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RANDOM SPLIT OF THE INTERVAL [0, 1]

Abstract. We define two splitting procedures of the interval [0, 1], one
using uniformly distributed points on the chosen piece and the other splitting
a piece in half. We also define two procedures for choosing the piece to be
split; one chooses a piece with a probability proportional to its length and the
other chooses each piece with equal probability. We analyse the probability
distribution of the lengths of the pieces arising from these procedures.

1. Introduction. In his collection of problems [3] Hugo Steinhaus for-
mulates the following problem regarding the population growth of a rod-
shaped bacterium. Initially, one part breaks off from the original bacillus
and becomes an independent bacillus. Then, at each successive generation
one part breaks off from the longest bacillus. The length of this offspring
bacillus is equal to the length of the shortest bacillus at the moment. Stein-
haus states that if the initial split is into incommensurable pieces, then at
most three different bacillus lengths exist in any given generation and the
fractions of small, medium sized and large individuals oscillate over time.

The question arises as to how Steinhaus’s principle of growth may be
modified by adding a random component, so that nevertheless the number
of different lengths is “almost finite” (countable) and the probability distri-
butions of bacillus lengths, after a suitable standardisation, oscillates over
time.

Formally, assume that the interval [0, 1] is split into two pieces by using
some procedure. Next, a piece is chosen and split into two parts using the
same procedure. These actions are repeated ad infinitum.

We define two splitting procedures, one using uniformly distributed
points on the chosen piece (called uniform split) and the other splitting
a piece in half. We also define two procedures for choosing the piece to be
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split; one chooses a piece with a probability proportional to its length (called
proportional choice) and the other chooses each piece with equal probabil-
ity (called random choice). We analyse the probability distribution of the
lengths of the pieces arising from these procedures.

2. Notation. Let n denote the index of a split, i.e. the number of
points chosen as split points so far. The first point is either selected uni-
formly from the interval [0, 1] or can be taken to be 1/2. We denote the
vector of the lengths of the consecutive pieces after n splits by Dn =
(D1,n,D2,n, . . . ,Dn+1,n). For simplicity we use the notation Dn = D1,n.
Also, we set Zn = − log2Dn and Tn = D−1

n , n ≥ 1.
Let R denote random variables uniformly distributed on [0, 1]. We set

En = − log2Rn, and d= denotes equality in distribution. In, n ≥ 0, denotes
the binary random variable P (In = 1) = (n+1)−1, P (In = 0) = 1−P (In = 1).

3. Results. Among the four procedures of choosing and splitting con-
sidered in this paper the most interesting case is proportional choice together
with splitting in half. It answers our generalisation of Steinhaus’s problem.
For completeness, we also analyze the remaining cases. Except for one case,
the random variables Dj,n, 1 ≤ j ≤ n + 1, are not identically distributed.
We concentrate on D1,n, but in the last subsection we consider the distribu-
tion of a mixture of coordinates of the vector Dn defined in two ways. The
assumptions used are stated in the titles of the subsections.

3.1. Random choice, uniform split

Theorem 1. Under Assumptions 3.1 the random variable Zn is asymp-
totically normal with expected value log2 n and variance 2(log 2)−1 log2 n.

Proof. Let the event In = 1 denote that the first piece of length Dn is to
be partitioned and the random variable Rn be uniformly distributed on [0, 1]
split into two pieces, with the length of the resulting first piece being DnRn.
Let R0, Rn, In, n ≥ 1, be mutually independent. The following recursive
formulas hold:

D1 = R0, Dn+1 =
{
Dn if In = 0,

DnRn if In = 1, n ≥ 1.

Hence we have

D1 = R0, Z1 = E0,

Dn+1 = DnR
In
n , Zn+1 = Zn + InEn, n ≥ 1.

Therefore,



Random split of the interval [0, 1] 99

Dn+1 =
n∏

j=0

R
Ij
j , Zn+1 =

n∑

j=0

IjEj , n ≥ 1,

where I0 = 1 with probability 1.
Let c = (log 2)−1. Since E(Ij) = (j+ 1)−1, D2(Ij) = j(j+ 1)−2 for j ≥ 0,

it follows that

E((IjEj)r) =
crr!
j + 1

, r ≥ 1,

E(Zn+1) =
n∑

j=0

E(IjEj) =
n∑

j=0

c

j + 1
∼ log2 n,

σ2
n+1 = D2(Zn+1) =

n∑

j=0

D2(IjEj) =
n∑

j=0

(E((IjEj)2)− (E(Ij)E(Ej))2)

= c2
n∑

j=0

(
2

j + 1
− 1

(j + 1)2

)
∼ 2c log2 n,

E
(∣∣∣∣IjEj −

1
j + 1

∣∣∣∣
3)

=
j

(j + 1)4 +
1

j + 1
E
(∣∣∣∣Ej −

1
j + 1

∣∣∣∣
3)

≤ j

(j + 1)4 +
1

j+1

(
6c3 +

6c2

j+1
+

3c
(j+1)2 +

1
(j+1)3

)
,

%3
n+1 =

n∑

j=0

E
(∣∣∣∣IjEj −

1
j + 1

∣∣∣∣
3)
≤ 19 log2 n for sufficiently large n.

Since 3
√
%3
n/
√
σ2
n → 0, Theorem 1 follows from Lyapunov’s Theorem ([1,

p. 211]).

3.2. Proportional choice, uniform split. If [0, 1] includes n split points,
then the random variable Rn uniformly distributed on [0, 1] determines a
piece to be divided and simultaneously designates the break off point chosen
uniformly along the piece. In this case the Dj,n, 1 ≤ j ≤ n+1, are identically
distributed.

Theorem 2. Under Assumptions 3.2, asymptotically the random vari-
able Zn − log2 n has a Gompertz distribution

lim
n→∞

P (Zn − log2 n ≤ x) = exp(− exp(−(log 2)x), −∞ < x <∞.
Proof. If Rn falls into [0,Dn], then it is the first piece to be split, and the

location of Rn splits it into pieces. Let Rn, n ≥ 0, be mutually independent.
The following recursive formulas hold:

D1 = R0, Dn+1
d=
{
Dn if Rn > Dn,

Rn if Rn ≤ Dn, n ≥ 1.
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This may be rewritten as D1 = R0, Dn+1
d= min(Dn, Rn), n ≥ 1. Hence,

Dn+1
d= min(R0, . . . , Rn) and the limiting theorem for minimum order statis-

tics, limn→∞ P (nDn ≤ x) = 1−e−x, x > 0, holds (see [2, p. 22]). Theorem 2
is a disguised version of that theorem.

3.3. Random choice, splitting in half

Theorem 3. Under Assumptions 3.3 the random variable Zn is asymp-
totically normal with expected value logn and variance log n.

Proof. Suppose that the event In = 1 denotes that Dn is to be split. Let
In, n ≥ 1, be mutually independent. Then the following recursive formulas
hold:

D1 = 2−1, Dn+1 = 2−InDn, n ≥ 1.(1)

Hence, we have

Dn+1 = 2−(I0+...+In), Zn+1 =
n∑

j=0

Ij , n ≥ 1.

where I0 = 1 with probability 1.
We have

E(Zn+1) =
n∑

j=0

E(Ij) =
n∑

j=0

1
j + 1

∼ logn,

σ2
n+1 = D2(Zn+1) =

n∑

j=0

D2(Ij) =
n∑

j=0

(
1

j + 1
− 1

(j + 1)2

)
∼ log n,

E
(∣∣∣∣Ij −

1
j + 1

∣∣∣∣
3)

=
j

(j + 1)4 +
j3

(j + 1)4 ,

%3
n+1 =

n∑

j=0

E
(∣∣∣∣Ij −

1
j + 1

∣∣∣∣
3)
∼ logn.

Because 3
√
%3
n/
√
σ2
n → 0, Theorem 3 follows from Lyapunov’s Theorem.

Using (1) we obtain:

Proposition 4. Under Assumptions 3.3 the probabilities pn(j) =
P (Dn = 2−j) = P (Zn = j), 1 ≤ j ≤ n, n ≥ 1, satisfy the recursive formulas

p1(1) = 1, pn+1(j) = pn(j)
n

n+ 1
+ pn(j − 1)

1
n+ 1

.(2)

The probability distribution Z15 = Z1,15 is presented in Table 2.

3.4. Proportional choice, splitting in half. The next two facts give the
recursive formulas for the probability distributions of Dn and Zn and the
relations between the moments.
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Proposition 5. Under Assumptions 3.4 the random variables Dn, Zn
and probability distributions pn(j) = P (Dn = 2−j) = P (Zn = j), 1 ≤ j ≤ n,
n ≥ 1, satisfy the following recursive formulas:

(3)

D1 =
1
2
, Dn+1 =

{
Dn if Rn > Dn,
1
2Dn if Rn ≤ Dn,

Z1 = 1, Zn+1 =
{
Zn if Zn < En,

1 + Zn if Zn ≥ En,

p1(1) = 1, pn+1(j) = pn(j)
(

1− 1
2j

)
+ pn(j − 1)

1
2j−1 .

Proposition 6. Under Assumptions 3.4 the moments of Dn, Zn, Tn,
n ≥ 1, satisfy the following recursive formulas:

(4) E(Dr
1) = 2−r, E(Dr

n+1) = E(Dr
n) + (2−r − 1)E(Dr+1

n ),

E(Z1) = 1, E(Zn+1) = E(Zn) + E(Dn),

E(T r1 ) = 2r, E(T rn+1) = E(T rn) + (2r − 1)E(T r−1
n ), r ≥ 1.

Corollary 1. Under Assumptions 3.4 the moments E(Dr
n), n ≥ 1,

r ≥ 1, may be calculated from (4), and the following relations are satisfied :

E(D1) = 1
2 , E(Dn+1) = E(Dn)− 1

2E(D2
n),

E(Dn+1) =
1
2

(
1−

n∑

j=1

E(D2
j )
)
,

E(Zn) = 1 +
n−1∑

i=1

E(Di),

E(Tn) = n+ 1, E(T 2
n) = 3

2n(n+ 1) + 1, Var(Tn) = 1
2n(n− 1),

E(T 3
n+1) = 7

2n(n+ 1)(n+ 2) + 7(n+ 1) + 1,

E(T rn+1) = 1 + (2r − 1)
n∑

i=0

E(T r−1
i ), where E(T r0 ) = 1,

E(T rn) = mrn
r + o(nr), n→∞, where mr =

r∏

j=1

(2j − 1)j−1, r ≥ 1.

Since y = x−r, r ≥ 1, is convex for x ≥ 0, from the Jensen inequality we
obtain the following result

Proposition 7. Under Assumptions 3.4 the moments of Dn and Tn,
n ≥ 1, satisfy

E(Dr
n) ≥ (E(T rn))−1, r ≥ 1.(5)
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Proposition 8. Under Assumptions 3.4 the moments of Zn satisfy

(6)
E(Z2

n) ≤ log2
2(n+ 2),

E((cr + Zn)r) ≤ (cr + log2(n+ 1))r, r ≥ 1,

where cr = (r − 1) log2 e− 1.

Proof. Note that y = log2
2 x is concave for x ≥ e. Let T ∗n = max(e, Tn)

and Z∗n = max(log2 e, Zn). Hence, E(T ∗n) = E(Tn) + (e − 2)pn(1), where
pn(1) = P (Tn = 2), E(Z∗n) = E(Zn) + (log2 e − 1)pn(1). Also Z2

n < (Z∗n)2.
From the Jensen inequality we obtain

E(Z2
n) < E((Z∗n)2) = E(log2

2 T
∗
n) ≤ log2

2(E(T ∗n)) ≤ log2
2(n+ 2).

Note that y = logr2 x is concave for x ≥ er−1. Let dr = 1
2e
r−1 and cr =

log2 dr. Because Tn ≥ 2, it follows from the Jensen inequality that

E((cr + Zn)r) = E(logr2(drTn)) ≤ logr2(drE(Tn)) = (cr + log2(n+ 1))r.

Corollary 2. Under Assumptions 3.4 the moments of Zn, n≥1, satisfy

E(Zn) ≤ log2(n+ 1),

E(Z2
n) ≤ 2(log2 e− 1)(log2(n+ 1)− E(Zn)) + log2

2(n+ 1).

We have m1 = 1, m2 = 1.5, m3 = 3.5, m4 = 13.125, m5 = 81.4375, and
so on. The well known (see [1, p. 174]) sufficient condition for expressing
a probability distribution function by its moments is not satisfied, since the
series

∑∞
r=1mru

r(r!)−1 is not convergent for any u > 0.

Let Un = (n+ 1)−1Tn. Then E(U rn) ∼ mr as n→∞, for all r ≥ 1. From
Corollary 2 we obtain the following result:

Theorem 9. Under Assumptions 3.4 the support of the random variable
Zn is {1, 2, . . . , n} and Zn has the following representation:

Zn − log2(n+ 1) d= log2 Un.

In particular E(Un) = 1, Var(Un) ∼ 1
2 as n→∞.

Fig. 1 represents the graph of p̂n = max1≤j≤npn(j) for n ≤ 2000. It
suggests that Zn does not converge in distribution as n → ∞: the fluctu-
ations do not disappear. Selected distributions are presented in Table 1. If
n+ 1 = 2m, m ≥ 1, then the support of Zn−m is a set of integers, and this
subsequence is convergent.
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Fig. 1. The probabilities p̂n = max1≤j≤n pn(j) in the distribution of Dn

Table 1. Selected distributions

Probabilities P (Zn = j)

j Z326 Z458 Z1024 Z1303 Z1855 Z2048

6 0.020 0.003

7 0.226 0.090 0.001

8 0.457 0.389 0.060 0.021 0.003 0.001

9 0.249 0.388 0.353 0.228 0.090 0.060

10 0.045 0.118 0.415 0.455 0.388 0.343

11 0.003 0.013 0.145 0.248 0.387 0.421

12 0.001 0.018 0.045 0.118 0.153

13 0.001 0.003 0.013 0.019

14 0.001 0.001

E(Zn) 8.081 8.570 9.728 10.076 10.17 10.727

D(Zn) 0.870 0.871 0.872 0.873 0.873 0.873

3.5. The distribution of a piece chosen from the collection. Consider the
sequence Dn = (D1,n, . . . ,Dn+1,n), n ≥ 1, under Assumptions 3.3 or 3.4.
In the case of splitting in half, the components of Dn are not identically
distributed. For example, in both cases considered D1,2 takes the values 1/2
and 1/4 with probabilities 1/2 and D2,2 takes the value 1/4 with proba-
bility 1. Therefore, the length of a given piece in the collection, Di,n, de-
pends on the index i. The number of elements in the support of Dn in-
creases rapidly. The lengths of the pieces after the nth split belong to the
set {2−j; 1 ≤ j ≤ n}. Therefore, it is more convenient to analyse the chain
Mn = (M1,n, . . . ,Mn,n), n ≥ 1, defined by counting the number of pieces of
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the same length:

Mj,n =
n+1∑

i=1

1(Di,n = 1/2j), 1 ≤ j ≤ n.(7)

Because (7) is a partition of [0, 1], it follows that Mj,n ≥ 0 for 1 ≤ j ≤ n,
and

n∑

j=1

Mj,n = n+ 1,
n∑

j=1

1
2j
Mj,n = 1.(8)

Let pmn,mn+1 denote the transition probabilities for the vector Mn in-
dexed in an appropriate way. Note that

Mj,n+1|Mn =





Mj,n + 2 with probability Pn,jMj−1,n,

Mj,n − 1 with probability Pn,jMj,n,

Mj,n otherwise,
(9)

where

Pn,j =
{

(n+ 1)−1 under Assumptions 3.3,

2−j under Assumptions 3.4.
Then

pmn,mn+1 =
n+1∑

j=1

pmn,mn+1(j),

pmn,mn+1(j) = P (Mn+1 = (m1, . . . ,mj−1,mj − 1,mj+1 + 2,

mj+2, . . . ,mn+1) |Mn = (m1, . . . ,mn)), 1 ≤ j ≤ n,
where mj ≥ 1, n ≥ 1.

Proposition 10. The chain Mn is Markovian; P (M11 = 2) = 1,

pmn,mn+1(j) =
{
mj,n(n+ 1)−1 under Assumptions 3.3,

mj,n2−j under Assumptions 3.4.

Define the random variables Dn and D̃n, n ≥ 1, by

P

(
Dn =

1
2j

)
=

1
n+ 1

n+1∑

i=1

P

(
Di,n =

1
2j

)
,

P

(
D̃n =

1
2j

)
=

1
2j

n+1∑

i=1

P

(
Di,n =

1
2j

)
, 1 ≤ j ≤ n.

Using (7), we obtain

(10)
P

(
Dn =

1
2j

)
=

1
n+ 1

E(Mj,n),

P

(
D̃n =

1
2j

)
=

1
2j

E(Mj,n), 1 ≤ j ≤ n.
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We interpret the random variable Dn as a randomly chosen component
of Dn chosen uniformly from the set of n + 1 components. We interpret
the random variable D̃n as a randomly chosen component of Dn, with each
component being chosen with a probability proportional to its value. Using
(10), we formulate the following proposition:

Proposition 11. Under Assumptions 3.3 or 3.4 we have

E(Dn) =
1

n+ 1
, E(D2

n) =
1

n+ 1

n+1∑

i=1

E(D2
i,n), E(D̃n) = (n+ 1)E(D2

n).

Theorem 12. Under Assumptions 3.3 we have D̃n
d= D1,n.

Theorem 13. Under Assumptions 3.4 we have D̃n
d= D1,n.

Proof of Theorem 12. Let δ(p) be a binary 0-1 random variable:
P (δ(p) = 1) = E(δ(p)) = p. If Π is a random variable, 0 ≤ Π ≤ 1, then
δ(Π) is a mixed binary random variable and we have

P (δ(Π) = 1) = E(δ(Π)) = E(Π).

From (9) assuming 3.3 we have

Mj,n+1|Mn
d= Mj,n + 2δ1

(
1

n+ 1
Mj−1,n

)
− δ2

(
1

n+ 1
Mj,n

)
,

where δ1, δ2 are binary random variables for which

δ1

(
1

n+ 1
Mj−1,n

)
δ2

(
1

n+ 1
Mj,n

)
= 0.

We have

E(Mj,n+1) = E(Mj,n) +
2

n+ 1
E(Mj−1,n)− 1

n+ 1
E(Mj,n),

and from (10) we obtain

P

(
D̃n+1 =

1
2j

)
=

n

n+ 1
P

(
D̃n =

1
2j

)
+

1
n+ 1

P

(
D̃n =

1
2j−1

)
.

Comparing this equation with (2) completes the proof.

The proof of Theorem 13 is analogous.
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Table 2. The probability distributions of D15 and

D̃15 for Models 3.3 and 3.4

Probabilities P (Zn = j) and P (Z̃n = j)

Model 3.3 Model 3.4

j D15 D̃15
d
= D1,15 D15 D̃15

d
= D1,15

1 0.008 0.067

2 0.054 0.217 0.009 0.035

3 0.150 0.300 0.170 0.340

4 0.238 0.238 0.460 0.460

5 0.244 0.122 0.299 0.150

6 0.173 0.043 0.058 0.015

7 0.082 0.011 0.004

8 0.033 0.002

9 0.009

10 0.002

E 4.762 3.318 4.240 3.769

D 1.557 1.318 0.846 0.801

The increasing number of states causes some obstacle in the numerical
analysis of Mn. Define Zn = − log2Dn and Z̃ = − log2 D̃n. Table 2 gives

the distributions of D15 and D̃15
d= D1,15, their expected values E and

dispersions D.
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