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THE BAYES SEQUENTIAL ESTIMATION OFA NORMAL MEAN FROM DELAYED OBSERVATIONS

Abstrat. The problem of estimating the mean of a normal distribution isonsidered in the speial ase when the data arrive at random times. Certainlasses of Bayes sequential estimation proedures are derived under LINEXand re�eted normal loss funtion and with the observation ost determinedby a funtion of the stopping time and the number of observations up to thistime.1. Introdution. The paper deals with the problem of estimating themean of a normal distribution in the ase when the observations beomeavailable at random times.The problem of estimating an unknown parameter of a distribution on thebasis of randomly inoming data an appear in many pratial situations.For example, in studying the e�etiveness of experimental safety devies,relevant data may beome available only as a result of aidents. Medialdata an sometimes only be obtained when patients seek help or are somehowotherwise identi�ed and examined at random times.Consider the following model. Let Yi, i = 1, . . . , n, be independent iden-tially distributed random variables having a normal distribution with un-known mean ϑ and known variane σ2. It is assumed that Yi is observedat time ti, i = 1, . . . , n, where t1, . . . , tn are the order statistis of positiveexhangeable i.i.d. random variables U1, . . . , Un whih are independent of
Y1, . . . , Yn.Let

k(t) =
n

∑

i=1

I[0,t](Ui)
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276 A. Jokiel-Rokitadenote the number of observations made up to time t ≥ 0, and let Ft =
σ{k(s), s ≤ t, Y1, . . . , Yk(t)} be the information whih is available at time t.The problem is to estimate the parameter ϑ.If observation is stopped at time t, the loss inurred is de�ned by

Lt(ϑ, d) = L(ϑ, d) + cAk(t) + c(t),(1)where L(ϑ, d) denotes the loss assoiated with estimation when ϑ is thetrue value of the parameter and d is the hosen estimate. The funtion c(t)represents the ost of observing the proess up to time t and it is supposedto be a di�erentiable and inreasing onvex funtion suh that c(0) = 0;moreover, cA ≥ 0 is the ost of taking one observation.Sequential estimation proedures of the form δ = (τ, d(τ)) for estimatingthe parameter ϑ of the normal distribution will be onsidered, where τ isa stopping time with respet to Ft, t ≥ 0, and d(τ) is an Fτ -measurablefuntion.The estimation problem with delayed observations was investigated byStarr, Wardrop and Woodroofe (1976), who onsidered the ase of estimatingthe mean of normally distributed observations with known variane undersquared error loss. Some of their results were extended by Magiera (1982)to one-parameter exponential families of distributions (also under squarederror loss).In pratie we are often faed with estimation problems in whih over-estimation is onsidered more serious than underestimation or vie versa.Then using squared error loss (symmetri loss) is not appropriate, and weshould use an asymmetri loss funtion. It has also been argued that un-boundedness is undesired in many statistial problems. (For a full disussionof the objetions to unbounded loss funtions (espeially quadrati loss) seeLeon and Wu (1992) and Tribus and Szonyi (1989).)In Setion 2 of this paper a lass of Bayes sequential proedures forestimating the distribution parameter ϑ of the observations Y1, . . . , Yn withdelay will be derived under an asymmetri (LINEX) loss funtion given by(2) below. The result will be given in the ase when the ommon distributionof U1, . . . , Un is known exatly as well as when it is unknown but required tobe exponential. In Setion 3 analogous results will be presented for the aseof a bounded (re�eted normal) loss funtion given by (11).
2. The Bayes sequential proedures under a LINEX loss fun-tion. Let us onsider the problem of the Bayes sequential estimation of theparameter ϑ under loss (1) with the LINEX loss funtion L(ϑ, d) of the form

L(ϑ, d) = b{exp[a(ϑ − d)] − a(ϑ − d) − 1},(2)



Estimation of a normal mean 277where a 6= 0, b > 0. The LINEX loss funtion was introdued by Varian(1975). This onvex and asymmetri loss funtion is useful when overestima-tion is onsidered more serious than underestimation or vie versa.Sequential estimation proedures of the form δ = (τ, d(τ)) for estimatingthe parameter ϑ of the normal distribution will be onsidered, where τ is astopping time with respet to Ft, t ≥ 0, and d(τ) is an Fτ -measurable fun-tion. The risk funtion assoiated with a sequential proedure δ = (τ, d(τ))is de�ned by
R(ϑ, δ) = Eϑ[Lτ (ϑ, d(τ))] = Eϑ[L(ϑ, d(τ)) + cAk(τ) + c(τ)],where Eϑ means the expetation with respet to the onditional distributiongiven ϑ.Assume that the prior information about the parameter ϑ is that it hasthe normal distribution (the natural onjugate distribution to the normaldistribution in the ase when the variane is known) with parameters µand η2.The Bayes risk of the proedure δ onneted with the prior distribution

π is de�ned by
r(π, δ) = Eπ[R(ϑ, δ)] =

\
R

R(ϑ, δ)π(dϑ).De�ne
Xt =

k(t)
∑

i=1

Yi.The following lemma gives the form of the Bayes estimator of the parameter
ϑ for any stopping time τ .Lemma 1. For the loss funtion given by (2) and for any stopping time
τ , the Bayes estimator of ϑ with respet to a prior distribution π given Fτ is

d∗(τ) =
1

k(τ) + ε

(

Xτ + εµ +
1

2
aσ2

)

,(3)and the posterior expeted loss is
E[L(ϑ, d∗(τ)) | Fτ ] =

1

2
a2 σ2

k(τ) + ε
,where ε = σ2/η2.Proof. The posterior distribution πt of the parameter ϑ, given Ft, is thenormal distribution with parameters µt and η2

t , where
µt =

1

k(t) + ε
(Xt + εµ),(4)

η2
t =

σ2

k(t) + ε
.(5)



278 A. Jokiel-RokitaFor a given time t, the form of the Bayes estimator d∗(t) is obtained by usingthe general formula given in Zellner (1986), namely
d∗(t) =

1

a
ln{Eπt [exp(aϑ)]} = µt +

1

2
aη2

t .Straightforward alulations lead to the form of the posterior expeted loss.For a random observation time τ the lemma follows from the strong Markovproperty.It follows from Lemma 1 that the sequential proedure an be identi�edwith the stopping time. The Bayes estimation problem then redues to thefollowing optimal stopping problem. The total loss (ost) of observing theproess up to time τ is de�ned to be
L(k(τ), τ) =

1

2
a2 σ2

k(τ) + ε
+ cAk(τ) + c(τ).The problem is to �nd a stopping time τ∗ whih minimizes the expeted totalloss EL over all stopping times τ . Suh a stopping time is alled the opti-mal stopping time and the orresponding sequential proedure (τ∗, d∗(τ∗))is alled the Bayes sequential proedure. In the next subsetion suh pro-edures will be derived in the ase when the ommon distribution of therandom variables U1, . . . , Un is known exatly. In Subsetion 2.2 the Bayessequential proedures will be given when the distribution of U1, . . . , Un isunknown but required to be exponential.2.1. The Bayes sequential proedures: known F . Assume that the ran-dom variables U1, . . . , Un are independent and have a ommon distributionfuntion F . Suppose that F (0) = 0; F (t) > 0 for t > 0; F is absolutelyontinuous with density f ; and f is the right hand derivative of F on (0,∞).Denote the lass of suh F by G.Let ζ = sup{t : F (t) < 1}, and let ̺(t) = f(t)[1 − F (t)]−1, 0 ≤ t < ζ,denote the failure rate. The proess k(t), 0 ≤ t ≤ ζ, is a nonstationaryMarkov hain with respet to Ft, 0 ≤ t ≤ ζ, and its in�nitesimal operator is

Ath(k) = (n − k)̺(t)[h(k + 1) − h(k)]for k ∈ En = {0, 1, . . . , n} and all real-valued funtions h on En (see Starr,Wardrop and Woodroofe (1976)).Let h be a given real-valued funtion on En suh that 0 ≤ h(k) < ∞ foreah k ∈ En, and let
Lh(t) = Lh(k(t), t) = h(k(t)) + c(t),(6)

t ≥ 0, be the loss inurred if the proess is stopped at time t. Supposethat h(k) − h(k + 1) is noninreasing for k ≤ n − 1 and that F ∈ G has anoninreasing failure rate. Under the assumptions onerning the funtions
̺(t), h(k) and c(t) the so-alled monotone ase holds: one the in�nitesimal



Estimation of a normal mean 279prospet of the loss Lh for the future beomes bad (greater than zero), itremains bad. If the loss Lh is in the monotone ase, then using Dynkin'sidentity we �nd that the stopping time
τh = inf{t ≥ 0 : Ath(k(t)) + c′(t) ≥ 0}

= inf{t ≥ 0 : [n − k(t)]̺(t)[h(k(t)) − h(k(t) + 1)] ≤ c′(t)}is optimal.This method has been used to derive expliitly optimal sequential pro-edures in other models (see, for example, Ross (1971), Chen and Wardrop(1980), Shapiro and Wardrop (1980)). We will also use this method to provethe following result.Theorem 1. Suppose that F ∈ G has noninreasing failure rate ̺. Thenthe Bayes sequential proedure with respet to π is δ∗ = (τ∗, d∗(τ∗)), where
τ∗= inf

{

t≥ 0 : [n − k(t)]̺(t)

[

a2σ2

2[k(t) +1 +ε][k(t) + ε]
− cA

]

≤ c′(t)

}(7)and
d∗(τ∗) =

1

k(τ∗) + ε

(

Xτ∗ + εµ +
1

2
aσ2

)

.Proof. Under the assumptions onerning the funtions ̺(t) and c(t) andtaking in (6)
h(k(t)) =

1

2
a2 σ2

k(t) + ε
+ cAk(t),whih is assoiated with the model onsidered, we infer that the ost Lh(t) isin the monotone ase. Thus, by Dynkin's identity, the stopping time given by(7) is optimal. The form of the Bayes estimator d∗ follows from Lemma 1.2.2. The Bayes sequential proedures: unknown F . Let us now onsiderthe problem of sequential estimation of the parameter ϑ in the ase when

U1, . . . , Un are onditionally independent and exponentially distributed withparameter w, given W = w, where W is a random variable having the gammadistribution G(α, β), where α, β > 0 are known. That is, the random variable
W has the density funtion

f(w) = Γ (α)−1βαwα−1e−βw(8)for w > 0. The posterior distribution of W given Ft is G(αt, βt) with
αt = α + k(t), βt = β +

k(t)
∑

j=1

tj + [n − k(t)]t.Denote the prior parameters of (8) by α0 and set β0, and m = α0 + n. Itis easy to hek that the proess (αt, βt), t ≥ 0, with values in the produt



280 A. Jokiel-Rokita
{α0, α0 + 1, . . . , α0 + n} × (0,∞), is a stationary Markov proess with thein�nitesimal operator

AH(α, β) = αβ−1(m − α)[H(α + 1, β) − H(α, β)] + (m − α)H ′(α, β),where ′ denotes di�erentiation with respet to β (for the proof see Stadje(1990)). The domain ofA inludes all H whih are ontinuously di�erentiablein β for eah α.Let the loss assoiated with the observation of the proess (αt, βt), t ≥ 0,up to time t be of the form
L(t) = L(αt, βt, t) = H(αt, βt) + c(t) = h(αt) + c(t),where h(α) is a funtion on {α0, α0 +1, . . . , α0 +n} suh that 0 ≤ h(α) < ∞for α ≥ α0. If the funtion α(m − α)[h(α) − h(α + 1)] is noninreasingfor α = α0, α0 + 1, . . . , α0 + n − 1, then using the same methods as inSubsetion 2.1 one shows that the stopping time

τ∗ = inf{t ≥ 0 : AH(αt, βt) + c′(t) ≥ 0}(9)
= inf{t ≥ 0 : αtβ

−1
t (m − αt)[h(αt) − h(αt + 1)] ≤ c′(t)}is optimal. Notie that

τ∗ = inf{t ≥ 0 : wt(m − αt)[h(αt) − h(αt + 1)] ≤ c′(t)},where
wt = αtβ

−1
t = E(W | Ft)(10)is the Bayes estimate of w at time t with respet to a prior distribution givenby (8) under squared error loss.In partiular, for

h(αt) =
1

2
a2 σ2

αt − α0 + ε
+ cA(αt − α0) =

1

2
a2 σ2

k(t) + ε
+ cAk(t),whih is assoiated with the model onsidered, the following theorem holds.Theorem 2. Let the distribution of U1, . . . , Un be as desribed above and

α ≥ n − 1. Then the sequential proedure (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 : wt[n − k(t)]

[

a2σ2

2[k(t) + 1 + ε][k(t) + ε]
− cA

]

≤ c′(t)

}

and
d∗(τ∗) =

1

k(τ∗) + ε

(

Xτ∗ + εµ +
1

2
aσ2

)

is Bayes with respet to π.



Estimation of a normal mean 2813. The Bayes sequential proedures under a re�eted normalloss funtion. Let us now onsider the problem of the Bayes sequentialestimation of the parameter ϑ under loss (1) with the re�eted normal lossfuntion L(ϑ, d) of the form
L(ϑ, d) = K

{

1 − exp

[

−
(d − ϑ)2

2γ2

]}

,(11)where γ > 0, K > 0, and K is the maximum loss parameter. The re�etednormal (Spiring's) loss funtion is symmetri and bounded. It was employedby Spiring (1993) for loation parameter estimation. This loss funtion is amonotone funtion of the squared error loss.The following lemma gives the form of the Bayes estimator of the pa-rameter ϑ with respet to a prior normal distribution with parameters µand η2.Lemma 2. For the loss funtion given by (11) and for any stoppingtime τ , the Bayes estimator of ϑ with respet to a prior distribution π given
Fτ is

d∗(τ) =
1

k(τ) + ε
(Xτ + εµ),and the posterior expeted loss is

E[L(ϑ, d∗(τ)) | Fτ ] = K

[

1 − γ

(

σ2

k(τ) + ε
+ γ2

)

−1/2]

.Proof. For a given time t straightforward alulations lead to the formof the Bayes estimator d∗ and the form of the posterior expeted loss. Fora random observation time τ the lemma follows from the strong Markovproperty.The following results an be obtained using the same arguments as inSetion 2.Theorem 3. Suppose that F ∈ G has noninreasing failure rate ̺. Thenthe sequential proedure δ∗ = (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 :

[

σ2

k(τ) + 1 + ε
+ γ2

]

−1/2

−

[

σ2

k(τ) + ε
+ γ2

]

−1/2

− cA

≤
c′(t)

Kγ̺(t)[n − k(t)]

}

and
d∗(τ∗) =

1

k(τ∗) + ε
(Xτ∗ + εµ),is Bayes with respet to π.



282 A. Jokiel-RokitaTheorem 4. Let the distribution of U1, . . . , Un be as desribed in Sub-setion 2.2 and α ≥ n− 1. Then the sequential proedure (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 :

[

σ2

k(τ) + 1 + ε
+ γ2

]

−1/2

−

[

σ2

k(τ) + ε
+ γ2

]

−1/2

− cA

≤
c′(t)

Kγwt[n − k(t)]

}

with wt given by (10) and
d∗(τ∗) =

1

k(τ∗) + ε
(Xτ∗ + εµ),is Bayes with respet to π.

ReferenesE. E. Chen and R. L. Wardrop (1980), Bayes sequential estimation in a life test andasymptoti properties, Comm. Statist. Theory Methods A 9, 659�672.R. W. Leon and C. F. G. Wu (1992), A theory of performane measures in parametridesign, Statist. Sinia 2, 335�357.R. Magiera (1982), Estimation with delayed observations, Zastos. Mat. 17, 249�258.S. M. Ross (1971), In�nitesimal look-ahead stopping rules, Ann. Math. Statist. 42, 297�303.C. P. Shapiro and R. L. Wardrop (1980), Dynkin's identity applied to Bayes sequentialestimation of a Poisson proess rate, Ann. Statist. 8, 171�182.F. A. Spiring (1993), The re�eted normal loss funtion, Canad. J. Statist. 21 (3), 321�330.W. Stadje (1990), A sequential estimation proedure for the parameter of an exponentialdistribution, Statistis 21, 239�250.N. Starr, R. Wardrop and M. Woodroofe (1976), Estimating a mean from delayed obser-vations, Z. Wahrsh. Verw. Gebiete 35, 103�113.M. Tribus and G. Szonyi (1989), An alternate view of the Taguhi approah, QualityProgress, May, 46�52.H. L. Varian (1975),A Bayesian approah to real estate assessment , in: Studies in BayesianEonometris and Statistis in Honor of Leonard J. Savage, ed. by S. E. Fienberg andA. Zellner, North-Holland, Amsterdam, 195�208.A. Zellner (1986), Bayes estimation and predition using asymmetri loss funtion, J. Amer.Statist. Asso. 81, 446�451.Institute of Mathematis and Computer SieneWroªaw University of Tehnology50-370 Wroªaw, PolandE-mail: arokita�im.pwr.wro.pl Reeived on 18.4.2006 (1816)


