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CHARACTERIZING EXPERIMENTAL DESIGNSBY PROPERTIES OF THESTANDARD QUADRATIC FORMS OF OBSERVATIONS

Abstra
t. For any orthogonal multi-way 
lassi�
ation, the sums ofsquares appearing in the analysis of varian
e may be expressed by the stan-dard quadrati
 forms involving only squares of the marginal and total sumsof observations. In this 
ase the forms are independent and nonnegative def-inite. We 
hara
terize all two-way 
lassi�
ations preserving these propertiesfor some and for all of the standard quadrati
 forms.1. Ba
kground. Consider an experimental design with two-way 
lassi-�
ation of observations. Let yijk be the kth observation in the (i, j)th 
ell,and let
y = (y111, . . . , y11n11

; . . . ; ytv1, . . . , ytvntv)
Tbe the ve
tor 
omposed of the observations. A statisti
al model of y is usuallyderived from the following framework:(1.1) yijk = µ + αi + βj + γij + eijk,

i = 1, . . . , t; j = 1, . . . , v; k = 1, . . . , nij , where µ, αi, βj and γij are deter-ministi
 real values, while eijk is a random quantity representing the exper-imental error. The following assumptions about the error are standard:(a) Vanishing expe
tation, i.e. E(eijk) = 0 for all i, j and k,(b) Homogeneity of varian
es, say var(eijk) = σ2 for all i, j and k,(
) Vanishing 
ovarian
es, i.e. cov(eijk, ei′j′k′) = 0 for (ijk) 6= (i′j′k′).For testing problems an additional assumption about the distribution of theve
tor y is required. Usually it is assumed that eijk is normally distributed.2000 Mathemati
s Subje
t Classi�
ation: Primary 05B06, 62K10; Se
ondary 51E05,15A27.Key words and phrases: 2-way 
lassi�
ation, standard quadrati
 forms, independen
e,nonnegative de�niteness, 
hara
terization of designs.[39℄ 
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40 C. St�pniakConsequently, (1.1) leads to the following model:(1.2) yijk ∼ N (µ + αi + βj + γij , σ
2) and are independent.We mention that the quantities µ, αi, βj and γij are not parametersin the proper sense, be
ause they are not identi�able by distributions. Thestandard likelihood ratio tests for hypotheses 
on
erning α's, β's and γ's arebased on the following quadrati
 forms of y:

SA = min
µ

∑

i,j,k

(yijk − µ)2 − min
µ,αi

∑

i,j,k

(yijk − µ − αi)
2,(1.3)

SB = min
µ

∑

i,j,k

(yijk − µ)2 − min
µ,βj

∑

i,j,k

(yijk − µ − βj)
2,(1.4)

SA,B = min
µ,αi,βj

∑

i,j,k

(yijk − µ − αi − βj)
2(1.5)

− min
µ,αi,βj

,γij

∑

i,j,k

(yijk − µ − αi − βj − γij)
2,

SE = min
µ,αi,βj

,γij

∑

i,j,k

(yijk − µ − αi − βj − γij)
2(1.6)

(
f. S
he�é, 1959, or Lehmann, 1986). These quadrati
s represent the sumsof squares for α, β, intera
tion α × β and error, respe
tively.It will be shown that the sums of squares (1.3), (1.4) and (1.6) redu
e,respe
tively, to the quadrati
 forms
QA(y) =

∑

i

y2

i.

ni.
−

y2

n
,(1.7)

QB(y) =
∑

j

y2

.j

n.j
−

y2

n
,(1.8)

QE(y) =
∑

i,j,k

y2

ijk −
∑

i,j

y2

ij

nij
,(1.9)

where yij =
∑

k yijk, yi. =
∑

j yij , y.j =
∑

i yij and y =
∑

i yi., but 
omput-ing the sum of squares SA,B may not be easy in general. Fortunately, as wewill show in the next se
tions, this 
omputation simpli�es 
onsiderably inthe 
ase of proportional frequen
ies in 
ells, i.e. when(1.10) nij =
ni.n.j

n
for i = 1, . . . , t; j = 1, . . . , v,where ni. =

∑

j nij , n.j =
∑

i nij and n =
∑

i,j nij .The 
ondition (1.10) may be written in the 
on
ise form rank(N) = 1,where N = (nij) is the in
iden
e matrix. It will be shown that in this regular
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ase SA,B may be represented as the quadrati
 form(1.11) QA,B(y) =
∑

i,j

y2

ij

nij
−

∑

i

y2

i.

ni.
−

∑

j

y2

.j

n.j
+

y2

n
.

Of 
ourse the expression (1.11) makes sense for arbitrary N with positiveentries, although it may no longer 
oin
ide with the sum of squares SA,B . Weshall refer to (1.11) as the standard quadrati
 form. The aim of this paperis to 
hara
terize the experimental designs (i.e. matri
es N) for whi
h thequadrati
 form QA,B:(i) 
oin
ides with the 
orresponding sum of squares SA,B ,(ii) is nonnegative de�nite,(iii) is independent of the other quadrati
 forms QA, QB and QE .Throughout this paper we shall assume that the in
iden
e matrix N = (nij)is 
omplete in the sense that(1.12) nij > 0 for all i = 1, . . . , t; j = 1, . . . , v,i.e. all 
ells in the two-way 
lassi�
ation are non-empty.2. Sums of squares in a two-way 
lassi�
ation with proportionalfrequen
ies. Most of the statisti
al literature on this subje
t fo
uses onexperiments with equal frequen
ies (
f. S
he�é, 1959, or Lehmann, 1986), oron general experiments with arbitrary frequen
ies in 
ells (see Searle, 1971).It is understandable that in the latter 
ase the formulae derived are ratherfar from being expli
it. Some more 
omplete results 
on
erning proportionalfrequen
ies 
an be found in Oktaba and Mikos (1970) in the 
ontext of modelswith restraints (weighted and nonweighted). They noted that the two kindsof restraints may lead to di�erent tests. To avoid this disadvantage, we shalluse a 
oordinate-free approa
h (
f. Lehmann, 1986, Se
t. 7) based on theformulae (1.3)�(1.6).Let us rewrite model (1.2) in ve
tor-matrix form(2.1) y ∼ N (µ1n + Aα + Bβ + Cγ, σ2In),where y is the observation n-ve
tor, α = (α1, . . . , αt)
T , β = (β1, . . . , βv)

Tand γ = (γ11, . . . , γtv)
T are ve
tors of parameters, An×t = [a1, . . . ,at] and

Bn×v = [b1, . . . ,bv] are matri
es of zeros and ones satisfying the 
onditions(2.2) t
∑

i=1

ai =

v
∑

j=1

bj = 1n,while(2.3) Cn×tv = [c11, . . . , ctv]



42 C. St�pniakis the matrix with 
olumns cij = ai ∗ bj , i = 1, . . . , t; j = 1, . . . , v, where ∗denotes the Hadamard produ
t of ve
tors (see e.g. St�pniak, 1983).We shall proveTheorem 1. Given a 
omplete in
iden
e matrix N = (nij) let yijk,
i = 1, . . . , t; j = 1, . . . , v; k = 1, . . . , nij , be observations represented by(1.1), SA, SB , SA,B and SE be the sums of squares de�ned by (1.3)�(1.6),and QA, QB, QE and QA,B be the quadrati
 forms of the observations de�nedby (1.7)�(1.9) and (1.11). Then SA = QA, SB = QB and SE = QE , while
SA,B = QA,B providing rank(N) = 1.The proof of this theorem is based on the following lemma:Lemma 1. Let a1, . . . ,at and b1, . . . ,bv be arbitrary n-ve
tors of zerosand ones satisfying the 
onditions (2.2), cij , i = 1, . . . , t; j = 1, . . . , v, beve
tors de�ned by (2.3), N = (nij) be the 
omplete matrix de�ned by nij =
aT

i bj , with marginals ni. and n.j for i = 1, . . . , t; j = 1, . . . , v, and 1n, A,
B and C be the matri
es appearing in (2.1). Then the orthogonal proje
toronto the 
olumn spa
e of [A,B] is given by

P =
t

∑

i=1

1

ni.
aia

T
i +

v
∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
nproviding the 
ondition (1.10) holds.Proof. Let us rewrite P in the form(2.4) P = P1 + P2 + P3,where

P1 =
t

∑

i=1

1

ni.
aia

T
i −

1

n
1n1

T
n ,(2.5)

P2 =
v

∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
n ,(2.6)

P3 =
1

n
1n1

T
n .(2.7)First we will show that(2.8) PiPj =

{

Pi if i = j,

0 otherwise.It is easy to verify that P2

i = Pi for i = 1, 2, 3 and P1P3 = P2P3 = 0.Moreover,
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P1P2 =

( t
∑

i=1

1

ni.
aia

T
i −

1

n
1n1

T
n

)( v
∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
n

)

=
∑

i,j

nij

ni.n.j
aib

T
j −

1

n

∑

i

ai1
T
n −

1

n

∑

j

1nb
T
j +

1

n
1n1

T
n .Thus, by (1.10) and (2.2), we get

P1P2 =
1

n

∑

i

ai

(

∑

j

bT
j − 1T

n

)

−
1

n
1n

(

∑

j

bT
j − 1T

n

)

= 0.In this way we have proved (2.8), whi
h implies that P is idempotent.Now it remains to show that range(P) = range([a1, . . . ,at,b1, . . . ,bv]).Indeed, Px = 0 for any ve
tor x su
h that aT
i x = bT

j x = 0 for all i and j.Moreover, by (2.2), rank([a1, . . . ,at,b1, . . . ,bv]) ≤ t+v−1, while rank(P) =
t + v − 1. This implies the desired 
ondition and 
ompletes the proof of thelemma.Proof of Theorem 1. In ve
tor-matrix notation the sums of squares (1.3)�(1.6) may be expressed as

SA(y) = ‖y − P1ny‖
2 − ‖y − PAy‖2 = yT PAy −

1

n
yT1n1

T
ny = yTP1y,

SB(y) = ‖y − P1ny‖
2 − ‖y − PBy‖2 = yTPBy −

1

n
yT1n1

T
ny = yT P2y,

SA,B(y) = ‖y − Py‖2 − ‖y − PCy‖2 = yTPCy − yTPy,

SE(y) = ‖y − PCy‖2 = yT y − yTPCy,where PM denotes the orthogonal proje
tor onto the 
olumn spa
e of M,
C is de�ned by (2.3), while P, P1 and P2 are de�ned by (2.4)�(2.5) and (2.6).Now the theorem follows from Lemma 1.3. Chara
terizing experimental designs by standard quadrati
forms. Let y = (y111, . . . , y11n11

; . . . ; ytv1, . . . , ytvntv)
T be subje
t to the nor-mal linear model N (µ1n + Aα +Bβ +Cγ, σ2In), and let QA, QB, QE and

QA,B be de�ned by (1.7)�(1.9) and (1.11). We are interested in properties ofthe quadrati
 form QA,B and its relations with the remaining quadrati
s.Theorem 2. The quadrati
 form QA,B is nonnegative de�nite if and onlyif the allo
ation of the observations in 
ells is proportional , i.e. rank(N) = 1.Proof. Assume that nij = ni.n.j/n for all i and j. Then
t

∑

i=1

v
∑

j=1

y2

ij

nij
−

t
∑

i=1

y2

i.

ni.
−

v
∑

j=1

y2

.j

n.j
+

y2

n
=

∑

i,j

nij

(

yij

nij
−

yi.

ni.
−

y.j

n.j
+

y

n

)2

,implying QA,B(y) ≥ 0 for all y.



44 C. St�pniakConversely, assume that QA,B(y) ≥ 0 for all y and set
yij =

{

nij if j = k,0 otherwise,where k is �xed but arbitrary. Then QA,B(y) redu
es to n2

.k/n−
∑

i n
2

.k/ni.,and 
onsequently, it may be presented in the form QA,B(y) = −nVar(X),where X is a random variable taking values xi = nik/ni. with probabilities
pi = ni./n for i = 1, . . . , t. Thus the 
ondition QA,B(y) ≥ 0 for all y implies(3.1) nik = cni., i = 1, . . . , t,for some c. On the other hand, by the de�nition n.k =

∑

i nik we get(3.2) c =
n.k

n
.Combining (3.1) and (3.2) we obtain nik = ni.n.k/n for i = 1, . . . , t. This
ompletes the proof of ne
essity, and hen
e the proof of Theorem 2.Now let us examine 
onditions for independen
e of the quadrati
 forms

QA, QB , QA,B and QE .Theorem 3. Let y = (y111, . . . , y11n11
; . . . ; ytv1, . . . , ytvntv)

T be subje
tto the normal linear model N (µ1n +Aα+Bβ+Cγ, σ2In), and let QA, QB,
QE and QA,B be de�ned by (1.7)�(1.9) and (1.11), respe
tively. Then QEis always independent of the other quadrati
 forms. Moreover the following
onditions are equivalent :(a) rank(N) = 1,(b) QA is independent of QB,(
) QA is independent of QA,B,(d) QB is independent of QA,B.Proof. The �rst assertion follows immediately from the fa
t that in thesimple normal sample the sample mean is independent of the sample vari-an
e.Next, by Craig's theorem (e.g. Mathai and Provost, 1992, p. 209 orHarville and Kempthorne, 1997) two quadrati
 forms yTM1y and yTM2yare independent if and only if M1M2 = 0. Re
all that the matri
es of thequadrati
s QA, QB, and QA,B, may be represented in the form P1,P2 and
P0 − P1 − P2, where P1 and P2 are de�ned by (2.5) and (2.6), while

P0 =
∑

i,j

1

nij
cijc

T
ij −

1

n
1n1

T
n .(a)⇔(b). We observe that

P1P2 =

v
∑

j=1

( t
∑

i=1

nij

ni.n.j
ai −

1

n
1n

)

bT
j ,
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terizing experimental designs 45and, by (2.2),
P1P2 =

v
∑

j=1

t
∑

i=1

(

nij

ni.n.j
−

1

n

)

aib
T
j .Thus we get the equivalen
e of (a) and (b).(a)⇔(
) and (a)⇔(d). Sin
e Pi is idempotent for i = 0, 1, 2, and P0Pi =

Pi for i = 1, 2, we get (P0 −P1 −P2)P1 = P2P1 and (P0 −P1 −P2)P2 =
P1P2. Now the desired results follow from the equivalen
e of (a) and (b).This 
ompletes the proof.A
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