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CzESEAW STEPNIAK (Rzeszow and Lublin)

CHARACTERIZING EXPERIMENTAL DESIGNS
BY PROPERTIES OF THE
STANDARD QUADRATIC FORMS OF OBSERVATIONS

Abstract. For any orthogonal multi-way classification, the sums of
squares appearing in the analysis of variance may be expressed by the stan-
dard quadratic forms involving only squares of the marginal and total sums
of observations. In this case the forms are independent and nonnegative def-
inite. We characterize all two-way classifications preserving these properties
for some and for all of the standard quadratic forms.

1. Background. Consider an experimental design with two-way classi-
fication of observations. Let y;;; be the kth observation in the (,7)th cell,
and let

. . T
y = (y1117 s Ylinggs - Yol - - - 7ytvnt'u)

be the vector composed of the observations. A statistical model of y is usually
derived from the following framework:

(1.1) Yijk = I+ o + Bj + Vij + eiji,
t=1,...,t;5=1,...,v; k =1,...,n;4, where u, a;, 3; and ~;; are deter-
ministic real values, while e;j;, is a random quantity representing the exper-
imental error. The following assumptions about the error are standard:

(a) Vanishing expectation, i.e. F(e;;) = 0 for all ¢, j and F,

(b) Homogeneity of variances, say var(e;;;) = o2 for all i, and k,

(c) Vanishing covariances, i.e. cov(e;jx, ey i) = 0 for (ijk) # (i'5'k').
For testing problems an additional assumption about the distribution of the
vector y is required. Usually it is assumed that e;; is normally distributed.
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Consequently, (1.1) leads to the following model:
(1.2) Yijk ~ N(p + a; + B85 + 7ij,0°) and are independent.

We mention that the quantities p, a;, §; and ~;; are not parameters
in the proper sense, because they are not identifiable by distributions. The
standard likelihood ratio tests for hypotheses concerning o’s, 3’s and ~’s are
based on the following quadratic forms of y:

(1.3) Sa = mlnz (Yije — — mlnz (Yije — 1 — o),

7.77k ’] k
(1.4) S = mlnz (Yije — — mlnz (Yijhe — 1 — BJ) )
igik w05k
(1.5) Sa,p = min Z (Yijk — Qi — ﬂj)Q
221673 ﬁj i,] k
. 2
—  min e — — oy — B —Yii),
s, i g;(yz]kz 1% i /Bj ’Yz])
(1.6) Sp= min Y (yyk—p— i — B — i)
1o, 3 Vi vy

(cf. Scheffé, 1959, or Lehmann, 1986). These quadratics represent the sums
of squares for «, 3, interaction a x 3 and error, respectively.

It will be shown that the sums of squares (1.3), (1.4) and (1.6) reduce,
respectively, to the quadratic forms

et s
Y
(18) Qs(y) = Z i
(1'9) Zyz]k Z z”
ij.k ij

where yij = > 4 Yijk, Yi. = D_; Vijs Y5 = >_i Yij and y = >, y;., but comput-
ing the sum of squares S4 p may not be easy in general. Fortunately, as we
will show in the next sections, this computation simplifies considerably in
the case of proportional frequencies in cells, i.e. when

(1.10) ni; =

fore=1,...,t;7=1,...,v,

where n; = Zj Nij, Nj = »,; Nyj and n = Zi,j Nij-
The condition (1.10) may be written in the concise form rank(N) = 1,
where N = (n;;) is the incidence matrix. It will be shown that in this regular
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case Sy g may be represented as the quadratic form

v y2 Y2 g2
7 ) .
1) Q=Y oy
. nij — N, - n,j n
i.J i J

Of course the expression (1.11) makes sense for arbitrary N with positive
entries, although it may no longer coincide with the sum of squares S4 g. We
shall refer to (1.11) as the standard quadratic form. The aim of this paper
is to characterize the experimental designs (i.e. matrices N) for which the

quadratic form Q4 p:

(i) coincides with the corresponding sum of squares Sy g,
(ii) is nonnegative definite,
(iii) is independent of the other quadratic forms @4, @p and Qg.

Throughout this paper we shall assume that the incidence matrix N = (n;;)
is complete in the sense that

(1.12) ni; >0 foralli=1,...,t;j=1,...,v,

i.e. all cells in the two-way classification are non-empty.

2. Sums of squares in a two-way classification with proportional
frequencies. Most of the statistical literature on this subject focuses on
experiments with equal frequencies (cf. Scheffé, 1959, or Lehmann, 1986), or
on general experiments with arbitrary frequencies in cells (see Searle, 1971).
It is understandable that in the latter case the formulae derived are rather
far from being explicit. Some more complete results concerning proportional
frequencies can be found in Oktaba and Mikos (1970) in the context of models
with restraints (weighted and nonweighted). They noted that the two kinds
of restraints may lead to different tests. To avoid this disadvantage, we shall
use a coordinate-free approach (cf. Lehmann, 1986, Sect. 7) based on the
formulae (1.3)—(1.6).

Let us rewrite model (1.2) in vector-matrix form

(2.1) y ~N(ul, + Aa +Bg + Cr, o°1,),
where y is the observation n-vector, a = (aq,...,a¢)", B = (B1,...,0:)"
and v = (711, ...,V0)! are vectors of parameters, A, x; = [ai,...,a;] and
B, xv = [b1,..., by] are matrices of zeros and ones satisfying the conditions
t v
(2.2) dai=> b;=1,
i=1 j=1

while

(2.3) Cuxtv = [C11, ..., Cto]
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is the matrix with columns ¢;; = a; xb;, i =1,...,t; j = 1,...,v, where *
denotes the Hadamard product of vectors (see e.g. Stepniak, 1983).
We shall prove

THEOREM 1. Given a complete incidence matric N = (ng;) let yijk,
i =1,...,t; 5 = 1,...,v; k = 1,...,n;;, be observations represented by
(1.1), Sa, S, Sa,p and Sg be the sums of squares defined by (1.3)—(1.6),
and Qa, Qp, Qr and Q A B be the quadratic forms of the observations defined
by (1.7)-(1.9) and (1.11). Then Sy = Qa, Sp = QB and Sg = Qg, while
Sa.B = Qa,p providing rank(N) = 1.

The proof of this theorem is based on the following lemma:

LEMMA 1. Let ay,...,a; and by,...,b, be arbitrary n-vectors of zeros
and ones satisfying the conditions (2.2), ¢ij, i = 1,...,t; j = 1,...,v, be
vectors defined by (2.3), N = (ni;) be the complete matriz defined by n;; =
aZTbj, with marginals n;. and nj fori=1,...,¢t;j=1,...,v, and 1,, A,
B and C be the matrices appearing in (2.1). Then the orthogonal projector
onto the column space of [A,B] is given by

t v
1 T 1 r 1 T
=1 7j=1
providing the condition (1.10) holds.

Proof. Let us rewrite P in the form

(24) P=P;+P;+Ps3,
where
‘1 1
(2.5) P, = ; . aiaiT - 1n1£a
1 1
(2.6) Py=) —b;bl —=1,17,
= n,j n
1 T
(2.7) Ps = 1,17

First we will show that

P, if i=j
(2.8) PP, = {

0 otherwise.

It is easy to verify that P? =P, for i = 1,2,3 and P1P3 = PyP3 = 0.
Moreover,
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t

1 1 1 1
1. -J

i=1 j=1
_ nig _.p 1 a1 r, 1 T
— Z o aibj — — Zazln - Z L,bj + — 1,15
i i J
Thus, by (1.10) and (2.2), we get

PP, = Zal(ZbT—lT) - —1 (ZbT—lT) — 0.

In this way we have proved (2.8), which implies that P is idempotent.

Now it remains to show that range(P) = range([ai,...,as, b1,...,by]).
Indeed, Px = 0 for any vector x such that aZTx =bTx =0 for all i and j.
Moreover, by (2.2), rank([ay,...,as, by, ..., by]) < t+v—1, while rank(P) =
t 4+ v — 1. This implies the desired condition and completes the proof of the
lemma. =

Proof of Theorem 1. In vector-matrix notation the sums of squares (1.3)—
(1.6) may be expressed as

1
Saly) =lly —Pryl> = ly = Pay|* =y"Pay — ~ y 1,1y =y"Pyy,

1
Sp(y) =y —Pryl* - lly - Psyl]* =y Py — - y' 1,17y = y"Poy,

Sas(y) =y —Py|> = |y - Pey|? = y"Pcy - y' Py,
Se(y) =lly —Pey|*=y"y —y"Poy,
where Pj; denotes the orthogonal projector onto the column space of M,

C is defined by (2.3), while P, Py and P are defined by (2.4)-(2.5) and (2.6).

Now the theorem follows from Lemma 1. =

3. Characterizing experimental designs by standard quadratic
forms. Lety = (Y111, .-+, Yllngs; - - - Ytols - - - » Ytony, )~ be subject to the nor-
mal linear model V' (ul, + Aa+ BB+ Cv,021,), and let Q4, Qp, Qr and
Q A, be defined by (1.7)-(1.9) and (1.11). We are interested in properties of
the quadratic form Q4 p and its relations with the remaining quadratics.

THEOREM 2. The quadratic form Q s g is nonnegative definite if and only
if the allocation of the observations in cells is proportional, i.e. rank(N) = 1.

Proof. Assume that n;; = n;n_j/n for all i and j. Then

t 2 2
ym yz .J ) o Yij Yi. Y.j Yy

ZZ Z ._Z ]JFg—Z”ij ng ne ng n)

i=1 j= 1 =1 2¥)

implying QA’B(y) > 0 for all y.
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Conversely, assume that Q4 p(y) > 0 for all y and set

Nij if j = ]{?,
Yij =

0 otherwise,

where k is fixed but arbitrary. Then Q4 g(y) reduces to n% /n— 3. n% /n;,
and consequently, it may be presented in the form Q4 p(y) = —n Var(X),
where X is a random variable taking values x; = n;;/n; with probabilities
pi =n; /n for i =1,...,t. Thus the condition Q4 g(y) > 0 for all y implies

(3.1) ng=cn;, 1=1,...,t,

for some c. On the other hand, by the definition n i = >, n;, we get
ng

3.2 = —.

(32) c="

Combining (3.1) and (3.2) we obtain n;z = n;ny/n fori=1,...,t. This
completes the proof of necessity, and hence the proof of Theorem 2.

Now let us examine conditions for independence of the quadratic forms
QA) QB) QA,B and QE

THEOREM 3. Let Y = (Y111, Ylingss -« - Ytoly - - - > Yeony, ). e subject
to the normal linear model N'(pl, + Aa+BB+Cx, 021,), and let Q 4, Qp,
Qr and Qap be defined by (1.7)—(1.9) and (1.11), respectively. Then Qg
1s always independent of the other quadratic forms. Moreover the following
conditions are equivalent:

(a) rank(N) =1,

(b) Q4 is independent of Qp,

(c) Qa is independent of Qa B,

(d) @p is independent of QA B.

Proof. The first assertion follows immediately from the fact that in the
simple normal sample the sample mean is independent of the sample vari-
ance.

Next, by Craig’s theorem (e.g. Mathai and Provost, 1992, p. 209 or
Harville and Kempthorne, 1997) two quadratic forms y’M;y and y’ Moy
are independent if and only if MMy = 0. Recall that the matrices of the

quadratics Qa, @B, and Q4 g, may be represented in the form Py, P> and
Py — P; — Py, where P and Pj are defined by (2.5) and (2.6), while

1 1
E T T
— 15 n
Z?J

(a)<(b). We observe that

v t
PiPy=>_ (Z%m—%h)bﬁ

J=1
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and, by (2.2),

7j=11i=1

Thus we get the equivalence of (a) and (b).
(a)<(c) and (a)<(d). Since P; is idempotent for ¢ = 0, 1,2, and PyP; =
Pi for i = 1, 2, we get (P(] - P1 - P2)P1 = P2P1 and (PO — P1 — P2)P2 =
P1P5. Now the desired results follow from the equivalence of (a) and (b).
This completes the proof. m
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