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FINITE TIME ASYMPTOTICS OF FLUID AND RUIN
MODELS: MULTIPLEXED FRACTIONAL BROWNIAN

MOTIONS CASE

Abstract. Motivated by applications in queueing fluid models and ruin
theory, we analyze the asymptotics of

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
,

where {BHi(t) : t ≥ 0}, i = 1, . . . , n, are independent fractional Brownian
motions with Hurst parameters Hi ∈ (0, 1] and λ1, . . . , λn > 0. The asymp-
totics takes one of three different qualitative forms, depending on the value
of mini=1,...,nHi.

1. Introduction. Let {BHi(t) : t ≥ 0}, i = 1, . . . , n, be independent
fractional Brownian motions with Hurst parameters Hi ∈ (0, 1], i.e. centered
Gaussian processes with stationary increments, continuous sample paths a.s.,
and variance functions σ2

Hi
(t) = t2Hi , i = 1, . . . , n.

This paper focuses on the analysis of the tail distribution of

(1) P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
,

with λ1, . . . , λn > 0. Apart from theoretical interest in (1), our motivation
comes from applications of (1) to some problems arising in:

• Gaussian queueing models. A vast literature on analysis of traffic in
large communication networks focuses on models where the traffic is assumed
to be a Gaussian process. There are at least two reasons why Gaussian
processes are an appropriate choice here. On the one hand, the class of

2010 Mathematics Subject Classification: Primary 60G15; Secondary 60G70, 68M20.
Key words and phrases: exact asymptotics, fractional Brownian motion, Gaussian process,
supremum.

DOI: 10.4064/am38-1-8 [107] c© Instytut Matematyczny PAN, 2011



108 K. Dębicki and G. Sikora

Gaussian processes delivers a broad range of correlation structures, which is
convenient from the modeling point of view. On the other (theoretic-level)
hand, it has been proven that under heavy traffic parameterization, a large
number of i.i.d. 0-1 alternating renewal processes (regarded as a natural
model of input to the network) can be approximated by a Gaussian process;
see, e.g., [3, 8, 10]. Importantly, the statistical measurements that showed the
presence of long-range dependence and self-similarity of the traffic, turned the
attention of researchers to the class of fractional Brownian motions, [11]. Let
us consider a fluid queue with infinite buffer capacity, with the accumulated
input over the time interval [0, t) modeled by superposition of a number of
independent fractional Brownian motions

∑n
i=1 λiBHi(t) and drained with

a constant rate c > 0. Let {Q(t) : t ≥ 0} be the buffer content process.
Then, providing that Q(0) = 0 a.s. and invoking Reich [14], the probability
that the transient buffer content Q(T ) at time T exceeds a level u > 0
equals (1). The steady-state analog of the above problem, i.e. the asymptotics
of P(supt≥0(

∑n
i=1 λiBHi(t)−ct) > u), was analyzed in, e.g., [15, 5]. We refer

to [11, 6, 4] and references therein for a selection of works that deal with the
case of a single fractional Brownian motion source.
• Ruin models. The tail probability (1) has a natural interpretation in

the context of ruin problems. Using the fact that {BH(t)} =d {−BH(t)},
(1) can be rewritten as the finite-time ruin probability

P
(

inf
t∈[0,T ]

(
u+ ct−

n∑
i=1

λiBHi(t)
)
< 0
)

for the ruin model with claims modeled by
∑n

i=1 λiBHi(t), with initial capital
u and premium rate c. We refer to [9] for the limit-theoretic model that
justifies approximation of the claims by fractional Brownian motion.

Contribution. The aim of this paper is to give the exact asymptotics of
(1) as u → ∞. It appears that the asymptotics takes one of three different
quantitative forms, depending on the value of mini=1,...,nHi. Additionally,
under the condition that mini=1,...,nHi ≥ 1/2 (i.e. the increments of frac-
tional Brownian motions are nonnegatively correlated) we obtain uniform
upper and lower bounds for (1), which (up to a constant) are asymptotically
consistent.

Notation. Let Ψ(u) = P (N > u), where N denotes the standard nor-
mal random variable. Pickands’s constants HH , which appear in the exact
asymptotics, are defined by the following limit:

HH := lim
T→∞

E exp(supt∈[0,T ](
√

2BH(t)− t2H))
T

.

We refer to [12] for the analysis of the properties of HH .



Fluid and ruin models 109

Organization. The main results of the paper are presented in Section 2.
The proofs are deferred to Section 3.

2. Main results. In this section we provide the asymptotics and esti-
mates for (1). Since for given H1 = H2 = H we have λ1BH1(t)+λ2BH2(t) =d√
λ2

1 + λ2
2BH(t), we assume that

H1 < · · · < Hn.

In the following theorem we give the exact asymptotics of (1).

Theorem 2.1. Let {BHi(t) : t ≥ 0}, i = 1, . . . , n, be independent frac-
tional Brownian motions and let λi > 0, i = 1, . . . , n.

(i) If H1 < 1/2, then as u→∞,

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
= HH1

(
u+ cT∑n
i=1 λ

2
iT

2Hi

)(1−2H1)/H1 [λ2
1/2]1/2H1∑n

i=1Hiλ2
iT

2Hi−1

× Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
(1 + o(1)).

(ii) If H1 = 1/2, then as u→∞,

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
=
[
1+

λ2
1/2

λ2
1/2 +

∑n
i=2Hiλ2

iT
2Hi−1

]
Ψ

(
u+ cT√

λ2
1T +

∑n
i=2 λ

2
iT

2Hi

)
(1+o(1)).

(iii) If H1 > 1/2, then as u→∞,

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
= Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
(1 + o(1)).

The proof of Theorem 2.1 is given in Section 3.

Remark 2.2. Theorem 2.1 generalizes the results of [9] and [4] where
models with a single fractional Brownian motion (n = 1) were considered.

Remark 2.3. The qualitative type of the asymptotics obtained in The-
orem 2.1 differs from the one for an infinite time horizon. In particular in
[15] it was proved that if 2H2 > 1 +H1, then

P
(

sup
t∈[0,∞)

(BH1(t)+BH2(t)−ct) > u
)

= P
(

sup
t∈[0,∞)

(BH2(t)−ct) > u
)

(1+o(1))
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as u → ∞. From Theorem 2.1 one can observe that this is not the case for
a finite time horizon, where each process contributes to the asymptotics.

In the following theorem we present an upper and a lower estimate for (1).

Theorem 2.4. Let {BHi(t) : t ≥ 0}, i = 1, . . . , n, be independent frac-
tional Brownian motions and let λi > 0, i = 1, . . . , n.

(i) For each T, u ≥ 0,

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
≥ Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
.

(ii) If H1 ≥ 1/2, then for each T, u ≥ 0,

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
≤ Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
+ exp

(
−2cTu∑n
i=1 λ

2
iT

2Hi

)
Ψ

(
u− cT√∑n
i=1 λ

2
iT

2Hi

)
.

The proof of Theorem 2.4 is given in Section 3.

Remark 2.5. IfH1 > 1/2, then the estimates in Theorem 2.4 are asymp-
totically consistent, up to a constant of 2, with the asymptotics of Theo-
rem 2.1. The lower bound (i) is asymptotically exact in this case.

3. Proofs. To prove Theorem 2.1 we introduce some notation. Let

B̃(t) =
n∑
i=1

λiBHi(t).

Note that B̃(t) is a centered Gaussian process with stationary increments
and variance function σ2eB(t) =

∑n
i=1 λ

2
i t

2Hi . A bar will always indicate a
standardized process, that is, X(t) := X(t)/σX(t) for some Gaussian process
X(t). Let

mu(t) :=
u+ ct

σ eB(t)
and FRα := lim

S→∞
E exp

(
sup
t∈[0,S]

(Bα/2(t)− (1 +R)tα)
)

for α ∈ (0, 2] and R > 0.
The proof of Theorem 2.1 is based on an appropriate use of Theorem 1

of Piterbarg and Prisyazhnyuk [13] (see also Theorem 2.2 of Konstant and
Piterbarg [7]), which we present in a form suitable for our application.

Theorem 3.1. Let (ξ(t))t∈[0,T ] be a centered Gaussian process with con-
tinuous sample paths a.s. and variance function σ2

ξ (·) such that the maximum
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of σξ(·) on [T/2, T ] is attained at the unique point t = T with σξ(T ) = 1.
Assume that:

(a) there exist A, β > 0 such that

σξ(t) = 1−A|T − t|β(1 + o(1)) as t→ T ;

(b) there exist D,α > 0 such that

1− Cov(ξ̄(t), ξ̄(s)) = D|t− s|α + o(|t− s|α) as s, t→ T ;

(c) there exist C,α1 > 0 such that, for s, t ∈ [T/2, T ],

E(ξ(t)− ξ(s))2 ≤ C|t− s|α1 .

Then:

(i) for β > α and Gα,β := Hα/2Γ (1/β)D1/αβ−1A−1/β, as u→∞,

P
(

sup
t∈[T/2,T ]

ξ(t) > u
)

= Gα,βu2/α−2/βΨ(u)(1 + o(1));

(ii) for β = α and R := A/D, as u→∞,

P
(

sup
t∈[T/2,T ]

ξ(t) > u
)

= FRα Ψ(u)(1 + o(1));

(iii) for β < α, as u→∞,

P
(

sup
t∈[T/2,T ]

ξ(t) > u
)
∼ Ψ(u).

3.1. Proof of Theorem 2.1. Observe that

P
(

sup
t∈[0,T ]

(B̃(t)− ct) > u
)
≥ π(u),

P
(

sup
t∈[0,T ]

(B̃(t)− ct) > u
)
≤ P

(
sup

t∈[0,T/2]
(B̃(t)− ct) > u

)
+ π(u),

where

π(u) := P
(

sup
t∈[T/2,T ]

(B̃(t)− ct) > u
)

(2)

= P
(

sup
t∈[T/2,T ]

B̃(t)
mu(T )
mu(t)

> mu(T )
)
.

Since

1− mu(T )
mu(t)

=
σ eB(T )− σ eB(t)

σ eB(T )
+
σ eB(t)c(t− T )
(u+ ct)σ eB(T )

,

for each ε > 0 and t ∈ [T/2, T ] we have

(3) 1−
σ eB(T )− σ eB(t)

σ eB(T )
≤ mu(T )

mu(t)
≤ 1− (1− ε)

σ eB(T )− σ eB(t)
σ eB(T )
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for u sufficiently large. Let

Xε(t) := B̃(t)
(

1− (1− ε)
σ eB(T )− σ eB(t)

σ eB(T )

)
for ε ∈ [0, 1). Then, from (3), for each ε ∈ (0, 1) and u sufficiently large,

π(u) ≤ π1(u) := P
(

sup
t∈[T/2,T ]

Xε(t) > mu(T )
)
,

π(u) ≥ π2(u) := P
(

sup
t∈[T/2,T ]

X0(t) > mu(T )
)
.

Let us focus on the analysis of π1(u). Let ε ∈ (0, 1). Then σXε(t) attains its
unique maximum over [T/2, T ] at t = T , with σXε(T ) = 1. Moreover

σXε(t) = 1− (1− ε)
σ eB(T )− σ eB(t)

σ eB(T )

= 1− (1− ε)
∑n

i=1Hiλ
2
iT

2Hi−1∑n
i=1 λ

2
iT

2Hi
|T − t|+ o(|T − t|)

as t ↑ T , and

Cov(Xε(s), Xε(t)) = Cov(B̃(s), B̃(t))

= 1− 1
2

[
λ2

1∑n
i=1 λ

2
iT

2Hi

]
|s− t|2H1 + o(|s− t|2H1)

as s, t→ T , and

E(Xε(s)−Xε(t))2 = E
(
ε(B(s)−B(t)) +

1− ε
σ eB(T )

(B̃(s)− B̃(t))
)2

≤ 2εE(B(s)−B(t))2 +
2(1− ε)2

σ2eB(T )
E(B̃(s)− B̃(t))2

≤
(8ε2σ2eB(T )

σ2eB(T/2)
+

2(1− ε)2

σ2eB(T )

)
E(B̃(s)− B̃(t))2

≤ C|s− t|2H1

for s, t ∈ [T/2, T ] and some positive constant C. Thus the process Xε(t)
satisfies the conditions of Theorem 3.1 with

A = (1− ε)
∑n

i=1Hiλ
2
iT

2Hi−1∑n
i=1 λ

2
iT

2Hi
, D =

1
2

[
λ2

1∑n
i=1 λ

2
iT

2Hi

]
,

α = 2H1 and β = 1, which straightforwardly implies that
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(i) if H1 < 1/2, then as u→∞,

π1(u) = (1− ε)−1HH1

(
u+ cT∑n
i=1 λ

2
iT

2Hi

)(1−2H1)/H1 [λ2
1/2]1/2H1∑n

i=1Hiλ2
iT

2Hi−1

×Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
(1 + o(1));

(ii) if H1 = 1/2, then as u→∞,

π1(u) =
[
1 +

λ2
1/2

(1− ε)(λ2
1/2 +

∑n
i=2Hiλ2

iT
2Hi−1)

]
(4)

×Ψ

(
u+ cT√

λ2
1T +

∑n
i=2 λ

2
iT

2Hi

)
(1 + o(1));

(iii) if H1 > 1/2, then as u→∞,

π1(u) = Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
(1 + o(1)).

In (4) we used the fact that E exp(supt∈[0,∞)

√
2B1/2(t)−(1+b)t) = (1 + b)/b

for b > 0, which directly follows from the distribution of supt∈[0,∞)

√
2B1/2(t)

− (1 + b)t) being exponential with parameter 1 + b.
Hence, letting ε→ 0, we get the asymptotic upper bound for π(u) which

is consistent with the conclusion of Theorem 2.1.
For π2(u) the argument is the same and thus we omit it.
Finally we observe that due to Borell’s inequality (see, e.g., Adler [1]),

for some constant C1,

P
(

sup
t∈[0,T/2]

(B̃(t)− ct) > u
)
≤ 2 exp

(
− (u+ C1)2

2σ2eB(T/2)

)
= o(π(u))

as u→∞. This completes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.4. (i) It suffices to observe that for each u, T
we have

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
≥ P

( n∑
i=1

λiBHi(T )− cT > u
)

= Ψ

(
u+ cT√∑n
i=1 λ

2
iT

2Hi

)
.

This completes the proof of (i).
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(ii) Define a Gaussian process {Y (t) : t ≥ 0} by

Y (t) = B1/2

( n∑
i=1

λ2
i t

2Hi

)
,

where {B1/2(t) : t ≥ 0} is a standard Brownian motion. We have

E[Y (t)] = 0 = E[B̃(t)], σ2
Y (t) =

n∑
i=1

λ2
i t

2Hi = σ2eB(t).

Since H1 ≥ 1/2, σ2eB(t) is convex. Thus for 0 ≤ s ≤ t we have

E[B̃(s)B̃(t)] = E
[( n∑

i=1

λiBHi(s)
)( n∑

i=1

λiBHi(t)
)]

=
n∑
i=1

λ2
iE[BHi(s)BHi(t)] =

n∑
i=1

λ2
i

2
[s2Hi + t2Hi − (t− s)2Hi ]

≥
n∑
i=1

λ2
i s

2Hi = E[Y (s)Y (t)].

Hence, in view of Slepian’s inequality (see, e.g., Adler [1]), we have

P
(

sup
t∈[0,T ]

( n∑
i=1

λiBHi(t)− ct
)
> u

)
≤ P

(
sup
t∈[0,T ]

(Y (t)− ct) > u
)

= P
(

sup
t∈[0,T ]

(B1/2(σ2
Y (t))− ct) > u

)
= P

(
sup

t∈[0,σ2eB(T )]

(B1/2(t)− c(σ2eB)−1(t)) > u
)
,

where (σ2eB)−1(t) is the inverse function of σ2eB(t). Since (σ2eB)−1(t) is concave,
we have (σ2eB)−1(t) ≥ (T/σ2eB(T ))t for t ∈ [0, σ2eB(T )], which implies

P
(

sup
t∈[0,σ2eB(T )]

(B1/2(t)− c(σ2eB)−1(t)) > u
)

≤ P
(

sup
t∈[0,σ2eB(T )]

(
B1/2(t)− c T

σ2eB(T )
t

)
> u

)
.

Finally, using the formula for the distribution of supt∈[0,T ](B1/2(t)−At) (see
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Baxter and Donsker [2]), we have

P
(

sup
t∈[0,σ2eB(T )]

(
B1/2(t)− c T

σ2eB(T )
t

)
> u

)

= Ψ

(
u+ cT

σ eB(T )

)
+ exp

(
−2c

T

σ2eB(T )
u

)
Ψ

(
u− cT
σ eB(T )

)
.

This completes the proof of (ii).
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