ and

|λ(ti, xj , u(ti, xj), z(ti))− λ(ti, xj, u(ti, xj), z̃(ti))|

≤ Lz(xj)|z(ti)− z̃(ti)| = Lz(xj)|%i| ≤
h1

2
‖Lz‖∞‖∂xu(ti, ·)‖L1 .

From uniform continuity of the functions ∂tu(·, x) and ∂xu(t, ·), by (vii) and
the above estimate we have

|ξ(i,j)| ≤ ‖ωt(h0; ·.·)‖∞ + ‖c‖∞‖ωx(h1; ·, ·)‖∞ +
h1B

2
‖Lz‖∞

for i = 0, 1, . . . , N0 and j = 1, 2, . . . , where

B = max
i
‖∂xu(ti, ·)‖L1 .

The Euler difference scheme (8) for the differential problem

u′(t, 0) = λ(t, 0, u(t, 0), z(t)), u(0, 0) = v(0),

has the local error estimate

|ξ(i,0)| ≤ |∂tu(ti + θih0, 0)− ∂tu(ti, 0)|
+ |λ(ti, 0, u(ti, 0), z(ti))− λ(ti, 0, u(ti, 0), z̃(ti))|,

and consequently

|ξ(i,0)| ≤ ωt(h0; ·, 0) +
h1B

2
Lz(0)(41)

for i = 0, 1, . . . , N0. Hence

‖ξ(i)‖∞ → 0 as ‖h‖ → 0 for i = 0, 1, . . . , N0.

Now we prove that

max
i=0,1,...,N0

‖ξ(i)‖1 → 0 as ‖h‖ → 0.



26 H. Leszczyński and P. Zwierkowski

If we apply Assumption [Λ] and (vi) to (40), we obtain

|ξ(i,j)| ≤ |∂tu(ti + h0θi, xj)− ∂tu(ti, xj)|(42)

+ ‖c‖∞|∂xu(ti, xj − θjh1)− ∂xu(ti, xj)|

+
h1

2
Lz(xj)‖∂xu(ti, ·)‖L1.

Multiplying (41) and (42) by h1 and summing over j = 0, 1, . . . , we obtain

(43) h1

∞∑

j=0

|ξ(i,j)| ≤ h1ωt(h0; ·, 0) + h1

∞∑

j=1

|∂tu(ti + h0θi, xj)− ∂tu(ti, xj)|

+ h1‖c‖∞
∞∑

j=1

|∂xu(ti, xj − θjh1)− ∂xu(ti, xj)|+
h1B

2
‖Lz‖1.

Notice that

h1ωt(h0; ·, 0) + h1

∞∑

j=1

|∂tu(ti + h0θi, xj)− ∂tu(ti, xj)| ≤ h1

∞∑

j=0

ωt(h0; ti, xj)

and

h1

∞∑

j=1

|∂xu(ti, xj − θjh1)− ∂xu(ti, xj)| ≤ h1

∞∑

j=1

ωx(h1; ti, xj).

Moreover

h1

∞∑

j=0

ωt(h0; ti, xj)→
∞�

0

ωt(h0; ti, xj) dx,

h1

∞∑

j=0

ωx(h1; ti, xj)→
∞�

0

ωx(h1; ti, xj) dx

as ‖h‖ → 0. By (iv) and (v) we get

‖ξ(i)‖1 → 0 as ‖h‖ → 0 for i = 0, 1, . . . , N0.

The last assertion is obvious:

|(Qhu)i − (QNhh u)i| ≤ h1

∞∑

j=Nh+1

u(ti, xj) + u(ti, xj+1)
2

≤
∞�

xj

u(ti, x) dx+ h1

∞�

xj

|∂xu(ti, x)| dx,

which tends to 0 as ‖h‖ → 0 and h1Nh →∞.

Remark 11. Consistency for schemes with cut-off trapezoidal rule con-
tains one additional term: the remainder of this quadrature, which tends to
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zero. This follows from the last assertion of Theorem 10. In fact, assumptions
(iv)–(vi) can be weakened, but the calculations become more involved.

Remark 12. Similar consistency and stability results can be obtained
for Lax–Friedrichs type schemes.

5. Numerical experiments. We present numerical tests which illus-
trate our theoretical results. The computations were performed for forward
and backward schemes. With prescribed functions u : [0, 1]× R+→R+,
v(x) = u(0, x), c: [0, 1] × R2

+ → R we determine the respective right-hand
sides of the difference equations. For the sake of computer technical
constraints the unbounded domain is restricted to a bounded rectangle
[0, 1]× [0, 1000].

For the backward scheme we take c(t, x, z) = t sin2(xz), and for the
forward scheme we put c(t, x, z) = −t sin2(xz). The right-hand side of (1)
has the form

λ(t, x, p, q) = κ cos(t(p+ q)) + gi(t, x), κ ∈ R, i = 1, 2.

The first solution

u1(t, x) =
1 + cos(tx)

1 + x2 , (t, x) ∈ [0, 1]× R+,

generates the initial condition

u1(0, x) = v1(x) =
2

1 + x2 for x ∈ R+,

and g1 is given by

g1(t, x) = ∂tu1(t, x) + c(t, x, z1(t))∂xu1(t, x)

− κ cos(t(u1(t, x) + z1(t))),

z1(t) =
π

2
(1 + e−t)

for (t, x) ∈ [0, 1]× R+.
The second solution u2 generates the corresponding initial condition and

the integral z2:

u2(t, x) =
x cos t

(1 + t+ x2)2 , (t, x) ∈ [0, 1]× R+,

u2(0, x) = v2(x) =
x

(1 + x2)2 , x ∈ R+,

z2(t) =
1
2

cos t
1 + t

, t ∈ [0, a].

In these examples we take κ = 0.2, h0 = h1 = 0.001.
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Table 1. Forward scheme, exact solution u1

x Solution Error

10.000 0.000106314 −0.000007230

50.000 0.000103045 −0.000006959

100.000 0.000110857 0.000004556

200.000 0.000000905 0.000000285

500.000 0.000006422 0.000000375

750.000 0.000002179 0.000000252

999.699 0.000000801 0.000000088

z300 = 2.734449, quadrature error = −0.000021

Table 2. Backward scheme, exact solution u1

x Solution Error

10.000 0.000106496 −0.000007412

50.000 0.000103038 −0.000006952

100.000 0.000110863 0.000004551

200.000 0.000000906 0.000000284

500.000 0.000006423 0.000000374

750.000 0.000002179 0.000000251

999.999 0.000000880 0.000000098

z300 = 2.734449, quadrature error = −0.000022

Table 3. Forward scheme, exact solution u2

x Solution Error

10.000 0.000896038 −0.000000235

50.000 0.000007403 −0.000000043

100.000 0.000000963 −0.000000042

200.000 0.000000157 −0.000000042

500.000 0.000000049 −0.000000042

750.000 0.000000044 −0.000000042

999.599 0.000000043 −0.000000042

z400 = 0.328931, quadrature error = −0.000019

Table 1 shows the numerical results and errors when applying the forward
scheme for the exact solution u1. A similar error propagation is observed
when performing the computations for the backward scheme (see Table 2).
In Tables 3 and 4 we list numerical results for the exact solution u2 (forward
and backward schemes).
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Table 4. Backward scheme, exact solution u2

x Solution Error

10.000 0.000896032 −0.000000229

50.000 0.000007404 −0.000000044

100.000 0.000000964 −0.000000043

200.000 0.000000158 −0.000000043

500.000 0.000000050 −0.000000043

750.000 0.000000045 −0.000000043

999.999 0.000000044 −0.000000043

z400 = 0.328931, quadrature error = −0.000020
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[16] P. F. Verhulst, Recherches mathématiques sur la loi d’accroissement de la popula-
tion, Mém. Acad. Roy. Bruxelles 18.

[17] —, Recherches mathématiques sur la loi d’accroissement de la population, Mém.
Acad. Roy. Bruxelles 20.

Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: hleszcz@math.univ.gda.pl

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Chopina 12/14
87-100 Toruń, Poland

E-mail: zwierkow@mat.uni.torun.pl

Received on 14.5.2003;
revised version on 1.12.2003 (1689)


