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LARGE GAMES WITH ONLY SMALL PLAYERS
AND FINITE STRATEGY SETS

Abstract. Large games of kind considered in the present paper (LSF-
games) directly generalize the usual concept of n-matrix games; the notion
is related to games with a continuum of players and anonymous games with
finitely many types of players, finitely many available actions and distribu-
tion dependent payoffs; however, there is no need to introduce a distribution
on the set of types. Relevant features of equilibrium distributions are studied
by means of fixed point, nonlinear complementarity and constrained opti-
mization procedures in Euclidean spaces. The games are shown to fit well
the voting procedures and evolutionary processes. As an example of ap-
plication, we present a model of production and consumption by infinitely
many households; a competitive equilibrium is obtained via a reduction to
an LSF-game; the equilibrating market mechanism is modelled by actions
of infinitely many small corrective powers.

1. The basic concepts. The object of our study, large games with
only small players and finite strategy sets (if necessary, we refer to them as
LSF-games; L for large, S for small and F for finite), directly generalize the
usual concept of n-matrix games to nonlinear payoffs. The major equilib-
rium concept is found to be a fixed point of a multivalued map, a solution of
a (nonlinear) complementarity problem or a solution to a (constrained) min-
imization problem, in all cases in a Euclidean space. An LSF-game formally
describes the situation of a large number of players classified into finitely
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many types, with finitely many available actions and the payoffs depending
only on one’s own action and the distribution of the other players’ actions (no
large players, acting like atoms, are involved). Not surprisingly, LSF-games
can be found as a mathematical skeleton hidden in the framework of some
games with a continuum of players as well as in some anonymous games.
This can be seen in particular when comparing the present framework with
those in the papers dealing with relatively simple payoff structures, such as
Schmeidler [1973], Khan and Sun [1991] or Rath [1992].

LSF-games can be applied to study evolutionary processes, also those
involving many types of species, since an LSF-game depicts the behavior of
a large, not necessarily homogeneous, population of anonymous individuals.

The concept of LSF-games is intended to be intermediate between struc-
turally more complex games with a continuum (or rather with a measure
space) of players and their “anonymous” rearrangements and, on the other
hand, the usual n-matrix games, well explored from the computational point
of view and popular in applications. However, an increasing number of eco-
nomic models with a large number of agents and relatively simple decision
structure calls for a more systematic study of their theoretical background.

We do not intend to formalize the general concept of a “large” game
in the present paper, usually meaning that an infinite number of players
are involved. The word “anonymous”, even though appropriate, might lead
to confusion with what is usually understood as an anonymous game (a
distribution on the set of characteristics or types is useless in our setup).

Sections 1 and 2 deal with the basic concepts while in Section 3 we discuss
some computational questions. In Sections 4–6 we discuss the relations of
LSF-games to n-matrix games and to games with a measure space of players,
and finally, in Section 7, we show an application of LSF-games to modeling
economic situations involving a large number of agents and economic powers
of decentralized character.

An LSF-game is determined by a specification of positive integers
n, k1, . . . , kn and real functions Φ1, . . . , Φn such that Φi is defined on V i ×
∆k1 × . . . × ∆kn (here V i denotes the set {1, . . . , ki}, and ∆k will always
denote the standard simplex with k vertices e1(k) = (1, 0, . . . , 0), . . . , ek(k) =
(0, 0, . . . , 1), i.e. one of dimension k−1 in the k-dimensional Euclidean space).
So an LSF-game can be identified with a system of integers and functions

γ = (n; k1, . . . , kn;Φ1, . . . , Φn).

The numbers 1, . . . , n are types of players; for each type i, the numbers
1, . . . , kn are actions available to players of type i. The elements of ∆k1 are
interpreted as distributions of actions of the players of type i. The players
themselves are not directly represented in the definition of the game. The
functions Φi are the payoff functions of players of respective types.
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The intended interpretation of how an LSF-game is played is as follows.
Each of infinitely many players of type 1 chooses (independently of the
others) an action, which is one of the numbers 1, . . . , k1; so the players of
type 1 jointly generate a distribution of their actions which is an element
of the simplex ∆k1 ; similarly, the players of any other type i choose among
the numbers 1, . . . , ki and jointly generate a distribution pi of their actions
which is an element of ∆ki . If a specific player of type i has chosen an
individual action j ∈ {1, . . . , ki}, then his payoff is Φi(j; p1, . . . ,pn); we
understand that an individual player’s action does not affect the distribution
of the actions of other players of his type (nor of other types).

We say that an LSF-game is continuous whenever all functions Φi(j; ·),
i = 1, . . . , n, j ∈ V i, are continuous. It is affine whenever all these functions
are affine (more precisely: have affine extensions to the whole Euclidean
space Rk1+...+kn).

2. Equilibria. The basic equilibrium concept for LSF-games that will
be studied throughout the paper reflects the case where no substantial frac-
tion of the players can increase their individual payoffs.

A distribution of actions p = (p1, . . . ,pn) in an LSF-game is said to be
an equilibrium (or to be an equilibrated distribution) whenever there exist
real numbers C1, . . . , Cn such that

Φi(j; p1, . . . ,pn) ≤ Ci for i = 1, . . . , n and j ∈ V i,

Φi(j; p1, . . . ,pn) = Ci for i = 1, . . . , n and j ∈ supp pi.
(1)

For an equilibrium p, the corresponding numbers C i (which are unique)
are called payoff levels (of respective types i at p).

So a distribution p forms an equilibrium whenever (almost) all players
who are of the same type i get the same payoff C i at p; actions that are
(essentially) not used (j such that pij = 0) cannot yield higher payoffs,
since this would tempt the individuals to switch their actions to such a j,
contradicting the common understanding of equilibrium.

The problem of computing all equilibria for an LSF-game is clearly equiv-
alent to solving the following problem (“E” for equalizing):

(E) Find p = (p1, . . . ,pn) ∈ ∆k1×. . .×∆kn and real numbers C1, . . . , Cn

satisfying (1).

2.1. Theorem. If all functions Φi(j; ·), i = 1, . . . , n, j ∈ V i, are continu-
ous then the problem (E) has a solution, hence every continuous LSF-game
has an equilibrium.

Proof. Define a correspondence H from D = ∆k1 × . . .×∆kk to subsets
of D by letting
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H i(p) := co{et(ki) | t ∈ Argmaxj∈V i Φ
i(j; p)} for i = 1, . . . , n,

H(p) := H1(p)× . . .×Hn(p).

Since D is nonempty convex and compact, and H is upper semicontinuous
(standard verification) and its values are simplices, it follows from the Kaku-
tani Theorem that H has a fixed point p. This p, together with immediately
found constants Ci, gives a solution to (E).

We shall now introduce some numerical characteristics of distributions
for a given LSF-game, which are defined for a type i of players and for a
pair of distributions: a distribution pi of actions of the players of type i and
a “total” distribution of actions q = (q1, . . . ,qn) of all types. The symbols
“ess inf ”, “aver” and “ess sup” stand for the essential infimum, average and
essential supremum of the payoffs of the players of type i at q, but taken
with respect to a distribution pi. Some notation, which may now appear
excessive, will turn out to be useful in Section 5.

Formally, for any LSF-game

γ = (n; k1, . . . , kn;Φ1, . . . , Φn)

and any distribution q = (q1, . . . ,qn) we define, for i = 1, . . . , n and a
distribution pi = (pi1, . . . , p

i
ki

), the numbers (“supp” stands for support):

ess infpi Φ
i[q] := min{Φi(j,q) | j ∈ supp pi};

averpi Φ
i[q] := 〈Φi[q]; pi〉 =

∑

j∈V i
Φi(j,q) · pij ;

ess suppi Φ
i[q] := max{Φi(j,q) | j ∈ supp pi};

maxΦi[q] := max{Φi(j,q) | j ∈ V i}.
We obviously always have

ess infpi Φ
i[q] ≤ averpi Φ

i[q] ≤ ess suppi Φ
i[q] ≤ maxpi Φ

i[q].

2.2. Proposition. For any LSF-game γ and any distribution p the fol-
lowing conditions are equivalent :

(i) p is an equilibrium;
(ii) for every type i, ess infpi Φ

i[p] = averpi Φ
i[p] while ess suppi Φ

i[p] =
maxpi Φ

i[p];
(iii) for every type i, averpi Φ

i[p] = maxpi Φ
i[p];

(iv) for every type i, ess infpi Φ
i[p] = maxpi Φ

i[p].

Proof. This follows easily from the definitions.

3. Computation of equilibria. In this section we show how to re-
duce the problem of computing all equilibria of an LSF-game to a standard
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(nonlinear) complementarity problem (see e.g. Isac [1992] for a survey) or
to a constrained minimization problem. Both procedures also work well in
the case of affine LSF-games where they roughly reduce to procedures well
known for n-matrix games, originated by the papers of Lemke and Howson
[1964] and Nikaido and Isoda [1955].

In this section we also study the simplest and very intuitive one type–two
actions case and give an example interpreted in terms of a voting scheme.

The problem (E) is obviously equivalent to the following (generally non-
linear) complementarity problem:

(CP) Given natural numbers n, k1, . . . , kn and real-valued functions Φi :
V i ×∆k1 × . . .×∆kn → R, i = 1, . . . , n, find (p1, . . . ,pn) ∈ ∆k1 ×
. . .×∆kn and real constants C1, . . . , Cn such that

Φi(j; p1, . . . ,pn)− Ci ≤ 0 for all i = 1, . . . , n and j ∈ V i,

and ∑

i=1,...,n, j∈V i
(Φi(j; p1, . . . ,pn)− Ci) · pij = 0

or, in the more familiar shorthand form,

(CP′) Find (p,C) ∈ ∆k1 × . . .×∆kn × Rn such that

F (p,C) ≤ 0 and 〈F (p,C); p〉 = 0(2)

where 〈·; ·〉 denotes the inner product and the function F is defined by

F (p,C) :=

(Φ1(1; p)−C1, . . . , Φ1(kn; p)−C, . . . , Φn(1; p)− Cn, . . . , Φn(kn; p)−Cn).

So we have:

3.1. Proposition. A vector (p1, . . . ,pn) is an equilibrium for an LSF-
game γ, with the corresponding payoff levels (C1, . . . , Cn), if and only if the
system (p1, . . . ,pn;C1, . . . , Cn) solves the problem (CP).

Notice that whenever the functions Φi are uniformly bounded, by some
m from below and M from above, then the range of the variables C i can be
restricted, if necessary for any reasons, to the interval [m,M ].

If an equilibrium with some particular properties is to be found, e.g. one
maximizing or minimizing the value of a function G(p, C), like G(p, C) =∑

i C
i, the problem would be equivalent to solving the problem of maximiz-

ing or minimizing G(p, C) subject to the constraints (2).
An alternative approach to computing equilibria is to investigate a single

real function, defined for all distributions, whose values happen to be zero
just when the distribution is equilibrated. For an LSF-game

γ = (n; k1, . . . , kn;Φ1, . . . , Φn)
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we define the measure of disequilibration as a function Θγ : ∆k1 × . . .×∆kn

→ R such that for all (p1, . . . ,pn) ∈ ∆k1 × . . .×∆kn,

Θγ(p) :=
∑n

i=1
(maxΦi[p]− aver

pi
Φi[p]).

3.2. Theorem. The measure of disequilibration is nonnegative. For any
distribution p, Θγ(p) = 0 if and only if p is an equilibrium. If γ is contin-
uous then so is Θγ.

Proof. This follows from (2) and Proposition 2.2.

So the problem of finding all equilibria for an LSF-game γ reduces to
that of finding all zeros (equivalently: all global minima) of the function Θγ.

There is no need to go any further into details of how to practically solve
a problem of this kind or how to solve a complementarity problem (CP) or
(CP′) as the existing literature of the subject is large and exhaustive while
the choice of a specific method would heavily depend on the kind of the
functions Φi involved. Methods allowing one to attack directly the problems
formulated in this section (optimization problems on a simplotope, a product
of simplices) were elaborated in the eighties by Doup, Van der Elzen, Van
der Heyden, Van der Laan, Talman and others (Doup et al . [1983], [1987]
(three items) and Van der Laan et al . [1982], [1987]).

The search for equilibrated distributions is specially instructive in the
simplest nontrivial special case, where there is just one type of players en-
dowed with two actions; hence the game is entirely determined by two real
functions ϕ1, ϕ2 defined on the unit interval [0, 1] (ϕj stands for Φ1(j; ·) in
our previous notation). Then, by definition, (p, 1 − p) is an equilibrium in
just three cases:

• when (p, 1− p) = (1, 0) while ϕ1(0) ≥ ϕ2(0);
• when (p, 1− p) = (0, 1) while ϕ2(1) ≥ ϕ1(1);
• when ϕ1(p) = ϕ2(p).

Hence, to find all equilibria in this case, it is sufficient to look at the graphs
of ϕ1 and ϕ2, verify their behavior at the endpoints of the interval [0, 1] and
find all intersection points of the two graphs.

This very same reasoning also illustrates a straightforward and natural
proof of Theorem 2.1 in this case: if ϕ2(0) > ϕ1(0) and ϕ1(1) > ϕ2(1), the
(graphs of the) continuous functions ϕ1 and ϕ2 must, by the Mean Value
Theorem, intersect at some p∗ between 0 and 1, which yields an equilibrium.

Some voting procedures can be represented as LSF-games in the manner
depending on the specific election rules:

3.4. Example. Suppose that the electorate has been classified into just
one type, and one option among k should be chosen. Let the payoffs be
defined by Φ(j; p) = pj for j = 1, . . . , k, i.e. if I vote for party number j



Large games with small players 85

then my payoff is the fraction of votes collected by this party (the rule is
cynical or indifferent: I do not care which particular party to support but
I do care to be with one gaining the largest fraction of votes). It is easy
to check (e.g. by computing the zeros of the measure of disequilibration
Θ(p) := maxi pi − (p2

1 + p2
2 + . . .+ p2

k)) that a distribution p is equilibrated
if and only if there is an integer 1 ≤ k0 ≤ k such that pj = k−1

0 for exactly
k0 indices j and otherwise pj = 0.

4. Relations to n-matrix games. The idea of interpreting the payoffs
associated with playing a mixed strategy in an n-matrix game in terms of
an average payoff while playing the game many times and using the pure
strategies with frequencies close to probabilities assigned by this mixture,
is nearly as old as the concept of mixed strategy itself. In many models,
especially those which concern the adaptation behavior or learning process
(see e.g. Malawski [1989]), there even appears a large population of players
playing the same game and hence provoking the other players’ reaction. This
notion of “large” has been formalized in this context in various ways, often
also involving the presence of a continuum of players.

However, in many contexts (cf. Example 3.4 or the model in Section 7)
there is no necessity to assume the affine dependence of the payoffs on fre-
quencies of the use of pure strategies by other players, as is usually done in
the case of n-matrix games.

In the present section we shall formally represent an n-matrix game as
an LSF-game and show that the Nash equilibria of the former exactly cor-
respond to the equilibrated distributions of the latter.

The usual n-matrix game A is specified by a system of n positive integers
k1, . . . , kn, ki being the number of the ith player’s pure strategies and by a
system of payoff functions Ai : V 1 × . . . × V n → R, where V i denotes the
set {1, . . . , ki}. These functions are usually identified with n-dimensional
k1 × . . .× kn-matrices.

The payoff of player i while players 1, . . . , n (including himself) use their
respective mixed strategies p1, . . . ,pn is then, as usual, the number

Ãi(p1, . . . ,pn) :=
∑

j1∈V 1,...,jn∈V n
p1
j1 . . . p

n
jnA

i(j1, . . . , jn).

The corresponding LSF-game γ(A), which may be called a standard exten-
sion of A, is determined by the system of integers n, k1, . . . , kn and the
functions

Φi(j; p1, . . . ,pn) := Ãi(p1, . . . ,pi−1, ej(k
i),pi+1, . . . ,pn).(3)

The LSF-game γ(A) can be identified with the initial n-matrix game A,
since it includes complete information necessary to identify A itself: the
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n-matrix game A whose extension is the given LSF-game γ(A) (with payoff
functions Φi) is immediately found to be

Ai(j1, . . . , jn) := Φi(ji; ej
1(k1), . . . , ej

i−1(ki−1),pi, ej
i+1(ki+1), . . . , ej

n(kn)),

j = 1, . . . , n, ji ∈ V i; pi is arbitrary. In this sense LSF-games can be re-
garded as generalizing the concept of n-matrix games.

So our next objective is to determine which LSF-games are standard
extensions of some n-matrix games.

4.1. Theorem. An LSF-game γ with n types of players is a standard
extension of an n-matrix game if and only if it is affine and , for i = 1, . . . , n
and j = 1, 2, . . . , ki, the function Φi(j; p1, . . . ,pi, . . . ,pn) is actually inde-
pendent of pi.

Proof. This is standard; we skip the details.

Finally, we should compare the equilibrated distributions in an LSF-game
with the Nash equilibria in the corresponding n-matrix game.

As usual, a system (p1, . . . ,pn) of strategies is called a Nash equilibrium
for an n-matrix game A whenever no player i has a strategy p̃i such that

Ai(p1, . . . ,pi−1, p̃i,pi+1, . . . ,pn) > Ai(p1, . . . ,pn).

4.2. Theorem. A vector p is an equilibrium for the standard extension
γ(A) of an n-matrix game A if and only if it is a Nash equilibrium for A.

Proof. This follows easily from Lemma 4.3 below, which is a sort of
“common knowledge”, but it is also easily verifiable.

4.3. Lemma. A vector p = (p1, . . . ,pn) is a Nash equilibrium for an
n-matrix game A if and only if for each player i and each of his pure strate-
gies j,

Ãi(p1, . . . ,pi−1, ej(k
i),pi+1, . . . ,pn) ≤ Ãi(p1, . . . ,pn)

and

Ãi(p1, . . . ,pi−1, ej(k
i),pi+1, . . . ,pn) = Ãi(p1, . . . ,pn) whenever pij 6= 0.

We should warn of possible misunderstandings: the ordinary definition
of Nash equilibria for an n-matrix game might suggest its extension to
LSF-games in the following manner: a distribution p = (p1, . . . ,pn) is in
some sense equilibrated (e.g. stable against reaction of players of a sin-
gle type) whenever there is no type i and no distribution p̃i such that
averp̃i Φ[p1, . . . ,pi−1, p̃i,pi+1, . . . ,pn] > averpi Φ[p]. This definition yields
an equilibrium concept entirely different from that of the present paper,
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although the two coincide for LSF-games which are standard extensions
of n-matrix games (for continuous LSF-games every distribution with the
above property is an equilibrium).

5. Relations to evolutionary game-theoretic models. Situations
involving a large number of identically characterized players are often mod-
eled, in the evolutionary context, after Maynard Smith [1982], as two-person
symmetric games; models involving two types of individuals were first con-
sidered by Taylor [1979], Schuster et al . [1983] and systematically studied
by Cressman [1995]; cf. also Ritzberger and Weibull [1995] for the case of n
types.

An alternative approach can be offered in the scope of LSF-games, allow-
ing for nonlinear payoffs but also for a uniform treatment of the behavior
of single- and multi-population (n) cases (the latter is often modelled as an
n-person, not (n + 1)-person or 2n-person game, which is an unnecessary
conceptual differentiation, see e.g. Weibull [1995], Chapters 2–5). We give
below a definition of evolutionary stable distributions for an LSF-game and
we compare it with the standard one used for symmetric bimatrix games.
We define the concept in the general case of n types of players, but we com-
pare it with the standard one only in the case of one type (although it also
extends an analogous definition for a four-matrix model of two populations
as analysed by Cressman [1995]).

This section is addressed to the readers who may expect some relations
between LSF-games and familiar concepts in evolutionary game theory; we
answer only the most basic question concerning evolutionary stable strate-
gies (ESS) but we postpone a more detailed discussion.

A bimatrix game A = (A1, A2), with the same set of pure strategies
V = {1, . . . , k} for both players, is symmetric whenever A1(j, j′) = A2(j′, j)
for any j, j′ in V (so A2 is actually redundant in notation for symmetric
games). A vector p ∈ ∆k is an evolutionary stable strategy (ESS) for A
if it is a Nash equilibrium for A and for every q ∈ ∆k different from p,
Ã1(q,p) = Ã1(p,p) implies Ã1(q,q) < Ã1(p,q) (we use the notation of the
previous section).

An LSF-game γ∗(A) associated with A (not to be confused with the
standard extension γ(A)) as defined in Section 4!) is determined by the
integer k and a function Ψ (the superscript 1 indicating the type is skipped)
defined by

Ψ(j; p) := Ã1(ej(k),p).

Clearly, γ∗(A) is affine.
An equilibrium p = (p1, . . . ,pn) for an LSF-game γ will be called evo-

lutionary stable whenever, for every distribution q = (q1, . . . ,qn) such that
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supp(qi) ⊆ supp(pi) for all i = 1, . . . , n, we have averqi Ψ
i[q] < averpi Ψ

i[q]
for some i (see Section 2 for notation).

The definition above may be meaningfully modified in various ways by
replacing some “aver” symbols by “ess sup” or “ess inf” and differentiating
the quantifiers involving i.

5.1. Theorem. Let γ∗(A) be the LSF-game associated with a bimatrix
game A = (A1, A2) with k pure strategies of each player and let p be a
distribution for γ∗(A). Then p is an ESS for A if and only if it is an
evolutionary stable distribution for γ∗(A).

Proof. Routine.

6. Relations to games with a continuum of players. We have
already noted the interpretation of LSF-games as involving an infinite pop-
ulation of players. This interpretation can be more formally justified by
relating LSF-games to some games with a continuum of players involving
finitely many types and having a finite number of available strategies, namely
those in which every player’s payoff depends only on his own strategy and
a distribution of the other players’ choice of strategies. A comparison of
this kind is offered in this section.

A rigorous formal definition of noncooperative games with a continuum
of players, also often referred to as games with a measure space of players,
was given by Schmeidler [1973]. This concept was then developed by Khan
[1985, 1989], Balder [1990, 1995], Rath [1992], Fl̊am and Wieczorek [1996],
Khan and Rustichini [1991, 1993] and others. The anonymous situations
have been considered by Mas-Colell [1984], Rath [1992], Balder [1990] and
others, the idea going back to Hart, Hildenbrand and Kohlberg [1974]. An
in-depth study of relations of the general case to the anonymous case was
given by Rath [1995]. We stress that the essential difference between LSF-
games and similar anonymous games is that the former do not involve any
a priori distribution of the players of various types.

Theorem 2.1 in this paper can also be derived, with some auxiliary con-
structions, from quite general results of Schmeidler [1973] and Rath [1992]
or even Mas-Colell [1984]; however, the proof given in Section 2 does not
involve any elements unnecessary in the present context and it also directly
suggests computational procedures to get an equilibrated distribution.

A game with a continuum of players or, more properly, a game with a
measure space of players, is given by a specification of the players, usually
identified with elements of a normed measure space (T, T , µ), the players’
nonempty strategy sets St, t ∈ T , assumed to be all included in some set S
(usually for technical reasons equipped with a σ-field Σ) and the players’
payoff functions. To define the latter, we need the notion of a strategy profile:
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it is a measurable function s : T → S such that s(t) ∈ St for all t ∈ T . The
payoff function of player t, ut(σt, s), depends on the player’s own choice of
strategy σt ∈ St and the strategy profile s. We assume that ut(σt, s) =
ut(σt, s′) whenever the profiles s and s′ are measure equivalent. Hence, a
game with a measure space of players is identified with a system

Γ = ((T, T , µ), (St | t ∈ T ), (S,Σ), (ut | t ∈ T )).

Measurable sets of players of measure zero are referred to as negligible.
A strategy profile s is said to form a Cournot–Nash equilibrium if the set of
players t who can find a strategy σt ∈ St such that ut(σt, s) > ut(s(t), s) is
negligible.

We say that players are of the same type whenever they have the same
strategy sets and payoff functions.

6.1. Theorem (equal treatment). At a Cournot–Nash equilibrium the
payoff of almost all players of the same type is equal (even though they may
use different strategies).

Proof. To the contrary, suppose that, for a Cournot–Nash equilibrium
s and a constant C, ut(s(t), s) > C for all players t in a nonempty set B
of players while ut(s(t), s) ≤ C for all players t in a nonnegligible set B ′.
Then the members of B′ could improve their payoffs just by switching their
strategies to s(t0), where t0 is any element of B.

Suppose now that in a game Γ there are, possibly except for a negligi-
ble set of players, only finitely many types of players endowed with finite
strategy sets.

For such a game Γ , we label the types of players by 1, . . . , n and denote by
T i the set of all players of type i (we assume that these sets are measurable
and µ(T i) > 0). Let 1, . . . , ki label elements in the strategy set Si of players
of type i. Neglecting the players in a negligible set we may then assume that
S is finite (with Σ being the field of all subsets). For any strategy profile s,
any type i and any j ∈ Si, we denote by

κs(i, j) = µ({t ∈ T i | s(t) = j})/µ(T i)

the frequency of players of type i who use strategy j at profile s. The function
κs will also be referred to as the distribution of s. We also set

Ks(i) := (κs(i, 1), . . . , κs(i, ki)).

We shall say that a game with a measure space of players is of finite
type whenever there are finitely many types of players, endowed with finite
strategy sets and, for every player t of type i, his payoff function has the
form

ut(σt, s) := Φi(σt;Ks(1), . . . ,Ks(n)),
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i.e. every player’s payoff only depends on his own choice of action and the
distribution of the other players’ actions.

In that case we define an LSF-game γ corresponding to Γ as

γ := (n; k1, . . . , kn;Φ1, . . . , Φn),

where all numbers and functions above are those already considered for Γ .

6.2. Theorem. Let an LSF-game γ correspond to a game Γ with a
measure space of players, of finite type, and let s be any strategy pro-
file for Γ . Then s is a Cournot–Nash equilibrium for Γ if and only if
Ks := (Ks(1), . . . ,Ks(n)) is an equilibrium distribution for γ.

Proof. In view of Theorem 6.1, this a standard verification.

Conversely, for every LSF-game γ, one can easily find a game Γ with a
measure space of players, of finite type, to which γ corresponds. Suppose that
γ = (n; k1, . . . , kn;Φ1, . . . , Φn). Then one of the simplest instances of such
a game Γ = ((T, T , µ), (St | t ∈ T ), (S,Σ), (ut | t ∈ T )) is constructed as
follows: we let (T, T , µ) be the interval [0, 1) with Lebesgue measurable sub-
sets and Lebesgue measure; St = {1, . . . , ki} whenever t ∈ [(i− 1)/n, i/n);
S = {1, . . . ,maxi ki} and Σ consists of all subsets of S; finally, we define ut

for each player t in [(i− 1)/n, i/n) by letting

ut(σt, s) := Φi(σt;Ks(1), . . . ,Ks(n)).

7. An application: a household economy with many agents and
decentralized market mechanism. As an example of application, we
shall consider an economy in which there are infinitely many agents, classi-
fied into n types. For each type i, a positive number qi evaluates the volume
or measure of the set of all agents of type i (for convenience it may be as-
sumed that

∑n
i=1 q

i = 1). Each agent, of any type, has a choice between k
kinds of activity. Undertaking the jth activity by a type i agent results in
producing rij units of the jth commodity, and gives the agent an income of
I = rijπj, where πj is the current price of the jth commodity. The nonneg-
ative number rij is a coefficient of efficiency ; we also set, for each type i,
ri = maxj rij . The consumption of an agent of type i is determined by means
of a demand function di = di(I, π), where I denotes the individual income
while π = (π1, . . . , πk) is the system of prevailing prices. We assume that
di : [0, ri]×∆k → Rk+ and, for all values of the arguments, 〈di(I, π);π〉 ≤ I
(prices are assumed to be normalized and hence the individual income of an
agent of type i never exceeds ri).

Hence, the full characteristic of the type of an agent is given by a vector
ri = (ri1, . . . , r

i
k) of nonnegative numbers and the demand function di.
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The description of an economy E is complete with characteristics of types
and a vector q = (q1, . . . , qn) of volumes of the respective types.

Suppose that the distribution of actions of agents of type i is pi =
(pi1, . . . , p

i
k) ∈ ∆k. Then the aggregated demand is given by

d(p1, . . . ,pn;π) :=
n∑

i=1

qi
k∑

j=1

di(rijπj, π) · pij ,

while the aggregated supply is

s(p1, . . . ,pn) :=
( n∑

i=1

qiri1p
i
1, . . . ,

n∑

i=1

qirikp
i
k

)
.

The competitive equilibrium is defined as an (n+1)-tuple (p1, . . . ,pn;π),
of distributions of actions of respective types of agents and a price system,
satisfying the physical balance (coordinatewise) inequality

d(p1, . . . ,pn;π) ≤ s(p1, . . . ,pn)

and such that (almost) all agents maximize their payoffs, this meaning that,
for each type i = 1, . . . , n, all payoffs rijπj are equal to some Ci (independent
of j) whenever pij 6= 0, and they do not exceed C i otherwise.

Even a special case of the model involving just one type of agent and
characterized by an efficiency vector (1, 1, . . . , 1) exhibits some interest and it
can be interpreted as a simple problem of differentiation of social activities in
a uniform society. The more realistic case of many types of agents and more
complex structure of coefficients of efficiency corresponds to the situation
where certain individuals are more capable to fulfill a job than others and
some individuals may simply occur more efficient than others. The total
output of this “household” production is somehow distributed among the
members of the society. We are interested in determining how a socially
stable distribution of activities can be implemented by means of a market
mechanism.

To prove the existence of a competitive equilibrium for the economy,
we construct an auxiliary LSF-game, with n + 1 types of players, each of
whom has k available actions. A generic element of (∆k)n+1 is denoted by
(p1, . . . ,pn;π). The functions Φi composing the game, given by

Φi(j; p1, . . . ,pn;π) := rijπj for i = 1, . . . , n and j = 1, . . . , k,

Φn+1(j; p1, . . . ,pn;π) := dj(p1, . . . ,pn;π)− sj(p1, . . . ,pn)

for j = 1, . . . , k,

are all defined on the product of {1, . . . , k} and n+1 copies of the simplex∆k.
Above, dj denotes the jth coordinate of the vector d, and similarly for sj .

So every agent-producer is interested in maximizing his income and there are
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also infinitely many small “market ghosts” or “invisible hands” (invisible,
because they have the size of a point) with one objective: acting infinitesi-
mally, indicate and influence spots of excessive demand.

We have the following theorem:

7.1. Theorem. Let E be an economy with n types of agents.

(a) The equilibria for the auxiliary game are the same as the competitive
equilibria for E.

(b) If all demand functions di are continuous then the auxiliary game
has an equilibrium; hence there exists a competitive equilibrium for E.

(c) (Walras Law) If all demand functions di are continuous and satisfy
the condition

di(I, π) · π = I for all I and π in the domain of di,(4)

then, at any competitive equilibrium (p1, . . . ,pn;π), for all j = 1, . . . , k,

dj(p1, . . . ,pn;π) < sj(p1, . . . ,pn) implies πj = 0.

(d) If all demand functions di are continuous and satisfy (4) while all
coefficients of efficiency rij are positive, then, at any competitive equilibrium
(p1, . . . ,pn;π),

dj(p1, . . . ,pn;π) = sj(p1, . . . ,pn).

If πj = 0 for some j, then sj(p1, . . . ,pn) = 0.

Proof. (a) By the hypothesis we have, for any equilibrium of the auxiliary
game, any i = 1, . . . , n and any j = 1, . . . , k,

〈di(rijπj, π);π〉 ≤ rijπj
and hence

(5) dj(p1, . . . ,pn;π) =
n∑

i=1

qi
k∑

j=1

〈di(rijπj , π);π〉 · pij

≤
n∑

i=1

qi
k∑

j=1

rijπj · pij =
( n∑

i=1

qiri · pi
)
≤ sj(p1, . . . ,pn).

By the definition of equilibria, for all j = 1, . . . , k with πj 6= 0,
dj(p1, . . . ,pn;π)− sj(p1, . . . ,pn) is constant and equal to some C. By (5),
C cannot be positive, hence dj(p;π) ≤ sj(p). If πj = 0, then dj(p;π)−sj(p)
does not exceed C either, hence also in this case dj(p;π) ≤ sj(p).

(b) An equilibrium for the auxiliary game exists by Theorem 2.1; then
we use (a).

(c) Notice that under (4), the inequality (5) becomes an equality.
(d) Notice that πj = 0 implies that (almost) no agent will decide to

produce the jth commodity.
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The model describes a simple economy in which only labor is used as
input while the capital and primary resources are not involved in a direct
manner, although their indirect engagement can be captured by an appro-
priate description of the types of agents. It can be understood that agents
with higher production capacity have an opportunity to invest some capital
or use some resources unavailable to agents who are less efficient. A di-
versification in individual efficiency in various types of activity may also
correspond to personal skills, education, etc. In some cases, and this may be
typical, certain types i may be unable to undertake some types j of activity,
in which case the corresponding coefficient of efficiency rij is zero.

The model includes some elements already existing in many models aris-
ing from the Arrow–Debreu model [1954] (as well as in their original model)
and in other works involving a continuum of agents, like those of Aumann
[1964], [1966] and Vind [1964] (cf. also a direct application of anonymous
games to model competitive markets by Green [1984] or a paper of Garcia-
Cutrin and Hervés-Beloso [1993], including a finitary approach to economies
with infinitely many agents, entirely different from ours). However, unlike
most models dealing with similar questions, we have not introduced a single
entity aimed to reflect the influence of market clearing powers, but rather an
infinity of small subjects who eventually elaborate a market clearing price
system, but this is done in a decentralized manner as a result of actions
performed independently and often with different targets in their range of
vision. Efficiency in the presented model was studied by Roman (Ekes) and
Wieczorek [1999], core and quasi-core by Ekes [2003], and general aspects
by Wieczorek [2002].

While looking at some inequalities in the proof of Theorem 7.1, we find
two sorts of units used to measure quantities of each commodity: “small”
units which measure individual production or consumption, and “large” ones
used to measure the aggregated supply and demand, so the sense of the ex-
pressions like “dij(I, π) ·πj” and “dj(p1, . . . ,pn;π) ·πj” is entirely different.
The price of an “infinitesimal” unit of quantity intuitively differs from the
price of an “integrated” unit but notice that in our considerations it is only
the proportion of prices of different goods that matters and these propor-
tions remain unchanged when passing from “infinitesimal” to “integrated”
quantities. An extensive discussion of the conceptual meaning of individual
behavior in models with a continuum of agents accompanied the introduc-
tion of these models in the sixties and there is no reason to repeat more
arguments here.

Things do not change much in the model presented in this section if we
assume that the potential activities of the agents are not described by their
production capacities rij to produce just one type j of commodity, but they
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are rather described by a finite number, ti for the type i, of possible output
vectors: ri1 = (ri11 , . . . , r

i1
k ), . . . , (rit

i

1 , . . . , rit
i

k ).
Continuity of an individual demand function di on the boundary of the

price simplex is natural in real life terms and equally hard to capture by
means of analytic formulas; the problem is usually neglected by most of
the authors, including the pioneers of the subject, Scarf and Hansen [1973],
who wrote on p. 20: We shall make this assumption in our discussion of
computational procedures even though many of our numerical examples will
employ utility functions . . . for which the assumption is not valid. The reader
should have no difficulty in adjusting to this slight ambiguity . A way to avoid
this ambiguity is to use appropriate demand functions instead of utility
functions generating them (see Ekes and Wieczorek [2003]).
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