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THE MAGNETIZATION AT HIGH TEMPERATURE FOR

A p-SPIN INTERACTION MODEL WITH EXTERNAL FIELD

Abstract. This paper is devoted to a detailed and rigorous study of the
magnetization at high temperature for a p-spin interaction model with ex-
ternal field, generalizing the Sherrington–Kirkpatrick model. In particular,
we prove that 〈σi〉 (the mean of a spin with respect to the Gibbs measure)
converges to an explicitly given random variable, and that 〈σ1〉, . . . , 〈σn〉 are
asymptotically independent.

1. Introduction. We consider a spin glass model with the configuration
space ΣN = {−1, 1}N where the energy of a given configuration σ ∈ ΣN is
represented by a Hamiltonian H(σ). We are interested in the Gibbs mea-
sure GN whose density with respect to the uniform measure µN on ΣN is
Z−1

N e−H , where ZN is the normalization factor

ZN =
∑

σ∈ΣN

exp(−H(σ)).

In order to introduce our model we borrow the notations of Bardina et al.
(2004). The Hamiltonian of the p-spin interaction model with external field
is defined by

−HN,β,h(σ) = βuN

∑

(i1,...,ip)∈Ap

N

gi1,...,ipσi1 . . . σip + h
N∑

i=1

σi,

with

uN =

(
p!

2Np−1

)1/2

,(1.1)

Ap
N = {(i1, . . . , ip) ∈ N

p; 1 ≤ i1 < · · · < ip ≤ N},
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where the parameter β represents the inverse of the temperature and where
g = {gi1,...,ip ; (i1, . . . , ip) ∈ Ap

N} is a family of independent standard Gaus-
sian random variables. The strictly positive parameter h stands for the ex-
ternal magnetic field, under which the spins tend to take the same value +1.

In physics, this kind of model was introduced to study the spin distri-
bution of atoms submitted to disordered long range interactions (see, for
instance, the paper of Gardner (1985)). In mathematics, the p-spin inter-
action model is a natural generalization of the SK model (see Sherrington
and Kirkpatrick (1975)). However, the mathematical papers devoted to this
general kind of model are rare: see Talagrand (2000a) on low temperature
regime; Bardina et al. (2004) and Cadel et al. (2004) on high temperature
regime; and Bovier et al. (2002) for some fluctuation results for the free
energy.

We will denote by 〈f〉 the average of a function f : ΣN → R with respect
to GN , as well as the average of a function f : Σn

N → R with respect to
G⊗n

N , without mentioning the number n of independent copies of the spin
configurations, i.e.

〈f〉 =
1

Zn
N

∑

(σ1,...,σn)∈Σn
N

f(σ1, . . . , σn) exp
(
−

∑

l≤n

HN,β,h(σl)
)
.

We write ν(f) = E 〈f〉, where E denotes expectation with respect to the
randomness of the Hamiltonian.

The following assumption on β determines our high temperature region:

(H) The parameter β > 0 is smaller than a constant βp defined by

8p2β2
p exp(16β2

pp) =
1

2
.

In statistical mechanics, Gibbs’ measure represents the probability of
observing a configuration σ after the system has reached equilibrium with
an infinite heat bath at temperature 1/β. For this reason, β small means
high temperature.

Our aim is to prove the following theorem:

Theorem 1.1. Assume (H). Then, given a positive integer m, there exist

independent standard Gaussian random variables z1, . . . , zm such that

(1.2) E

m∑

i=1

[
〈σi〉 − tanh

(
β

(
p

2

)1/2

q(p−1)/2zi + h

)]2

≤
C(m, h)

N
.

Here the constant q = qp is the unique solution of

(1.3) q = E

[
tanh2

(
β

(
p

2

)1/2

q(p−1)/2Y + h

)]
,

where Y stands for a standard Gaussian random variable.
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The constant q = qp is directly connected with the behavior of the overlap
of two configurations

(1.4) R1,2 =
1

N

N∑

i=1

σ1
i σ

2
i ,

and with the Hamming distance

d(σ1, σ2) = card{i ≤ N ; σ1
i = σ2

i }.

More specifically, for β small enough, R1,2 will self average into q (see Propo-
sition 2.1) and the knowledge of behavior of the overlap gives us information
on this well-known distance by means of the equality

d(σ1, σ2) =
N

2
(1 − R1,2).

For more information about the parameters βp and qp we refer the reader
to Bardina et al. (2004).

As a consequence of Theorem 1.1, we have the following result:

Corollary 1.2. Assume (H). Then the mean of a spin (with respect to

the randomness of the configuration space) converges in law to an explicitly

given random variable, namely

〈σi〉
L

−→
N→∞

tanh

(
β

(
p

2

)1/2

q(p−1)/2zi + h

)
.

Moreover , 〈σ1〉, . . . , 〈σn〉 are asymptotically independent.

In order to prove Theorem 1.1 we need the following important interme-
diate result.

Proposition 1.3. Given β ≤ βp, there exists a standard Gaussian ran-

dom variable z such that

(1.5) E

[
〈σN 〉 − tanh

(
β

(
p

2

)1/2

q(p−1)/2z + h

)]2

≤
C(h)

N
,

where z depends only on {gJ : J ∈ Ap
N} but is probabilistically independent

of {gJ : J ∈ Ap
N−1}, with

Ap
N−1 = {(i1, . . . , ip) ∈ N

p : 1 ≤ i1 < · · · < ip ≤ N − 1}.

The paper is organized as follows: some preliminary results on the cavity
method for our model are given in Section 2; Section 3 contains some inter-
mediate results (Lemma 3.1) for the proof of Theorem 1.1, and the definition
of the Gaussian path which will be used later on; the proofs of Lemma 3.1,
Proposition 1.3 and Theorem 1.1 are given in Sections 4, 5 and 6, respec-
tively. In the following, the size of a given finite set D will be denoted by |D|.
Let C denote a constant which may vary from line to line.
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2. The cavity method. This method allows us, in some sense, to mea-
sure the difference between our original system and a system where the last
spin is independent of the others. The cavity method for our model is al-
ready described in Bardina et al. (2004, Section 2.3), and it is given here
only for the convenience of the reader.

For β > 0, we define β− that plays the role of β in the new reduced
system:

β− =

(
N − 1

N

)(p−1)/2

β.

Set

Qp
N = {J = (i1, . . . , ip−1, N) ∈ N

p; 1 ≤ i1 < · · · < ip−1 ≤ N − 1},

and recall that

Ap
N = {(i1, . . . , ip) ∈ N

p; 1 ≤ i1 < · · · < ip ≤ N}.

Lemmas A.2 and A.4 in Bardina et al. (2004) prove that

|Ap
N | =

(
N

p

)
=

Np

p!
+ Pp−1(N),

|Qp
N | =

(
N − 1

p − 1

)
=

Np−1

(p − 1)!
+ Pp−2(N),

where Pm(N) denotes some polynomial of degree m in N . Moreover, as a
consequence of Lemma A.4 in Bardina et al. (2004), it is not difficult to
prove another deterministic result about the size of Qp

N :

(2.1)

∣∣∣∣u2
N |Qp

N |qp−1 −
p

2
qp−1

∣∣∣∣ ≤
C

N

for some positive constant C.
We use the following notation: ̺ = (σ1, . . . , σN−1) is a configuration of

ΣN−1, ηJ = σi1 · · ·σip−1
for J ∈ Qp

N , and ε = σN . The basic idea of the
cavity method is to regroup the Hamiltonian as follows:

−HN,β,h(σ) = −HN−1,β−,h(̺) + ε[g(̺) + h],

where

−HN−1,β−,h(̺) = β−uN−1

∑

(i1,...,ip)∈Ap

N−1

gi1,...,ipσi1 . . . σip + h

N−1∑

i=1

σi,

g(̺) = βuN

∑

J∈Qp

N

gJηJ .

Let 〈·〉− denote the average with respect to Gibbs measure on ΣN−1 relative
to the reduced Hamiltonian HN−1,β−,h. In the spin glass theory, the cavity
method becomes a powerful tool through the construction of a continuous
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path from the original configuration to a configuration where the last spin
is independent of the others.

Set, for t ∈ [0, 1] and the constant q ∈ [0, 1] defined in (1.3),

(2.2) gt(̺) = t1/2g(̺) + βuNq(p−1)/2(1 − t)1/2
∑

J∈Qp

N

zJ ,

where {zJ ; J ∈ Qp
N} is a family of independent standard Gaussian random

variables, also independent of all the disorders g.

For n ≥ 1 and n independent copies of an N-spin configuration σ1, . . . , σn,
we write

En,t = exp
{ n∑

l=1

εl[gt(̺
l) + h]

}
,(2.3)

Zt = 〈Av E1,t〉− = 〈cosh[gt(̺) + h]〉−,(2.4)

where εl = σl
N and Av means the average over {εl; l = 1, . . . , n}. For

f : Σn
N → R, we can define

〈f〉t =
〈Av fEn,t〉−

Zn
t

, νt(f) = E 〈f〉t.

Note that ν(f) = ν1(f).

The idea is that ν0(f) (or a slight modification of it) should be simpler
to compute than ν1(f) in some interesting cases of functions f . On the other
hand, we will relate these two quantities by means of

(2.5) ν1(f) − ν0(f) =

1\
0

ν ′
t(f) dt.

Let us summarize some results proved in Bardina et al. (2004) that will
be useful in our proofs.

• For t ∈ [0, 1] and f : Σn
N → R, we have

ν ′
t(f) = β2u2

N

∑

J∈Qp

N

[
νt

(
f

∑

1≤l<l′≤n

(ηl
Jηl′

J − qp−1) εlεl′
)

(2.6)

− nνt

(
f

n∑

l=1

(ηl
Jηn+1

J − qp−1)εlεn+1
)

+
n(n + 1)

2
νt(f(ηn+1

J ηn+2
J − qp−1)εn+1εn+2)

]
.

• If τ1, τ2 > 0 are such that 1/τ1 + 1/τ2 = 1, then, for any t ∈ [0, 1],

(2.7) |νt(f1f2)| ≤ νt(|f1|
τ1)1/τ1νt(|f2|

τ2)1/τ2.
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Proposition 2.1. Assume that β satisfies (H). Then, for q ∈ [0, 1]
defined in (1.3) and for any l ≥ 1,

ν((R1,2 − q)2l) = E 〈(R1,2 − q)2l〉 ≤

(
Cl

N

)l

,(2.8)

|ν(Rl
1,2 − ql)| ≤

C(l)

N
,(2.9)

where R1,2 has been defined in (1.4); and , for a function f on Σn
N ,

|ν(f) − ν0(f)| ≤
C

N1/2
ν1/2(f2),(2.10)

|ν(f) − ν0(f) − ν ′
0(f)| ≤

C

N
ν1/2(f2).(2.11)

Proof. See Proposition 3.2, Corollary 3.10 and Corollary 3.8 in Bardina
et al. (2004).

3. Continuous path. The first and crucial step in the proof of Propo-
sition 1.3 is the verification of the following two facts:

1. The average of σN with respect to the Hamiltonian HN,β,h behaves
asymptotically as the hyperbolic tangent of a quantity depending on
{gJ ; J ∈ Ap

N} but probabilistically independent of {gJ ; J ∈ Ap
N−1}.

2. The average of σ1 with respect to the Hamiltonian HN,β,h behaves
asymptotically as the average of the same spin σ1 but only with respect
to the Hamiltonian HN−1,β−,h.

These two facts can be deduced from the following lemma.

Lemma 3.1. Assume that β satisfies (H). Then, for a ∈ {0, 1},

(3.1) ∆ := E
[
〈σa

1ε1−a〉 − 〈σa
1〉− tanh1−a

(
βuN

∑

J∈Qp

N

gJ〈ηJ〉− + h
)]2

≤
C

N
.

We start by giving the definition of the Gaussian path we will use: let

g̃(c) = βuN

∑

J∈Qp

N

gJ 〈ηJ〉−,

and, for t ∈ [0, 1],

g̃t(c) = t1/2g̃(c) + βuNq(p−1)/2(1 − t)1/2
∑

J∈Qp

N

zJ ,
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where {zJ ; J ∈ Qp
N} is as in (2.2). As in (2.3) and (2.4), for n ≥ 1 and n

independent copies of an N -spin configuration σ1, . . . , σn, we can define

Ẽn,t = exp
{ n∑

l=1

εl[g̃t(c) + h]
}
,(3.2)

Z̃t = 〈Av Ẽ1,t〉− = 〈cosh[g̃t(c) + h]〉−.(3.3)

Then, for t ∈ [0, 1], we consider the function

Θ(t) = E [(Φ(t) − Ψ(t))2],

where, for a ∈ {0, 1},

Φ(t) := 〈σa
1ε1−a〉t =

〈Av σa
1ε1−aE1,t〉−
Zt

,

Ψ(t) :=
〈Av σa

1ε1−aẼ1,t〉−

Z̃t

= 〈σa
1〉− tanh1−a[g̃t(c) + h].

We can decompose Θ into three terms

Θ(t) = Θ1(t) + Θ2(t) + Θ3(t),

with

Θ1(t) = E[Φ(t)2],

Θ2(t) = E[Ψ(t)2],

Θ3(t) = −2E[Φ(t)Ψ(t)].

Since it is easy to check that Φ(0) = Ψ(0), it follows that ∆, defined in (3.1),
satisfies

∆ = |Θ(1)| = |Θ(1) − Θ(0)| ≤
3∑

j=1

[|Θj(1) − Θj(0) − Θ′
j(0)| + |Θ′

j(0)|].

Thus, (3.1) in Lemma 3.1 will be achieved as soon as we can show that

(3.4) |Θj(1) − Θj(0) − Θ′
j(0)| ∨ |Θ′

j(0)| ≤ C/N for any j = 1, 2, 3.

4. Proof of Lemma 3.1

4.1. Study of Θ1. Using two replicas of σ, we obtain

Θ1(t) = E[Φ(t)2] = E 〈σa
1ε1−a〉2t = νt((σ

1
1σ

2
1)

a(ε1ε2)1−a),

where the measure νt is defined in Section 2; recall that a ∈ {0, 1}.
First of all, since |(σ1

1σ
2
1)

a(ε1ε2)1−a| ≤ 1, by (2.11) in Proposition 2.1,
we have

|Θ1(1) − Θ1(0) − Θ′
1(0)| ≤ C/N.

Thus, if we check that |Θ′
1(0)| ≤ C/N , we will have proved (3.4) when j = 1

and concluded the study of Θ1. From (2.6), the symmetry and independence
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yield

Θ′
1(0) = ν ′

0((σ
1
1σ

2
1)

a(ε1ε2)1−a)

= β2u2
N

∑

J∈Qp

N

[ν0((σ
1
1σ

2
1)

a(η1
Jη2

J − qp−1))ν0((ε
1ε2)2−a)

− 4ν0((σ
1
1σ

2
1)

a(η1
Jη3

J − qp−1))ν0((ε
1)2−a(ε2)1−aε3)

+ 3ν0((σ
1
1σ

2
1)

a(η3
Jη4

J − qp−1))ν0((ε
1ε2)1−aε3ε4)].

So, in order to bound |Θ′
1(0)|, since |ε| ≤ 1, we only need to check that, for

any couple (i, j) ∈ {(1, 2), (1, 3), (3, 4)},

(4.1) Υ :=
∣∣∣β2u2

N

∑

J∈Qp

N

ν0((σ
1
1σ

2
1)

a(ηi
Jηj

J − qp−1))
∣∣∣ ≤ C/N.

The quantity Υ can be bounded by three terms as follows:

Υ ≤ β2[Υ1 + Υ2 + Υ3],

with

Υ1 =

∣∣∣∣u2
N

∑

J∈Qp

N

ν0((σ
1
1σ

2
1)

aηi
Jηj

J) −
p

2
ν0((σ

1
1σ

2
1)

aRp−1
i,j )

∣∣∣∣,

Υ2 =
p

2
|ν0((σ

1
1σ

2
1)

aRp−1
i,j ) − ν0((σ

1
1σ

2
1)

aqp−1)|,

Υ3 =

∣∣∣∣
p

2
ν0((σ

1
1σ

2
1)

aqp−1) − u2
N

∑

J∈Qp

N

ν0((σ
1
1σ

2
1)

aqp−1)

∣∣∣∣.

Recall that R1,2 has been defined in (1.4). On the one hand, Lemma 5.11 in
Talagrand (2000a) gives

(4.2)
∣∣∣u2

N

∑

J∈Qp

N

ηi
Jηj

J −
p

2
Rp−1

i,j

∣∣∣ ≤ C/N,

which together with the estimate (2.1) implies

(4.3) β2(Υ1 + Υ3) ≤ C/N.

On the other hand, we have

(4.4) Υ2 =
p

2
|ν0((σ

1
1σ

2
1)

a(Rp−1
i,j − qp−1))| ≤

p

2
[Υ2,1 + Υ2,2],

where

Υ2,1 = |ν0((σ
1
1σ

2
1)

a(Rp−1
i,j − qp−1)) − ν((σ1

1σ
2
1)

a(Rp−1
i,j − qp−1))|,

Υ2,2 = |ν((σ1
1σ

2
1)

a(Rp−1
i,j − qp−1))|.

Applying the estimates (2.10) and (2.8) for l = 1, and using the fact that
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|(σ1
1σ

2
1)

a| ∨ |Ri,j | ∨ q ≤ 1, we obtain

Υ2,1 ≤
C

N1/2
[ν((Rp−1

i,j − qp−1)2)]1/2(4.5)

≤
C

N1/2
[ν((Ri,j − q)2)]1/2 ≤

C

N
.

Using the symmetry, the Cauchy–Schwarz inequality (2.7) and Proposition
2.1 (in particular, the bounds (2.8) and (2.9)), we get

Υ2,2 = |ν(Ra
1,2(R

p−1
i,j − qp−1))|(4.6)

≤ |ν((R1,2 − q)a(Rp−1
i,j − qp−1))| + qa|ν(Rp−1

i,j − qp−1)|

≤ C/N.

Putting together (4.3)–(4.6) provides (4.1), which concludes the study of Θ1.

4.2. Study of Θ2. For t ∈ [0, 1] and f : Σn
N → R, consider the new

measure ν̃t defined by

ν̃t(f) = E

(
〈Av f Ẽn,t〉−

Z̃n
t

)
,

where Ẽn,t and Z̃t are given in (3.2) and (3.3), respectively.

Working as in Proposition 2.1 of Bardina et al. (2004), we can express
the derivative of this new measure as

ν̃ ′
t(f) = β2u2

N

∑

J∈Qp

N

[
ν̃t

(
f(〈ηJ〉

2
− − qp−1)

∑

1≤l<l′≤n

εlεl′
)

(4.7)

− nν̃t

(
f(〈ηJ〉

2
− − qp−1)

n∑

l=1

εlεn+1
)

+
n(n + 1)

2
ν̃t(f(〈ηJ〉

2
− − qp−1) εn+1εn+2)

]
.

First of all, taking two replicas of σ allows us to write Θ2, for a ∈ {0, 1}, as

(4.8) Θ2(t) = E[Ψ(t)2] = ν̃t((σ
1
1σ

2
1)

a(ε1ε2)1−a).

Then, in order to bound |Θ′
2(0)|, we will use (4.7) with f = (σ1

1σ
2
1)

a(ε1ε2)1−a.
So, by symmetry and independence, using the fact that |εiεj | ≤ 1, the
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definition of ν̃t for t = 0, and taking new replicas of σ, we obtain

|Θ′
2(0)| ≤ 8

∣∣∣β2u2
N

∑

J∈Qp

N

ν̃0((σ
1
1σ

2
1)

a(〈ηJ〉
2
− − qp−1))

∣∣∣(4.9)

= 8
∣∣∣β2u2

N

∑

J∈Qp

N

E 〈(σ1
1σ

2
1)

a(〈η3
Jη4

J − qp−1〉−〉−

∣∣∣

= 8
∣∣∣β2u2

N

∑

J∈Qp

N

ν0((σ
1
1σ

2
1)

a(η3
Jη4

J − qp−1))
∣∣∣.

We now proceed as for the study of (4.1) to prove that

(4.10) |Θ′
2(0)| ≤ C/N.

It remains to analyze the other term of (3.4) for j = 2. Taylor expansion
applied to (4.8) yields

|Θ2(1) − Θ2(0) − Θ′
2(0)| =

∣∣ν̃1(f) − ν̃0(f) − ν̃ ′
0(f)

∣∣ ≤ 1

2

1\
0

|ν̃ ′′
t (f)| dt

for f = (σ1
1σ

2
1)

a(ε1ε2)1−a. Bounding accurately the derivative of (4.7) we
obtain

|ν̃ ′′
t (f)| ≤ Cβ4u4

N

∣∣∣
∑

J1,J2∈Qp

N

ν̃t(f [〈ηJ1
〉2− − qp−1][〈ηJ2

〉2− − qp−1]ε̂)
∣∣∣

with ε̂ = εiεjεi′εj′ . Then, considering different replicas of σ, using the fact
that |f ε̂ | ∨ |R1,2| ∨ q ≤ 1 and applying (4.2) and (2.1) (as in (4.3) for Υ ),
we get

|ν ′′
t (f)| ≤ Cβ4

∣∣∣ν̃t

(
f ε̂

〈
u2

N

∑

J∈Qp

N

[η1
Jη2

J − qp−1]
〉2

−

)∣∣∣(4.11)

≤ Cβ4E

(
1

Z̃2
t

〈
Av

〈
u2

N

∑

J∈Qp

N

[η1
Jη2

J − qp−1]
〉2

−
Ẽ2,t

〉
−

)

= Cβ4E
(〈

u2
N

∑

J∈Qp

N

[η1
Jη2

J − qp−1]
〉2

−

)

≤ Cβ4ν0(|(R
p−1
1,2 − qp−1)(Rp−1

3,4 − qp−1)|) + C/N,

and now we proceed as in (4.4) for Υ2 to conclude that

|Θ2(1) − Θ2(0) − Θ′
2(0)| ≤ C/N.

This estimate together with (4.10) ends the study of Θ2.
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4.3. Study of Θ3. Here the term Θ3 is, in some sense, a mixture between
Θ1 and Θ2. For t ∈ [0, 1] and

f : Σn
N × Σñ

N → R, (σ, σ̃) 7→ f(σ, σ̃),

we define

ν̂t(f) = E

(
1

Zn
t (σ)Z̃ñ

t (σ̃)
〈Âv f(σ, σ̃)En,t(σ)Ẽñ,t(σ̃)〉−

)
,

where Âv means the average over {εl, ε̃ l̃; l = 1, . . . , n, l̃ = 1, . . . , ñ}.
It is long and tedious but not difficult to deduce that the derivative of

ν̂t(f) is composed of three kinds of terms, namely

Ξ1,t(f) = β2u2
N

∑

J∈Qp

N

ν̂t(f(σ, σ̃)[ηl
Jηl′

J − qp−1]εlεl′),

Ξ2,t(f) = β2u2
N

∑

J∈Qp

N

ν̂t(f(σ, σ̃)[〈η̃J〉
2
− − qp−1]ε̃ l̃ε̃ l̃′),

Ξ3,t(f) = β2u2
N

∑

J∈Qp

N

ν̂t(f(σ, σ̃)[ηl
J〈η̃J〉− − qp−1]εlε̃ l̃),

where l, l′ ∈ {1, . . . , n+2}, l̃, l̃′ ∈ {1, . . . , ñ+2}. As in the previous sections,
we also have, for a ∈ {0, 1},

Θ3(t) = −2E[Φ(t)Ψ(t)] = −2ν̂t((σ1σ̃1)
a(εε̃)1−a).

In order to check that |Θ3(0)| ≤ C/N , the cases Ξ1,0(f) and Ξ2,0(f) (with
f = (σ1σ̃1)

a(εε̃)1−a) are handled as in the subsections devoted to Θ1 and Θ2,
respectively. In the remaining case, by symmetry and independence we have

|Ξ3,0(f)| = β2u2
N

∣∣∣
∑

J∈Qp

N

ν̂0((σ
1
1σ̃

1
1)

a(ε1ε̃1)1−a[ηl
J〈η̃J〉− − qp−1]εlε̃ l̃)

∣∣∣(4.12)

≤ β2u2
N

∣∣∣
∑

J∈Qp

N

ν̂0((σ
1
1σ̃

1
1)

a[ηl
J〈η̃J〉− − qp−1])

∣∣∣

= β2u2
N

∣∣∣
∑

J∈Qp

N

E 〈(σ1
1σ

2
1)

a[ηk
Jη3

J − qp−1]〉−

∣∣∣

= β2u2
N

∣∣∣
∑

J∈Qp

N

ν0((σ
1
1σ

2
1)

a[ηk
Jη3

J − qp−1])
∣∣∣,

where k is equal to 1 or 4. Now, since |Ξ3,0(f)| is bounded by the same type
of factor as Υ in (4.1), we proceed as in the study of Υ in Section 4.1.

Finally, we can conclude that

|Θ3(1) − Θ3(0) − Θ′
3(0)| ≤

1

2

1\
0

ν̂ ′′
t (f) dt with f = (σ1σ̃1)

a(εε̃)1−a.
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Since the terms of this second derivative are of the same type as Θ1 or Θ2

or a mixture between Θ1 and Θ2, they can be dealt with as in Sections 4.1,
4.2 or as in (4.12).

5. Proof of Proposition 1.3. Let

(5.1) z =
1

‖c‖

∑

J∈Qp

N

gJ〈ηJ〉− with ‖c‖2 =
∑

J∈Qp

N

〈ηJ〉
2
−.

It will be observed later that this z is the random variable appearing in
Proposition 1.3. Let us start with an easy but curious property of z that
will be used in the proof of this proposition.

Lemma 5.1. The law of z is standard Gaussian. This random variable

depends only on {gJ ; J ∈ Ap
N} but is independent of {gJ ; J ∈ Ap

N−1}.

Proof. Since Ap
N = Ap

N−1 ∪̇ Qp
N , it is obvious that z depends on

{gJ ; J ∈ Ap
N}. Moreover, conditionally upon {〈ηJ〉−; J ∈ Qp

N}, the law of
(1/‖c‖)gJ〈ηJ〉− is trivially centered Gaussian with variance (1/‖c‖2)〈ηJ〉

2
−.

So, denoting by E− the conditional expectation upon {〈ηJ〉−; J ∈ Qp
N}, by

conditional independence we can get

E(eivz) = E[E−(eivz)] = E

[
E−

( ∏

J∈Qp

N

exp

{
1

‖c‖
ivgJ〈ηJ〉−

})]

= E

[ ∏

J∈Qp

N

E−

(
exp

{
1

‖c‖
ivgJ〈ηJ〉−

})]

= E

[ ∏

J∈Qp

N

exp

{
−

v2〈ηJ〉
2
−

2‖c‖2

}]
= e−v2/2,

which implies that z is a standard Gaussian random variable. Finally, z is
independent of {gJ ; J ∈ Ap

N−1} since we can check that E[zg
J̃
] = 0 for any

g
J̃
, J̃ ∈ Ap

N−1.

Proof of Proposition 1.3. We want to show that

Λ := E

[
〈σN 〉 − tanh

(
β

(
p

2

)1/2

q(p−1)/2z + h

)]2

≤
C(h)

N
,

where z is defined in (5.1).

We can write

Λ ≤ 2(Λ1 + Λ2),
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with

Λ1 = E[〈σN〉 − tanh(g̃(c) + h)]2,

Λ2 = E

[
tanh

(
β

(
p

2

)1/2

q(p−1)/2z + h

)
− tanh(g̃(c) + h)

]2

.

We only need to study Λ2 because Lemma 3.1 for a = 0 implies Λ1 ≤ C/N .
Using the inequality |tanh a− tanh b| ≤ |a− b|, the definitions of g̃(c), z and
‖c‖, and the conditional expectation E− defined in Lemma 5.1, we obtain

Λ2 ≤ β2E

[(
p

2

)1/2

q(p−1)/2z − uN

∑

J∈Qp

N

gJ〈ηJ〉−

]2

(5.2)

= β2E

[
E−

{(
1

‖c‖

(
p

2

)1/2

q(p−1)/2 − uN

) ∑

J∈Qp

N

gJ〈ηJ〉−

}2]

= β2E

[(
1

‖c‖

(
p

2

)1/2

q(p−1)/2 − uN

)2 ∑

J∈Qp

N

〈ηJ〉
2
−

]

= β2E

((
p

2

)1/2

q(p−1)/2 − uN

√ ∑

J∈Qp

N

〈ηJ〉2−

)2

.

When h = 0, we have q = 0, hence the result. Assume now that h > 0.
Then, since the lower bound of q (solution of (1.3)) is uniform in β ≤ βp,
by means of (2.1) we have

Λ2 ≤
2β2

pqp−1
E

(
p

2
qp−1 − u2

N

∑

J∈Qp

N

〈ηJ〉
2
−

)2

≤
2β2u4

N

pqp−1
E

( ∑

J∈Qp

N

[qp−1 − 〈ηJ〉
2
−]

)2

+
C

N
.

This last term can be bounded as in (4.11).

6. Proof of Theorem 1.1. A last result will be needed to be able to
prove this theorem.

Lemma 6.1. Let q be the unique solution of (1.3) and q− the unique

solution of

q− = E

[
tanh2

(
β−

(
p

2

)1/2

q
(p−1)/2
− Y + h

)]

with β− = ((N − 1)/N)(p−1)/2β and Y as in (1.3). Then, if β ≤ βp, we have

|q − q−| ≤ C/N.
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Proof. Lemma 2.4.15 in Talagrand (2000b) proves the case p = 2. As-
sume p ≥ 3. For s > 0, set λ(s) = E tanh2(Xs + h), where Xs is a centered
Gaussian random variable with variance s2. It is not difficult to check that
|λ′(s)| ≤ C. Then, by using the mean value theorem and the fact that
|q ∨ q−| ≤ 1, we obtain

|q − q−| =

∣∣∣∣λ
(

β

(
p

2

)1/2

q(p−1)/2

)
− λ

(
β−

(
p

2

)1/2

q
(p−1)/2
−

)∣∣∣∣

≤ C|βq(p−1)/2 − β−q
(p−1)/2
− | ≤ C[|β − β−| + β|q(p−1)/2 − q

(p−1)/2
− |]

≤ C/N + Cβ|q − q−|.

Taking β small enough, we have

|q − q−| ≤
C

(1 − Cβ)N
≤

C

2N
.

Proof of Theorem 1.1. We argue by induction. We assume that the ran-
dom variables {z1, . . . , zm} depend on {gi1,...,ip ; (i1, . . . , ip) ∈ Ap

N} as part of
the induction hypothesis. The case m = 1 is a consequence of the symmetry
applied to Proposition 1.3.

We now assume that Theorem 1.1 is true for m and we will check it
for m + 1. In order to show the independence of the random variables
{z1, . . . , zm, zm+1} of Theorem 1.1, we need to apply the induction hypoth-
esis to the N − 1-spin system with Hamiltonian HN−1,β−,h. First of all, we
make the following decomposition:

E

m+1∑

i=1

[
〈σi〉 − tanh

(
β

(
p

2

)1/2

q(p−1)/2zi + h

)]2

≤ C
4∑

j=1

Γj

with

Γ1 = E

m∑

i=1

[〈σi〉 − 〈σi〉−]2,

Γ2 = E

m∑

i=1

[
〈σi〉− − tanh

(
β−

(
p

2

)1/2

q
(p−1)/2
− zi + h

)]2

,

Γ3 = E

m∑

i=1

[
tanh

(
β−

(
p

2

)1/2

q
(p−1)/2
− zi + h

)

− tanh

(
β

(
p

2

)1/2

q(p−1)/2zi + h

)]2

,

Γ4 = E

[
〈σm+1〉 − tanh

(
β

(
p

2

)1/2

q(p−1)/2zm+1 + h

)]2

.
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Lemma 3.1 for a = 1 and symmetry yield Γ1 ≤ C/N . The induction hy-
pothesis implies the existence of independent standard Gaussian random
variables z1, . . . , zm depending on {gi1,...,ip ; (i1, . . . , ip) ∈ Ap

N−1} such that
Γ2 ≤ C(m, h)/N . Using the inequality |tanh a − tanh b| ≤ |a − b| and Lem-
ma 6.1 we obtain

Γ3 ≤ C[|β − β−| + |q(p−1)/2 − q
(p−1)/2
− |] ≤ C/N.

Finally, Proposition 1.3 gives the existence of a standard Gaussian ran-
dom variable z = zm+1 such that Γ4 ≤ C(h)/N and zm+1 is independent
of {z1, . . . , zm} because these random variables depend only on {gi1,...,ip ;
(i1, . . . , ip) ∈ Ap

N−1}.
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