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INVARIANCE OF RELATIVE INVERSE FUNCTION
ORDERINGS UNDER COMPOSITIONS OF DISTRIBUTIONS

Abstract. Bartoszewicz and Benduch (2009) applied an idea of Lehmann
and Rojo (1992) to a new setting and used the GTTT transform to define
invariance properties and distances of some stochastic orders. In this paper
Lehmann and Rojo’s idea is applied to the class of models which is based on
distributions which are compositions of distribution functions on [0, 1] with
underlying distributions. Some stochastic orders are invariant with respect
to these models.

1. Preliminaries. Let X and Y be two random variables, F and G
their respective probability distribution functions and f and g their density
functions, if they exist. Denote by F = 1− F the tail (or survival function)
of F , by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), the quantile function
and by F−1(0) and F−1(1) the lower and upper bounds of the support
of F respectively. We identify the distribution functions F and G with the
respective probability distributions and denote their supports by SF , SG
respectively. We denote by fF−1 the composition of f and F−1 and by G−1F
the composition of G−1 and F (similarly for other densities, distributions
and quantile functions). We use increasing in place of nondecreasing and
decreasing in place of nonincreasing.

We deal with some stochastic orders. Let us recall their definitions and
some properties for completeness. For more details we refer to Shaked and
Shanthikumar (2007).

We say that F is smaller than G in the likelihood ratio order (F ≤lr G) if
g(x)/f(x) is increasing. We say that F is smaller than G in the hazard rate
order (F ≤hr G) if G(x)/F (x) is increasing, or rF (x) ≥ rG(x) for every x if
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F and G are absolutely continuous, where rF (x) = f(x)/F (x) is the hazard
rate function of F . We say that F is smaller than G in the reversed hazard
rate order (F ≤rh G) if G(x)/F (x) is increasing, or r̆F (x) ≤ r̆G(x) for every
x if F and G are absolutely continuous, where r̆F (x) = f(x)/F (x) is the
reversed hazard rate function of F . We say that F is stochastically smaller
than G (F ≤st G) if F (x) ≥ G(x) for every x, or equivalently F (x) ≤ G(x)
for every x.

Lehmann and Rojo (1992) noticed that these stochastic orders may be
defined by properties of the function k(u) = GF−1(u), u ∈ (0, 1): F ≤lr G
⇔ k(u) is convex; F ≤hr G ⇔ 1 − k−1(1 − u) is star-shaped; F ≤rh G ⇔
k(u) is star-shaped; F ≤st G ⇔ k(u) ≤ u for all u ∈ (0, 1).

It is also well known that

F ≤lr G ⇒ F ≤hr G

⇓ ⇓

F ≤rh G ⇒ F ≤st G

We shall also consider so called relative inverse function orderings; see Müller
and Stoyan (2002) and van Zwet (1964). They are defined by properties of
the function G−1F . For continuous distributions the graph of the relative
inverse distribution function is identical with the so-called Q-Q plot.

We say that F is smaller than G in the dispersive order (F ≤disp G) if
G−1F is dispersive, i.e. G−1F (x)− x is increasing.

Let now X and Y be positive random variables. We say that F is smaller
than G in the convex transform order (F ≤c G) if G−1F is convex on SF .
We say that F is smaller than G in the star order (F ≤∗ G) if G−1F is star-
shaped on SF , i.e.G−1F (x)/x is increasing in x > 0. We say that F is smaller
than G in the superadditive order (F ≤su G) if G−1F is superadditive, i.e.
G−1F (x+ y) ≥ G−1F (x) +G−1F (y), x ≥ 0 for y ≥ 0.

It is well known (see Shaked and Shanthikumar, 2007) that

F ≤c G ⇒ F ≤∗ G ⇒ F ≤su G.

If −∞ < F−1(0) = G−1(0), then

F ≤disp G ⇒ F ≤st G.

Lehmann and Rojo (1992) characterized stochastic orders defined by
properties of GF−1 in terms of invariance under monotone transformations.
Bartoszewicz and Benduch (2009) gave a characterization of relative inverse
function orders in terms of invariance under the GTTT transform with
respect to a class of positive continuous functions on (0, 1). In this note,
Lehmann and Rojo’s idea is applied to a new setting. Compositions of some
distributions on [0, 1] with underlying distributions are used to define invari-
ance properties and distances of some stochastic orders.
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2. Results

2.1. Invariant preorderings. In this section we consider the convex,
star-shaped, dispersive, superadditive and common stochastic orders.

Let F denote the class of continuous distributions on [0,∞) and let Ψ be
the class of continuous strictly increasing distribution functions on [0, 1]. It
is easy to see that Ψ is a group with respect to composition. Also, for every
F ∈ F and every ψ ∈ Ψ, ψF ∈ F .

The distribution functions ψF with ψ increasing, not necessarily strictly
increasing, ψ(0) = 0 and ψ(1) = 1 are called distorted distributions and have
been studied in different areas. Wang and Young (1998) connected these
types of distributions with stochastic orders. Recently, Sordo and Suarez-
Llorens (2008) and Khaledi and Shaked (2010) obtained some new results
about stochastic orderings of distorted distributions. Navarro and Rychlik
(2010) obtained some bounds and showed that the distributions of coherent
systems with independent and identically distributed components are also
distorted distributions obtained from the common component distribution.
There are many examples of stochastic models where the probability distri-
butions under consideration are of the form ψF ∈ F , ψ ∈ Ψ. Here we list
some of them.

Example 1 (Generalized order statistics). Kamps (1995) introduced
uniform generalized order statistics. Let n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R,
Mr = mr + · · · + mn−1, be parameters such that γr = k + n − r + Mr ≥ 1
for all r ∈ {1, . . . , n − 1} and let m̃ = (m1, . . . ,mn−1) if n ≥ 2 (m ∈ R
arbitrary if n = 1). If random variables U(r, n, m̃, k), r = 1, . . . , n, possess a
joint density function of the form

(1) fU(1,n,m̃,k),...,U(n,n,m̃,k)(u1, . . . , un)

= k
[ n−1∏
j=1

γj

][ n−1∏
i=1

(1− ui)mi

]
(1− un)k−1

on the cone {(u1, . . . , un) : 0 ≤ u1 ≤ · · · ≤ un ≤ 1} ⊂ Rn, then they are
called uniform generalized order statistics.

Let F be a distribution function. The random variables

X(r, n, m̃, k) = F−1(U(r, n, m̃, k)), r = 1, . . . , n,

are called generalized order statistics based on the distribution function F .
It is clear that the distribution function of X̃ = X(r, n, m̃, k) is of the

form
FX̃(x) = ψr,n,m̃,kF (x),

where ψr,n,m̃,k ∈ Ψ is the distribution function of U(r, n, m̃, k).
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Choosing appropriate parameters in (1) we obtain among others the fol-
lowing models: ordinary order statistics of a sample of size n, order statistics
with non-integral sample size, sequential order statistics, record values, kth
record values, Pfeifer’s record values (see Kamps, 1995). We present here two
particular important cases.

1. Order statistics. Let X1:n, X2:n, . . . , Xn:n be order statistics of a
sample of size n from the distribution F . It is well known that the dis-
tribution function of Xi:n, i = 1, . . . , n, is of the form

Fi:n(x) = Bi:nF (x),

where Bi:n is the distribution function of the beta distribution B(i, n−i+1).
Obviously, Bi:n ∈ Ψ.

Extensions of order statistics to those with non-integral sample size are
due to Stiegler (1977). Rohatgi and Saleh (1988) provide another example
of models with distributions from Ψ.

2. Record values. Let {Xi}i∈N be a sequence of iid random variables
with an absolutely continuous distribution F and density f . The random
variables L(n), n ∈ N, defined by L(1) = 1 and L(n + 1) = min{j > L(n);
Xj > XL(n)}, are called record times and XL(n), n ∈ N, are called upper
record values. The marginal density of L(r) is of the form

fXL(r)
(x) =

1

(r − 1)!

[
log

1

1− F (x)

]r−1
f(x)

and the marginal distribution function is given by

FXL(r)
(x) = 1− [1− F (x)]

r−1∑
j=0

1

j!

[
log

1

1− F (x)

]j
,

i.e.
FXL(r)

(x) = ψrF (x),

where

ψr(t) = 1− (1− t)
r−1∑
j=0

1

j!

[
log

1

1− t

]j
, t ∈ [0, 1].

Similarly, the distribution of the kth record value (see Dziubdziela and
Kopociński (1976) or Kamps (1995) for the definition) is of the form

FXL(r)k
(x) = ψr,kF (x),

where

ψr,k(t) = 1− (1− t)k
r−1∑
j=0

1

j!

[
k log

1

1− t

]j
, t ∈ [0, 1].

Obviously, ψr and ψr,k are distribution functions from Ψ.
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Example 2 (Models in survival analysis). Three models are of great
importance in survival analysis (we give the corresponding probability dis-
tribution functions):

1. Proportional hazard model

ψαF (x) = 1− [1− F (x)]α, x ∈ R, α > 0,

i.e.
ψα(t) = 1− (1− t)α, t ∈ [0, 1].

2. Proportional reversed hazard model

ψαF (x) = [F (x)]α, x ∈ R, α > 0,

i.e.
ψα(t) = tα, t ∈ [0, 1].

3. Proportional odds model

ψαF (x) = 1− α(1− F (x))

1− (1− α)(1− F (x))
, x ∈ R, α > 0,

i.e.

ψα(t) = 1− α(1− t)
1− (1− α)(1− t)

, t ∈ [0, 1].

One can also consider the two-parameter proportional odds model with

ψα,c(t) = 1−
[

α(1− t)c

1− (1− α)(1− t)c

]1/c
, t ∈ [0, 1], α > 0, c > 0.

Of some importance are exponential mixtures of distributions in the pro-
portional hazard model and the proportional reversed hazard model (see
Marshall and Olkin, 1997). If the parameter α has the exponential distribu-
tion K(α) = 1− e−θα, α > 0, θ > 0, then we obtain the following distribu-
tions from Ψ:

ψθ(t) =
θ

θ − log t
, t ∈ (0, 1),

ψθ(t) = 1− θ

θ − log(1− t)
, t ∈ (0, 1),

for the proportional hazard model and the proportional reversed hazard
model respectively.

The proportional hazard model is well known, it was introduced and stud-
ied by Cox (1972). The proportional reversed hazard model was extensively
studied by Di Crescenzo (2000). Kirmani and Gupta (2001) considered the
proportional odds model; see also Marshall and Olkin (1997) and Benduch-
Frąszczak (2010). The two-parameter proportional odds model was studied
by Dąbrowska and Doksum (1988).
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Define a preorder in F to be any set S of ordered pairs (F,G) in F ×F
satisfying

(F, F ) ∈ S for all F ∈ F ,
(F,G) ∈ S and (G,H) ∈ S implies (F,H) ∈ S.

When (F,G) ∈ S, we write F ≤S G.

Definition 1. The preorder S is invariant under the class Ψ if

(2) F ≤S G ⇒ ψF ≤S ψG for all ψ ∈ Ψ.

Similarly to Lehmann and Rojo (1992) we define orbits of pairs (F,G)
under transformations ψ from Ψ in the space F × F ,
(3) O(F,G) = {(ψF,ψG) : ψ ∈ Ψ}.
Thus (F,G) ∈ S if and only if the orbit O(F,G) is contained in S. Also as in
Lehmann and Rojo (1992) we label the orbits by a maximal invariant under
the group Ψ. We prove the following:

Theorem 1. The function

(4) λ(u) = G−1F (t), t > 0,

is a maximal invariant under the group Ψ.

Proof. It is easy to notice that (ψG)−1ψF = G−1F for every ψ ∈ Ψ, i.e.
G−1F is invariant under the group Ψ.

Let (F1, G1) and (F2, G2) be two pairs of distributions from F and let

(5) G−11 F1(t) = G−12 F2(t), t > 0.

We should prove that (F1, G1) and (F2, G2) are in the same orbit, i.e. there
exists a function ψ0 ∈ Ψ such that F2(t) = ψ0F1(t), for G1 and G2 analo-
gously. Since (5) holds, we have also

G2G
−1
1 (t) = F2F

−1
1 (t), t > 0,

and then we put

ψ0(t) = G2G
−1
1 (t) = F2F

−1
1 (t), t > 0.

Thus we have ψ0F1(t) = F2F
−1
1 F1(t) = F2(t) and ψ0G1(t) = G2G

−1
1 G1(t)

= G2(t).

From Theorem 1 and the definitions of the relevant stochastic orders we
obtain

Corollary 1. The convex, star, superadditive, dispersive and common
stochastic orders are invariant under the group Ψ.

Denote by ΛS the class of functions of the form (4) which are maximal
invariants for the preorder S under the group Ψ. From Corollary 1 it follows
that ΛS is the class of positive increasing convex functions if S is the convex
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transform order; the class of positive increasing star-shaped functions if S is
the star order; the class of dispersive functions if S is the dispersive order,
etc. It follows from transitivity and symmetry of the order that ΛS is closed
under composition and contains the identity function.

2.2. Ordering the orbits and distances between ordered distri-
butions. The following idea of Lehmann and Rojo (1992) (see also Bar-
toszewicz and Benduch, 2009) may also be applied to some relative inverse
function orderings. They considered quadruples (F1, G1;F2, G2) and used in-
variant preorderings to define the concept of G2 being further to the right
from F2 than G1 is of F1. Let us repeat their considerations in our setting.

Consider a quadruple (F1, G1;F2, G2) such that F1, G1 ∈ F , F2 = ψF1

and G2 = ψG1 for some ψ ∈ Ψ. Since (F1, G1) and (F2, G2) are in the same
orbit, we say that F1 and G1 are at the same distance from each other as F2

and G2, i.e. d(F1, G1) = d(F2, G2), where d is a function which measures the
distance if such a function exists. On the other hand, if F1 ≤S G1 ≤S G2,
we say that G2 is further to the right from F1 than G1 is.

One now asks when for any quadruple (F1, G1;F2, G2) the distribution
G2 will be further to the right from F2 than G1 is of F1 in the preorder S. Let
F1, G1 ∈ F and Fi ≤S Gi, i = 1, 2. Notice that the function ψ0 = F2F

−1
1 ∈ Ψ

has the property that F2 = ψ0F1. Therefore ψ0G1 = F2F
−1
1 G1 and G2 is

further to the right from F2 than G1 is of F1 in the preorder S if

ψ0(G1) ≤S G2,

i.e.
G−12 ψ0G1 = G−12 F2F

−1
1 G1 = G−12 F2(G

−1
1 F1)

−1 ∈ ΛS .

Denote λi = G−1i Fi, i = 1, 2. We may formulate the following definition.

Definition 2. Let F1 ≤S G1, F2 ≤S G2. Then G2 is said to be further
to the right from F2 than G1 is of F1 if

(6) λ2λ
−1
1 ∈ ΛS .

The following examples illustrate this concept.

Example 3. Consider the scale family F (t/θ), θ > 0, where F ∈ F is
fixed, and define G1(t) = F (t/θ1) and G2(t) = F (t/θ2) with θ < θ1 < θ2.
Obviously, F ≤disp G1 and F ≤disp G2. Let λi = G−1i F , i = 1, 2. It is easy
to see that

λ2λ
−1
1 (t) = G−12 FF−1G1(t) =

θ2
θ1
t

is dispersive. According to Definition 2, G2 is further to the right from F
than G1 is in dispersive ordering.
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Example 4. Let Fα be the beta distribution with density

fα(t) = α(1− t)α−1, α > 0, 0 < t < 1.

Then F−1α (t) = 1−(1−t)1/α. Notice that F−1β Fα(t) = 1−(1−t)α/β is convex
if α < β. Therefore Fα ≤c Fβ and Fδ ≤c Fγ if 0 ≤ α < β and 0 ≤ δ < γ.
Then F−1γ Fδ(F

−1
β Fα)−1(t) = 1− (1− t)βδ/αγ is convex if αγ/βδ ≥ 1. Hence

if α/β ≥ δ/γ, then Fγ is further to the right from Fδ than Fβ is of Fα in the
convex ordering.

Example 5. Consider the distribution functions

Fi(t) = 1− e−t
βi
, βi > 0, i = 1, 2, and G(t) = 1− e−t, t ≥ 0.

with the quantile functions of the respective forms

F−1i (t) = − log(1− t)1/βi , G−1(t) = − log(1− t).
It is well known that for βi ≥ 1, i = 1, 2, the distributions F1 and F2 are
IFR and Fi ≤c G, i = 1, 2. We compute

(7) F−11 F2(t) = tβ2/β1 .

The function (7) is convex if β2/β1 ≥ 1. Thus if β2 ≥ β1, then G is further
to the right from F2 than F1 is in the convex transform ordering as well as
in the star ordering.

One may ask whether there exists a metric d(F,G) which is consistent
with the above comparison of distributions. Since λ-functions are invariant
under the function ψ ∈ Ψ, the distance d(F,G) must also be invariant under
these transforms. Therefore such a metric must satisfy the following two
conditions:

(A) d(F,G) = d(ψF,ψG) for all ψ ∈ Ψ;

(B) d(F1, G1) ≤ d(F2, G2) if (7) holds.

Theorem 2. Let F and G be distributions from F such that F−1(0) =
G−1(0) = 0. If S is the dispersive order, then the distance

(8) d∗(F,G) = sup
t∈(0,1)

|G−1(t)− F−1(t)| = sup
x
|G−1F (x)− x|

satisfies conditions (A) and (B).

Proof. It is evident that d∗ satisfies (A).
The condition (8) is equivalent to the fact that G−12 F2F

−1
1 G1 is disper-

sive, that is, G−12 F2F
−1
1 G1(x) − x is increasing. From the assumption we

have G−12 F2F
−1
1 G1(x)−x ≥ 0 and then G−12 F2(x)−x ≥ G−11 F1(x)−x ≥ 0,

x ≥ 0. Hence
d∗(F1, G1) ≤ d∗(F2, G2).
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Example 6. Let F (x) = 1
2(e−αx + e−x), α > 1, and G(x) = e−x. Then

G−1F (x)− x = log

(
2

e−αx + e−x

)
− x = log

(
2ex

e−(α+1)x + 1

)
− log ex

= log

(
2

e−(α+1)x + 1

)
is increasing and hence F ≤disp G. Therefore we obtain the distance d∗
between the distributions F and G,

d∗(F,G) = sup
x
|G−1F (x)− x| = sup

x

∣∣∣∣ log

(
2

e−(α+1)x + 1

)∣∣∣∣ = log 2.
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