ALEKSANDRA ORPEŁ (Łódź)

SEMILINEAR ELLIPTIC PROBLEMS
IN UNBOUNDED DOMAINS

Abstract. We investigate the existence of positive solutions and their continuous dependence on functional parameters for a semilinear Dirichlet problem. We discuss the case when the domain is unbounded and the nonlinearity is smooth and convex on a certain interval only.

1. Introduction. In this paper we are dealing with the following boundary value problem for second order PDE of elliptic type:

$$
\begin{cases}
-\Delta x(y) = F_x(y, x(y)) & \text{for a.e. } y \in \Omega, \\
x \in W^{1,2}_0(\Omega, \mathbb{R}),
\end{cases}
$$

for Ω being an unbounded domain in \mathbb{R}^n with boundary $\partial \Omega$ and F_x denoting the derivative of F with respect to x. We are looking for a nonnegative and nontrivial weak solution $x \in W^{1,2}_0(\Omega, \mathbb{R})$ of this problem such that $\Delta x(\cdot)$ belongs to $L^2(\Omega, \mathbb{R})$.

There are numerous papers concerning similar equations for a bounded domain Ω (see, among others, [1]–[5]). In the vast existing literature we can also find results on radial solutions for our problem in an exterior domain (see [9], [10], [17]–[19]). More precisely, [17] was devoted to both radial and nonradial cases for an exterior domain with sublinear nonlinearities. In the first part of [17], the authors presented the results for the radial case. Then they obtained sub- and supersolutions of (1.1) as radial solutions of a problem associated to (1.1). Finally, they derived the existence of positive nonradial solutions for (1.1) using the sub- and supersolution methods based on the theory due to Noussair ([11]) for Ω being the exterior of a ball.

2000 Mathematics Subject Classification: 35J60, 35B30, 35B35.

Key words and phrases: elliptic Dirichlet problem, weak solution, maximum principle, fixed point, dependence of solutions on parameters.
Here we do not impose any symmetry condition on Ω, and we cover both sub- and superlinear cases. Similar boundary value problems on unbounded domains have been discussed e.g. in [11]–[14]. In [12]–[14] (for systems of equations) the authors investigated a semilinear elliptic problem of the form

$$(1.2) \quad \left\{ \begin{array}{ll} Lu = \lambda f(y, u) & \text{for } y \in \Omega, \\ u(y) = 0 & \text{for } y \in \partial \Omega, \end{array} \right.$$

where L is a uniformly elliptic operator in Ω, $n > 2$, $\lambda > 0$ and Ω is a smooth unbounded domain in \mathbb{R}^n. They obtained the existence and nonexistence results for (1.2) provided that, among other things, f is locally Lipschitz continuous on $(\Omega \cup \partial \Omega) \times [0, \infty)$ and $f(x, t) < 0$ for all $t \in \Omega$ and sufficiently large t. Here we consider the case when the nonlinearity is increasing and smooth with respect to the second variable on a certain interval \tilde{I} only. So there is no information concerning its behavior and smoothness outside \tilde{I}.

2. The existence results. We propose an approach based on the following assumptions:

(Ω) Ω is an unbounded domain in \mathbb{R}^n with a locally Lipschitz boundary $\partial \Omega$.

(G1) There exist $M, M_0 \in W^{1,2}(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R})$ such that $0 < M_0(y) < M(y)$ for a.e. $y \in \Omega$, $M_0|_{\partial \Omega}, M|_{\partial \Omega} \geq 0$, $\Delta M_0(\cdot) \in L^2(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R})$ and for each bounded set $\Omega' \subset \Omega$,

$$(2.1) \quad -F_x(y, M(y)) \geq \Delta M_0(y) \quad \text{a.e. in } \Omega'.$$

(G2) $F(y, \cdot) \in C^1(\tilde{I})$ and is convex in \tilde{I} for a.e. $y \in \Omega$, $F(\cdot, x)$ is measurable in \tilde{I} for all $x \in \tilde{I}$, where \tilde{I} is a certain neighborhood of $I := [0, a]$, with $a := \text{ess sup}_{y \in \Omega} M(y)$.

(G3) $F_x(y, \cdot)$ is nonnegative in I for a.e. $y \in \Omega$, $F_x(\cdot, a) \in L^2(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R})$;

(G4) $\int_{\Omega} F_x(y, 0) \, dy \neq 0, \quad \left| \int_{\Omega} F(y, 0) \, dy \right| < \infty$.

Let us define

$$X := \{ x \in W^{1,2}_0(\Omega, \mathbb{R}) : 0 \leq x(y) \leq M(y) \text{ a.e. on } \Omega \}$$

and $\Delta x(\cdot) \in L^2(\Omega, \mathbb{R})$.

We will prove the existence of solutions to (1.1) in X and their properties in two steps. First we shall construct a sequence of solutions of the corresponding problems in bounded domains. Then a solution of (1.1) will be obtained as the limit of this sequence (precisely, of a subsequence). Let us consider
the sequence of bounded sets
\[\Omega_m := \{ y = (y_1, \ldots, y_n) \in \Omega : |y_i| < m \text{ for each } i = 1, \ldots, n \}, \quad m \in \mathbb{N}. \]
There exists an \(m_0 \in \mathbb{N} \) such that \(\Omega_m \neq \emptyset \) for all \(m \in N_0 := \{ m \in \mathbb{N} : m \geq m_0 \} \). For each \(m \in N_0 \), we will use the Schauder fixed point theorem to prove the existence of a solution \(x_m \in X_m \) of the problem
\[
\begin{cases}
-\Delta x(y) = F_x(y, x(y)) & \text{for a.e. } y \in \Omega_m, \\
x \in W^{1,2}_0(\Omega_m, \mathbb{R}),
\end{cases}
\]
with
\[X_m = \{ x \in W^{1,2}_0(\Omega_m, \mathbb{R}) : 0 \leq x(y) \leq M(y) \text{ a.e. on } \Omega_m \}
\quad \text{and } \Delta x(y) \in L^2(\Omega_m, \mathbb{R}). \]
Thus, we fix \(m \in N_0 \) and consider a map \(T_m \) defined in \(X_m \) as follows:
\[T_m x(y) = \int_{\Omega_m} G_m(y, z) \tilde{F}_x(z, x(z)) \, dz \quad \text{for } x \in X_m, \]
where \(G_m \) is the Green’s function corresponding to the linear homogeneous problem associated with (2.2), and
\[\tilde{F}_x(z, x) := \begin{cases} F_x(z, 0) & \text{for } x < 0 \text{ and } z \in \Omega_m, \\
F_x(z, x) & \text{for } 0 \leq x \leq a \text{ and } z \in \Omega_m, \\
F_x(z, a) & \text{for } x > a \text{ and } z \in \Omega_m, \end{cases} \]
where \(a \) was given in (G2). By the above assumptions \(T_m \) is well defined on \(L^2(\Omega_m, \mathbb{R}) \) and is continuous and compact.

It is clear that our problem is equivalent to the existence of a fixed point of \(T_m \) in \(X_m \). So we have to show that \(T_m \) maps \(X_m \) into \(X_m \). To this end we prove the following lemma:

Lemma 2.1. For each \(m \in N_0 \) and each \(x_0 \in X_m \) there exists \(\bar{x} \in X_m \) such that
\[
\begin{cases}
-\Delta \bar{x}(y) = F_x(y, x_0(y)) & \text{for a.e. } y \in \Omega_m, \\
x \in W^{1,2}_0(\Omega_m, \mathbb{R}),
\end{cases}
\]

Proof. Since \(M_0|_{\Omega_m} \in X_m \) we get \(X_m \neq \emptyset \). Let us fix \(x_0 \in X_m \) and investigate the existence of solution for the linear problem
\[
\begin{cases}
-\Delta x(y) = F_x(y, x_0(y)) & \text{for a.e. } y \in \Omega_m, \\
x \in W^{1,2}_0(\Omega_m, \mathbb{R}).
\end{cases}
\]
From assumptions (G1)–(G3) we can derive that
\[
0 \leq F_x(y, x_0(y)) \leq F_x(y, M(y)) \leq -\Delta M_0(y)
\]
a.e. in \(\Omega_m \) and \(F_x(\cdot, x_0(\cdot)) \in L^2(\Omega_m, \mathbb{R}) \). It is well known that problem (2.3) has a unique solution \(\bar{x} \in W^{1,2}_0(\Omega_m, \mathbb{R}) \cap W^{2,2}_{\text{loc}}(\Omega_m, \mathbb{R}) \) (see e.g. [5, Th. 8.9]).
Our task is now to show that $\bar{x} \in X_m$. To this end we can observe that, by (G3), $\Delta \bar{x} \leq 0$ a.e. in Ω_m. Applying the weak maximum principle (see e.g. [5, Th. 8.1]) we infer that $\bar{x} \geq 0$ a.e. in Ω_m. On the other hand, taking into account (2.4), we obtain
\[-\Delta \bar{x}(y) = F_x(y, x_0(y)) \leq -\Delta M_0(y) \]
a.e. in Ω_m, so that
\[\Delta (\bar{x}(y) - M_0(y)) \geq 0. \]
Moreover we know that $\bar{x} - M_0 \leq 0$ in $\partial \Omega_m$. Finally, using again the weak maximum principle, we find that $\bar{x} \leq M_0$ a.e. in Ω_m and further $0 \leq \bar{x} \leq M$ a.e. in Ω_m. Thus $\bar{x} \in X_m$.

By the above lemma, for each $m \in N_0$, the continuous and compact operator T_m maps the convex set $X_m \subset L^2(\Omega_m, \mathbb{R})$ into itself. Now Schauder’s fixed point theorem gives the existence of a fixed point $x_m \in X_m$ of T_m. Thus we have proved the following result.

Theorem 2.2. If hypotheses (\(\Omega\)) and (G1)-(G4) are satisfied then for each $m \in N_0$, there exists a solution $x_m \in X_m$ for (2.2).

Now we define the sequence $\{\bar{x}_m\}_{m \in N_0}$ as follows: for each $m \in N_0$,
\[\bar{x}_m(y) = \begin{cases}
 x_m(y) & \text{for } y \in \Omega_m, \\
 0 & \text{for } y \in \Omega \setminus \Omega_m,
\end{cases} \]
where x_m is a solution for (2.2). Its existence follows from Theorem 2.2. Our task is to prove that the weak limit of a certain subsequence of $\{\bar{x}_m\}_{m \in N_0}$ is a solution for (1.1). A similar approach was also used e.g. by Noussair, and Noussair and Swanson (see [11]-[13]). However, we shall consider a quite different class of elliptic problems.

Now we formulate our main result:

Theorem 2.3. Assume hypotheses (\(\Omega\)) and (G1)-(G4). Then there exists a solution $x_0 \in X$ of the problem
\[
\begin{cases}
 -\Delta x(y) = F_x(y, x(y)) & \text{for a.e. } y \in \Omega, \\
 x \in W^{1,2}_0(\Omega, \mathbb{R}).
\end{cases}
\]

Proof. For each $m \in N_0$, Theorem 2.2 yields the existence of $x_m \in X_m$ such that
\[
\begin{cases}
 -\Delta x_m(y) = F_x(y, x_m(y)) & \text{for a.e. } y \in \Omega_m, \\
 x_m \in W^{1,2}_0(\Omega_m, \mathbb{R}).
\end{cases}
\]
By the definitions of X_m and \bar{x}_m we have
\[0 \leq \bar{x}_m(y) \leq M(y) \quad \text{a.e. in } \Omega. \]
Moreover using (2.6), the monotonicity of $\tilde{T} \ni x \mapsto F_x(y, x)$ and the fact that $F_x(\cdot, M(\cdot)) \in L^2(\Omega, \mathbb{R})$, we can derive that for each $m \in N_0$,

\begin{equation}
\begin{aligned}
\int_\Omega |\nabla \varphi_m(y)|^2 \, dy &= \int_\Omega (\nabla \varphi_m(y), \nabla \varphi_m(y)) \, dy \\
&= \int_\Omega F_x(y, \varphi_m(y)) \varphi_m(y) \, dy \leq \left[\int_\Omega (F_x(y, M(y))^2 \, dy \right]^{1/2} \left[\int_\Omega (M(y))^2 \, dy \right]^{1/2}.
\end{aligned}
\end{equation}

Taking into account (2.8) we derive that the sequence $\{\nabla \varphi_m\}_{m \in N_0}$ is bounded in $L^2(\Omega, \mathbb{R}^n)$, so (up to a subsequence) $\{\nabla \varphi_m\}_{m \in N_0}$ tends weakly in $L^2(\Omega, \mathbb{R}^n)$ to a certain $v \in L^2(\Omega, \mathbb{R}^n)$. Thus we obtain the existence of $\varphi_1 \in W^{1,2}(\Omega, \mathbb{R})$ such that $v = \nabla \varphi_1$ in $L^2(\Omega, \mathbb{R}^n)$ and further (up to a subsequence again) $\{\varphi_m(y)\}_{m \in N_0}$ tends to $\varphi_1(y)$ a.e. in Ω, so $\varphi_1(y) \leq M(y)$ a.e. in Ω.

Now we claim that

$$\Delta \varphi_m \rightharpoonup p_1 \quad \text{(weakly) in } L^2(\Omega, \mathbb{R}).$$

Indeed, from (G2) and the definition of φ_m one obtains the estimate

$$|\Delta \varphi_m(y)| \leq F_x(y, \varphi_m(y)) \leq F_x(y, M(y)) \quad \text{a.e. on } \Omega,$$

for each $m \in N_0$. Therefore $\{\Delta \varphi_m\}_{m \in N_0}$ is bounded in $L^2(\Omega, \mathbb{R})$, and consequently, passing to a subsequence if necessary, it tends weakly to a certain element p_1 in $L^2(\Omega, \mathbb{R})$. So for any $h \in C^\infty_c(\Omega, \mathbb{R})$,

\begin{equation}
\begin{aligned}
\int_\Omega (\nabla \varphi_1(y), \nabla h(y)) \, dy &= \lim_{m \to \infty} \int_\Omega (\nabla \varphi_m(y), \nabla h(y)) \, dy \\
&= - \lim_{m \to \infty} \int_\Omega \Delta \varphi_m(y) h(y) \, dy = - \int_\Omega p_1(y) h(y) \, dy,
\end{aligned}
\end{equation}

which means that $\Delta \varphi_1(y) = p_1(y)$ for a.e. $y \in \Omega$. On the other hand, by (2.6), we obtain, for $h \in C^\infty_c(\mathbb{R}^n, \mathbb{R})$,

\begin{equation}
\begin{aligned}
\int_\Omega -\Delta \varphi_1(y) h(y) \, dy &= \lim_{m \to \infty} \int_\Omega -\Delta \varphi_m(y) h(y) \, dy \\
&= \lim_{m \to \infty} \int_{\Omega_m} -\Delta \varphi_m(y) h(y) \, dy = \lim_{m \to \infty} \int_{\Omega_m} F_x(y, \varphi_m(y)) h(y) \, dy \\
&= \lim_{m \to \infty} \left[\int_\Omega F_x(y, \varphi_m(y)) h(y) \, dy - \int_{\Omega \setminus \Omega_m} F_x(y, \varphi_m(y)) h(y) \, dy \right] \\
&= \lim_{m \to \infty} \left[\int_\Omega F_x(y, \varphi_m(y)) h(y) \, dy - \int_{\Omega \setminus \Omega_m} F_x(y, 0) h(y) \, dy \right].
\end{aligned}
\end{equation}
Taking into account (G2)-(G3), the Lebesgue dominated convergence theorem leads to
\begin{equation}
\lim_{m \to \infty} \int_{\Omega} F(x,y, \varphi_m(y))h(y) \, dy = \int_{\Omega} F(x,y, \varphi_1(y))h(y) \, dy.
\end{equation}
Moreover, by the continuity of the integral as a function of a set, and the fact that \(\bigcup_{n=0}^{\infty} \Omega_n = \Omega \) and \(\Omega_n \subset \Omega_{n+1} \subset \Omega \) for all \(m \in N_0 \), we have
\begin{equation}
\lim_{m \to \infty} \int_{\Omega \setminus \Omega_n} F(x,y, 0)h(y) \, dy = 0.
\end{equation}
Combining (2.9) with (2.10) and (2.11) we obtain
\begin{equation}
\int_{\Omega} -\Delta \varphi_1(y)h(y) \, dy = \int_{\Omega} F(x,y, \varphi_1(y))h(y) \, dy.
\end{equation}
Since \(h \in C_c^\infty(\mathbb{R}^n, \mathbb{R}) \) was arbitrary we infer that \(\varphi_1 \in X \) satisfies (2.5).

3. Applications

Example 1. Let us consider (1.1) with \(\Omega = \{ y = (y_1, y_2) \in \mathbb{R}^2 : 1/10 < y_1 < 1/2 \ \text{and} \ y_2 < 6 \} \), and
\[F(y, x) = \frac{25}{11} \ln |x + 5| - \frac{36}{11} \ln |6 - x| - x + \left(\frac{1}{4} x^4 + x \right) \frac{1}{y^4} \]
for \(y \in \Omega \) and all \(x \in \mathbb{R} \setminus \{-5, 6\} \). Then the problem
\begin{equation}
\begin{cases}
-\Delta x(y) = \frac{(x(y))^2}{(6-x(y))(x(y)+5)} + \frac{(x(y))^3+1}{(y_2)^4}, & \text{for a.e. } y \in \Omega, \\
x \in W_0^{1,2}(\Omega, \mathbb{R}),
\end{cases}
\end{equation}
has at least one positive solution \(x_0 \) such that \(x_0(y) \leq M \) a.e. on \(\Omega \).

Proof. Our task is to find \(0 < M_0 \leq M \) a.e. on \(\Omega \) such that (2.1) holds. Let us consider
\[M_0(y_1, y_2) = \frac{1}{2} \left[\frac{y_1}{(y_1)^4 + 1/20} + \frac{1}{(y_2)^4} \right] \]
and \(M(y_1, y_2) = 1.1 M_0(y_1, y_2) \). It is easy to check that \(M_0 \in W^{1,2}(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R}) \), \(\Delta M_0(\cdot) \in L^2(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R}) \) and
\[-F_x(y, M(y)) \geq \Delta M_0(y) \quad \text{a.e. in } \Omega, \]
where
\[F_x(y, x) = \frac{x^2}{(6-x)(x+5)} + \frac{x^3+1}{(y_2)^4}. \]
Since \(0 \leq M(y_1, y_2) \leq 3.5 \) on \(\Omega \) and \(F(y, \cdot) \) is smooth and convex, e.g. in \((-1, 4)\), assumptions (G2)-(G4) are satisfied. Thus, by Theorem 2.3 there exists a nonnegative, nontrivial and bounded solution of (3.1).
Of course our results can also be applied to sublinear problems.

Example 2. The sublinear elliptic BVP

\[
(3.2) \quad \begin{cases}
-\Delta x(y) = \frac{(x(y))^2}{(4-x(y))(5+x(y))} + \sqrt{x(y)} + \frac{y_1}{(y_2)^6} & \text{a.e. in } \Omega, \\
x \in W^{1,2}_0(\Omega, \mathbb{R}),
\end{cases}
\]

with \(\Omega \) given as in Example 1, has at least one positive solution.

Proof. One can easily check that for \(M_0, M \) from Example 1, assumption \((G1)\) is satisfied. Moreover

\[
F(y, x) = -x - \frac{16}{9} \ln |4-x| + \frac{25}{9} \ln |x+5| + \frac{2}{3} (x + 1)^{3/2} \frac{y_1}{(y_2)^6}
\]

is continuously differentiable and convex in \(x \), e.g. in \(\tilde{I} = (-\frac{1}{2}, 3\frac{1}{2}) \). Finally, \((G2)-(G4)\) hold. Thus Theorem 2.3 gives the existence of a nonnegative, nontrivial and bounded solution of (3.2). \(
\)

4. Continuous dependence on parameters. Continuous dependence of solutions for elliptic problems has been widely discussed by S. Walczak since the 1990’s (see e.g. [6]-[8], [20]-[22]). It was also studied in [15] (for bounded \(\Omega \)) and in [16] (for an exterior domain).

This section is devoted to the following PDE:

\[
(4.1) \quad \begin{cases}
-\Delta x(y) = F_x(y, x(y)) + u(y) & \text{for a.e. } y \in \Omega, \\
x \in W^{1,2}_0(\Omega, \mathbb{R}),
\end{cases}
\]

with functional parameters \(u \) from a certain subset \(U \) of \(L^2(\Omega, \mathbb{R}_+) \). We introduce the following assumption:

\[(G1u)\] there exists \(M_0 \in W^{1,2}(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R}) \) such that for each \(u \in U \) there exist \(M_u, M_{0u} \in W^{1,2}(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R}) \) such that

\[
0 < M_{0u}(y) < M_u(y) \leq M_0(y)
\]

for a.e. \(y \in \Omega \), and \(\Delta M_{0u}(\cdot) \in L^2(\Omega, \mathbb{R}) \cap L^\infty(\Omega, \mathbb{R}) \) and for each bounded set \(\Omega' \subset \Omega \),

\[
(4.2) \quad -F_x(y, M_u(y)) \geq \Delta M_{0u}(y)
\]

a.e. in \(\Omega' \), \(M_u|_{\partial \Omega}, M_{0u}|_{\partial \Omega} \geq 0 \).

We shall consider the case when \((\Omega), (G2)-(G4)\) hold for \(M = M_0 \) a.e. in \(\Omega \).

Theorem 4.1. Assume hypotheses \((\Omega), (G1u)\) and \((G2)-(G4)\). Suppose that \(\{u_m\}_{m \in \mathbb{N}} \subset U \) tends weakly to 0 in \(L^2(\Omega, \mathbb{R}_+) \). For each \(m \in \mathbb{N} \), denote by \(x_m \in X_{u_m} \) a solution of (4.1) corresponding to \(u_m \), namely

\[
(4.3) \quad -\Delta x_m(y) = F_x(y, x_m(y)) + u_m(y)
\]
for a.e. \(y \in \Omega \), with
\[
X_{u_m} = \{ x \in W^{1,2}_0(\Omega, \mathbb{R}) : 0 \leq x(y) \leq M_{u_m}(y) \text{ a.e. on } \Omega \}
\]
and \(\Delta x \in L^2(\Omega, \mathbb{R}) \).

Then \(\{ x_m \}_{m \in \mathbb{N}} \) (up to a subsequence) tends weakly to \(x_0 \) in \(W^{1,2}_0(\Omega, \mathbb{R}) \), where \(x_0 \in X_0 \) is a solution of the equation
\[
(4.4) \quad -\Delta x(y) = F_x(y, x(y)) \quad \text{for a.e. } y \in \Omega.
\]

Proof. We start with the observation that \((G1u)\), the properties of \(F_x \) and (4.3) yield
\[
(4.5) \quad \int\limits_\Omega |\nabla x_m(y)|^2 \, dy = \int\limits_\Omega (-\Delta x_m(y) x_m(y)) \, dy \\
= \int\limits_\Omega F_x(y, x_m(y)) x_m(y) \, dy + \int\limits_\Omega u_m(y) x_m(y) \, dy \\
\leq \left[\int\limits_\Omega (F_x(y, M_0(y)))^2 \, dy \right]^{1/2} \left[\int\limits_\Omega (M_0(y))^2 \, dy \right]^{1/2} + \int\limits_\Omega u_m(y) M_0(y) \, dy
\]
for each \(m \in \mathbb{N} \). Combining (4.5) with the weak convergence of \(\{ u_m \}_{m \in \mathbb{N}} \) to 0 in \(L^2(\Omega, \mathbb{R}_+) \) we infer that \(\{ \nabla x_m \}_{m \in \mathbb{N}} \) is bounded in \(L^2(\Omega, \mathbb{R}) \), and consequently, it is (up to a subsequence) weakly convergent in \(L^2(\Omega, \mathbb{R}) \) to a certain \(v \in L^2(\Omega, \mathbb{R}) \). This yields the existence of \(x_0 \in W^{1,2}_0(\Omega, \mathbb{R}) \) such that \(v = \nabla x_0 \) in \(L^2(\Omega, \mathbb{R}_n) \). We can also derive that some subsequence of \(\{ x_m \}_{m \in \mathbb{N}} \) (still denoted by \(\{ x_m \}_{m \in \mathbb{N}} \)) tends to \(x_0 \) a.e. on \(\Omega \), which implies that \(x_0 \leq M_0 \) a.e. in \(\Omega \).

Our task is to show that \(x_0 \) is a solution for (4.4). To see this, we use again (4.3), monotonicity of \(F_x(y, \cdot) \) and the fact that \(u_m \to 0 \) in \(L^2(\Omega, \mathbb{R}_+) \), and obtain the boundedness of \(\{ \Delta x_m \}_{m \in \mathbb{N}} \) in \(L^2(\Omega, \mathbb{R}) \). So (up to a subsequence) \(\{ \Delta x_m \}_{m \in \mathbb{N}} \) is weakly convergent to \(p \) in \(L^2(\Omega, \mathbb{R}) \). Analysis similar to that in the proof of Theorem 2.3 shows that \(p = \Delta x_0 \) a.e. on \(\Omega \). Taking into account (4.3) and the weak convergence of \(\{ u_m(\cdot) \}_{m \in \mathbb{N}} \) to 0 in \(L^2(\Omega, \mathbb{R}_+) \), and employing the scheme used in the proof of (2.9), we get, for any \(h \in C_c^\infty(\Omega, \mathbb{R}) \),
\[
(4.6) \quad \int\limits_\Omega -\Delta x_0(y) h(y) \, dy = \lim_{m \to \infty} \int\limits_\Omega -\Delta x_m(y) h(y) \, dy \\
= \lim_{m \to \infty} \int\limits_\Omega (F_x(y, x_m(y)) + u_m(y)) h(y) \, dy = \int F_x(y, x_0(y)) h(y) \, dy.
\]
Since \(h \in C_c^\infty(\Omega, \mathbb{R}) \) was arbitrary we conclude that \(x_0 \in X \) satisfies (4.4).

Summarizing we have proved that the sequence \(\{ x_m \}_{m \in \mathbb{N}} \) of solutions corresponding to the sequence \(\{ u_m \}_{m \in \mathbb{N}} \) of parameters tends weakly in \(W^{1,2}_0(\Omega, \mathbb{R}) \) (up to a subsequence) to \(x_0 \) provided that \(u_m(\cdot) \to 0 \) in \(L^2(\Omega, \mathbb{R}_+) \) as \(m \to \infty \).
Semilinear elliptic problems in unbounded domains

References

Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: orpela@math.uni.lodz.pl

Received on 20.9.2006;
revised version on 5.10.2006