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PREDICTION PROBLEMS RELATED TO A FIRST-ORDER

AUTOREGRESSIVE PROCESS

IN THE PRESENCE OF OUTLIERS

Abstract. Outliers in a time series often cause problems in fitting a suit-
able model to the data. Hence predictions based on such models are liable
to be erroneous. In this paper we consider a stable first-order autoregres-
sive process and suggest two methods of substituting an outlier by imputed
values and then predicting on the basis of it. The asymptotic properties of
both the process parameter estimators and the predictors are also studied.

1. Introduction. In modelling time series data one very often comes
across outliers or observations which are different from the rest. These can be
caused by recording errors, or more often, by unusual events like changes in
economic policies, wars, natural calamities, etc. Thus outliers can be both
aberrant observations or precursors of things to come. In either case the
outliers can often have a considerable effect on related inferences and can
even lead to misspecification of the model itself. Hence the question arises
as to how they should be dealt with. Donald and Maddala (1993) suggest
one of the following three courses: (i) throw the outliers out, (ii) leave them
in, but under control and (iii) change the model.

The problem is more complex for time series data because of the corre-
lations that exist among the successive observations. Outliers in time series
data, as Fox (1972) pointed out, can be classified as either an Additive
Outlier (AO) or an Innovational Outlier (IO). An AO occurs if a particular
observation is aberrant but the succeeding observations are normal, whereas
IOs occur when the effect of a large innovation is perpetrated through the
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dynamics of the model. Since a single aberrant observation is either caused
by recording errors or, more often, by some unusual events, it may often
be appropriate to take recourse to the “throw them out” method for AOs.
However, a persistent change in the observations is often the result of a
change in the system or mechanism itself and hence the “change the model”
method is generally more suited for the IOs.

Robust methods are routinely employed to estimate the parameters in
the presence of outliers. Martin and Yohai (1985) give a detailed discus-
sion of such methods in estimating the ARMA parameters in the presence
of outliers. An improved recursive robust estimation method is suggested
by McDougall (1994). Chang, Tiao and Chen (1988) used the maximum
likelihood method and an iterative procedure to estimate the outliers and
the parameters of an ARMA(p, q) process in the presence of both types of
outliers. Bruce and Martin (1989) discussed the deletion technique in identi-
fying outliers in an ARIMA model and suggested a strategy for model fitting.
Ljung (1993) showed that estimating additive outliers is directly related to
the estimation of deleted observations.

However, very little work has been done on predictions based on a time
series having outliers. The predictors depend on the model parameters and
hence the estimated predictors depend on the corresponding parameter es-
timators. These estimators are influenced by the presence of outliers which
in turn leads to erroneous predictions. However, deletion of the outliers is
not a solution since it breaks down the structure of the model or leads to
unequally spaced observations which are difficult to model. Such observa-
tions thus need to be substituted by imputed values to restore the structure.
This, therefore, has an impact on the estimated predictors and consequently
on their performances. It is this that we seek to study in this paper.

We consider the prediction problems related to a stable, first order au-
toregressive model (AR(1)) in the presence of a single AO. We replace the
outlier by an imputed value and then make the prediction. Two different
imputation techniques are suggested and the consistency of both the esti-
mators of the process parameters and the estimated predictors are shown.
The corresponding mean square errors are also derived.

Consider the AR(1) model

Xt = αXt−1 + εt, t = 1, . . . , n, |α| < 1,(1.1)

where Xt is the observation at time t, t = 1, . . . , n, and εt’s are a sequence
of white noises which are continuous with zero mean and variance σ2. Also
assume that

E(εδ
t ) < ∞ for any δ > 2,(1.2)

and
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inf P [|εt| ≥ ν] > 0 for some ν > 0,(1.3)

and define

γ(0) = lim
n→∞

E(X2
n).(1.4)

Given n observations and under the assumption of zero initial condition,
for any integer s, the s-steps ahead predictor of Xn+s is given by the con-
ditional mean Xn+s = E(Xn+s |Xn, Xn−1, . . .) = αsXn. However, since α is
generally unknown, it needs to be estimated and the corresponding predictor
obtained.

An estimator of the unknown parameter α is given by

α̂ =
n∑

t=2

XtXt−1

/ n∑

t=2

X2
t−1.(1.5)

Now under condition (1.2) and following Lai and Wei (1985), we have
n∑

t=2

X2
t−1 = O(n) a.s.(1.6)

and
n∑

t=2

Xt−1εt = O((n log n)1/2) a.s.(1.7)

so that using (1.3) yields

α̂ = α + O(n−1/2(log n)1/2),(1.8)

i.e. α̂ is a consistent estimator of α.
Let γ̂(0) = n−1∑n

t=2 X2
t−1. Then since εt’s and hence xt’s are continuous,

nγ̂(0) is non-zero with probability one for sufficiently large n. Thus from
Basu and Sen Roy (1986),

γ̂(0)−i = γ(0)−i + O(n−1) for any i ≥ 1.(1.9)

Hence, under condition (1.3), which implies uniform integrability of
γ̂(0)−1, and using (1.9), we obtain

MSE(α̂) = σ2/nγ(0) + O(n−2).(1.10)

The estimated predictor of Xn+s is given by X̂n+s = α̂sXn.
Now by Lai and Wei (1985),

|Xn| = o(nβ), β > 1/δ,(1.11)

so that following Basu and Sen Roy (1986),

|X̂n+s − Xn+s| = o(nβ−1/2(log n)1/2) a.s.(1.12)

Also for any δ > max(4, 2s) in (1.2),

MSE(X̂n+s) = σ2 1 − α2s

1 − α2
+ O(n−1).(1.13)
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Next suppose the kth observation (1 < k ≤ n) is an outlier. This would
obviously have an inordinate impact on α̂. In order to negate this, the best
method would be to delete Xk. However, this would disrupt the AR struc-
ture. Hence to restore the structure it would be necessary to substitute the
missing kth observation by some imputed value. The impact of this is what
we seek to discuss in this paper.

We consider two different methods of imputing for the deleted observa-
tion. The simplest method is to use the average of the remaining (n − 1)
observations. A second method would be to predict the deleted observa-
tion by fitting an AR(1) model to the observations preceding it. The effects
of these imputations on the estimation of the model parameters are then
observed and compared through their respective mean square errors.

In Sections 2 and 3 we discuss the imputation based on the two methods,
while in Section 4 we provide a numerical comparison. Some concluding
remarks are made in Section 5.

2. The Average Replacement Method (ARM). In this method we
substitute Xk by

Xk =
n∑

t=1,6=k

Xt/(n − 1).(2.1)

With Xk replacing Xk, the estimator of α would be

α̂ARM =

∑n
t=2,6=k,k+1 XtXt−1 + XkXk−1 + Xk+1Xk

∑n
t=2,6=k+1 X2

t−1 + X
2
k

(2.2)

Theorem 2.1, Under condition (1.2),

α̂ARM = α + O(n−1/2(log n)1/2) a.s.(2.3)

Also under conditions (1.3) and (1.2) with δ ≥ 4,

MSE(α̂ARM) = σ2/nγ(0) + O(n−1).(2.4)

Proof. From (2.2),

(2.5) α̂ARM − α

=

∑n
t=2 Xt−1εt − (Xk − Xk)(Xk−1 + Xk+1 − αXk − αXk)

∑n
t=2 X2

t−1 + X
2
k − X2

k

= (A − C)/B,

where

A =
n∑

t=2

Xt−1εt, B =
n∑

t=2

X2
t−1 + X

2
k − X2

k ,

C = (Xk − Xk)(Xk−1 + Xk+1 − αXk − αXk).
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Using (1.4), we obtain

E(X2
k) = γ(0), E(X

2
k) = O(n−1), E

(
n−1

n∑

t=2

X2
t−1

)
→ γ(0),

and hence, under condition (1.2),

n−1B = γ(0) + O(n−1) a.s.(2.6)

Again by (1.7) and (1.4) respectively, A is of order O((n log n)1/2) while C
tends to αγ(0), so that

n−1(A − C) = O(n−1/2(log n)1/2) a.s.(2.7)

Combining (2.6) and (2.7) yields (2.3).

Next observe that under condition (1.9) and finite fourth-order moments,

n2B−2 = (γ̂(0) + n−1X
2
k − n−1X2

k)−2 = γ(0)−2 + O(n−1).(2.8)

Also E(n−1A2) = σ2γ(0) and under finite fourth-order moments, E(C2) =
O(1) and E(n−1AC) = O(1) so that

n−2E(A − C)2 = σ2γ(0)/n + O(n−1).(2.9)

Hence under condition (1.3), using (2.8) and (2.9) we obtain (2.4).

Theorem 2.2. Under condition (1.2),

|X̂ARM
n+s − Xn+s| = o(nβ−1/2(log n)1/2) a.s.(2.10)

Also if δ ≥ 4s in (1.2),

MSE(X̂ARM
n+s ) = σ2 1 − α2s

1 − α2
+ O(n−1).(2.11)

Proof. Writing

α̂s
ARM − αs =

s−1∑

j=0

(
s

j

)
(α̂ARM − α)s−jαj ,(2.12)

(2.10) follows by using (2.12), (2.3) and (1.11) in

X̂ARM
n+s − Xn+s = (α̂s

ARM − αs)Xn.

To prove (2.11), since εj , j = n + 1, . . . , n + s, are independent of α̂ARM

and Xn,

MSE(X̂ARM
n+s ) = E[X̂ARM

n+s − Xn+s]
2(2.13)

= E
[
X̂ARM

n+s − Xn+s +
s−1∑

j=0

αjεn+s−j

]2

= E[(α̂s
ARM − αs)Xn]2 + σ2 1 − α2s

1 − α2
.
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Using (2.12) and (2.5) gives

(2.14) E[(α̂s
ARM − αs)Xn]2

= E

[ s∑

j=1

s∑

k=1

(
s

j

)(
s

k

)
B−(j+k)(A − C)j+kα2s−j−kX2

n

]
.

Under condition (1.9) and finite moments of order 4s, for j, k = 1, . . . , s,

nj+kB−j+k = (γ̂(0) + n−1X
2
k − n−1X2

k)−j+k(2.15)

= γ(0)−j+k + O(n−1).

Next by Basu and Sen Roy (1986), E(|A|j+k) = O(n(j+k)/2) and because
of finite moments of order 4s, E(|C|j+k) = O(1). Hence using Minkowski’s
inequality, for j, k = 1, . . . , s, we obtain

E|A − C|j+k ≤ [(E(|A|j+k))−(j+k) + (E(|C|j+k))−(j+k)]j+k(2.16)

= O(n(j+k)/2).

Since E(X2
n) = γ(0) = O(1), under condition (1.3) of uniform integrability,

using (2.15) and (2.16) in (2.14), we get

E[(α̂s
ARM − αs)Xn]2 = O(n−1).(2.17)

Inserting (2.17) in (2.13) gives (2.11).

3. The Forecasting Replacement Method (FRM). In this method
we substitute Xk by the predicted value of Xk based on X1, . . . , Xk−1, i.e.

X̃k = ̂̂αXk−1,(3.1)

where

̂̂α =
k−1∑

t=2

XtXt−1

/ k−1∑

t=2

X2
t−1(3.2)

is the least squares estimator of α in (1.1) based on the first k − 1 observa-
tions.

With X̃k replacing Xk, the estimator of α based on all the observations
would be

α̂FRM =

∑n
t=2,6=k,k+1 XtXt−1 + X̃kXk−1 + Xk+1X̃k

∑n
t=2,6=k+1 X2

t−1 + X̃2
k

(3.3)

Theorem 3.1, Under condition (1.2) and for k/n → 1,

α̂FRM = α + O(n−1/2(log n)1/2) a.s.(3.4)

Also under conditions (1.3) and (1.2) with δ ≥ 4,

MSE(α̂FRM) = σ2/nγ(0) + O(n−1).(3.5)
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Proof. Using (3.3), we obtain

(3.6) α̂FRM − α

=

∑n
t=2 Xt−1εt − (Xk − X̃k)(Xk−1 + Xk+1 − αX̃k − αXk)∑n

t=2 X2
t−1 + X̃2

k − X2
k

= (A − C̃)/B̃,

where

B̃ =
n∑

t=2

X2
t−1 + X̃2

k − X2
k ,

C̃ = (Xk − X̃k)(Xk−1 + Xk+1 − αX̃k − αXk).

Now, by Basu and Sen Roy (1986), ̂̂α2−α2 = O(k−1/2(log k)1/2) and Xk−1 =
o(kβ). Thus under (1.4),

n−1B̃ = n−1
n∑

t=2

X2
t−1 + n−1( ̂̂α2 − α2)X2

k−1 + n−1(α2X2
k−1 − X2

k)(3.7)

= γ(0) + O(n−1)o(k2β) a.s.,

n−1C̃ = n−1(Xk − ( ̂̂α − α)Xk−1 − αXk−1)(3.8)

· (Xk−1 + Xk+1 − α(αXk−1 + Xk) − α( ̂̂α − α)Xk−1)

= O(n−1)o(k2β) a.s.,

n−1A = O(n−1/2(log n)1/2) a.s.(3.9)

Combining (3.7)–(3.9), under the condition k/n → 1, we obtain (3.4).
Again under finite fourth-order moments and condition (1.9),

n2B̃−2 = n2
[ n∑

t=2

X2
t−1 + n−1( ̂̂α2 −α2)X2

k−1 + n−1(α2X2
k−1 −X2

k)
]−2

(3.10)

= [γ(0)−O(n−1)o(k2β)]−2

= γ(0)−2 + O(n−1)o(k2β) a.s.

Also E(n−1A2) = σ2γ(0). From Theorem 2.1 of Basu and Sen Roy (1986),
E(Xk − X̃k)

2 = O(1), so that under finite fourth-order moments and using
the Cauchy–Schwarz inequality, we obtain

E(C̃2) ≤ E(Xk − X̃k)
2E(Xk−1 + Xk+1 − αX̃k − αXk)

2 = O(1) a.s.

and n−1E(AC̃) = O(1) a.s., so that

n−2(A − C̃)2 = σ2γ(0)/n + O(n−1).(3.11)

Using (3.10) and (3.11) gives (3.5).

Theorem 3.2. Under condition (1.2) and for k/n → 1,

|X̂FRM
n+s − Xn+s| = o(nβ−1/2(log n)1/2) a.s.(3.12)



272 S. Sen Roy and S. Chakraborty

Also if δ ≥ 4s in (1.2),

MSE(X̂FRM
n+s ) = σ2 1 − α2s

1 − α2
+ O(n−1).(3.13)

Proof. The results follow by using arguments similar to those of Theorem
2.2.

4. A simulation study. Here we illustrate our technique with an ex-
ample. For this we generated the innovations εt as a sample of size n = 100
from a standard normal distribution. Then the observations, X1, . . . , X100,
were obtained by using the model Xt = αXt−1 + εt with X0 = 0 and
α = 0.6. The estimated value of α based on all the 100 observations came
out as α̂ = 0.6888.

Table 4.1. Five-steps ahead predicted values using ARM (upper values) and
FRM (lower values) obtained for different n

n α X101 X102 X103 X104 X105

full data 0.6888 −0.8002 −0.5512 −0.3796 −0.2615 −0.1801

10 0.6832 −0.7937 −0.5423 −0.3705 −0.2531 −0.1729

0.4866 −0.5653 −0.2751 −0.1339 −0.0651 −0.0317

20 0.6822 −0.7926 −0.5407 −0.3689 −0.2517 −0.1717

0.7639 −0.8875 −0.6779 −0.5178 −0.3956 −0.3022

30 0.6824 −0.7928 −0.5410 −0.3692 −0.2520 −0.1719

0.6950 −0.8075 −0.5612 −0.3900 −0.2711 −0.1884

40 0.6825 −0.7929 −0.5411 −0.3693 −0.2521 −0.1720

0.6483 −0.7532 −0.4883 −0.3166 −0.2053 −0.1331

50 0.6828 −0.7932 −0.5416 −0.3698 −0.2525 −0.1724

0.6182 −0.7182 −0.4440 −0.2745 −0.1697 −0.1049

60 0.6830 −0.7935 −0.5420 −0.3702 −0.2529 −0.1727

0.6014 −0.6987 −0.4202 −0.2527 −0.1520 −0.0914

70 0.6828 −0.7932 −0.5416 −0.3698 −0.2525 −0.1724

0.6013 −0.6986 −0.4200 −0.2525 −0.1519 −0.0913

80 0.6827 −0.7931 −0.5414 −0.3696 −0.2523 −0.1722

0.6146 −0.7140 −0.4388 −0.2697 −0.1658 −0.1019

90 0.6831 −0.7936 −0.5421 −0.3703 −0.2529 −0.1728

0.7130 −0.8283 −0.5906 −0.4211 −0.3002 −0.2140

100 0.6830 −0.7935 −0.5420 −0.3702 −0.2528 −0.1727

0.6862 −0.7972 −0.5470 −0.3754 −0.2576 −0.1768

However, when one of the observations, in this case the 97th, is contami-
nated by adding or subtracting a constant to make it an outlier, the α value
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changes drastically from 0.6888. The parameter α is then estimated by delet-
ing the 97th observation and using in turn the estimators α̂ARM and α̂FRM

instead of α̂. Predictions for the next five periods, i.e. for X101, . . . , X105,
are then made.

For prediction, the sample size can only be increased by bringing in more
past observations. So we start with the last 10 of the 100 observations, i.e.
X91, . . . , X100, then the last 20, i.e. X81, . . . , X100, and so on.

As can be seen from the table, both the estimators and the predictors
converge to the original values for large n in both cases, although the con-
vergence under ARM is much faster than under FRM.

5. Concluding remarks. Theorems 2.1 and 3.1 show that, like α̂, the
estimators α̂ARM and α̂FRM converge to α. However, the convergence of
their mean square errors is much slower than that of α̂. The estimators
of the predictors and their mean square errors are the same for ARM and
FRM as for the case of all observations. Of course, for the FRM all the
above results are true only if k/n → 1. For k small and fixed, the rates
would depend on k and FRM will not be as efficient as ARM.

Since the above methods do not depend on the actual outlying observa-
tion, which is deleted and the truncated set of observations used for both
estimation and prediction, the methods are equally applicable while fitting
an AR(1) model to a set of observations with a missing value.

This paper can be extended to a general AR(p) process and further to
a moving average process of order q (MA(q)), or even to an ARMA(p, q)
model. However, for the MA(q) or ARMA(p, q) models the dependence of
the estimators and the predictors on the unknown innovations causes consid-
erable difficulty and the innovations themselves need to be estimated before
predictions can be done. For an MA(q) process, the estimation problems
have been studied, among others, by Chan and Tsay (1996) and the predic-
tion problem by Sen Roy (2002). But these problems are liable to be much
more complex in the presence of outliers. The complexity would further in-
crease if for an AR(p) or an MA(q) the outlier is one of the last p or q
observations.

References

[1] A. K. Basu and S. Sen Roy (1986), On some asymptotic results for multivariate

autoregressive models with estimated parameters, Cal. Statist. Assoc. Bull. 35, 139–
140, 123–132.

[2] A. G. Bruce and R. D. Martin (1989), Leave-k-out diagnostics for time series, J. Roy.
Statist. Soc. Ser. B 51, 363–424.

[3] N. H. Chan and R. S. Tsay, (1996), Asymptotic inference for non-invertible moving

average time series, J. Time Series Anal. 17, 1–17.



274 S. Sen Roy and S. Chakraborty

[4] I. Chang, G. C. Tiao and C. Chen (1988), Estimation of time series parameters in

the presence of outliers, Technometrics 30, 193–204.
[5] S. G. Donald and G. S. Maddala (1993), Identifying outliers and influential obser-

vations in econometric models, in: Handbook of Statistics, Vol. 11: Econometrics,
G. S. Maddala, C. R. Rao and H. D. Vinod (eds.), North-Holland, Amsterdam,
663–701.

[6] A. J. Fox (1972), Outliers in time series, J. Roy. Statist. Soc. Ser. B 34, 350–363.
[7] T. L. Lai and C. Z. Wei (1985), Asymptotic properties of multivariate weighted sums

with applications to stochastic regression in linear dynamic systems, in: Multivariate
Analysis VI, P. R. Krishnaiah (ed.), North-Holland, Amsterdam, 375–393.

[8] G. M. Ljung (1993), On outlier detection in time series, J. Roy. Statist. Soc. Ser. B
55, 559–567.

[9] R. D. Martin and V. J. Yohai (1985), Robustness in time series and estimating

ARMA models, in: Handbook of Statistics, Vol. 5, E. J. Hannan, D. R. Brillinger
and P. R. Krishnaiah (eds.), Elsevier, New York, 119–155.

[10] A. J. McDougall (1994), Robust methods for recursive autoregressive moving average

estimation, J. Roy. Statist. Soc. Ser. B 56, 189–207.
[11] S. Sen Roy (2002), Predictions in an invertible moving average process with mar-

tingale difference innovations, Stochastic Modelling Appl. 5, 46–53.

Department of Statistics
University of Calcutta
35, Ballygunge Circular Road
Calcutta 700019, India
E-mail: ssrstat@caluniv.ac.in

Social Statistics Division
Central Statistical Organisation

Ministry of Statistics & Programme Implementation
Government of India

West Block 8, Wing 6, Sector 1, R.K. Puram
New Delhi 110066, India

E-mail: bandhu kesh@rediffmail.com

Received on 19.10.2006;

revised version on 27.12.2006 (1837)


