YOUSSEF AKDIM and CHAKIR ALLALOU (Taza)

EXISTENCE OF A RENORMALIZED SOLUTION OF NONLINEAR DEGENERATE ELLIPTIC PROBLEMS

Abstract. We study a general class of nonlinear elliptic problems associated with the differential inclusion $\beta(u) - \operatorname{div}(a(x, Du) + F(u)) \ni f$ in Ω where $f \in L^{\infty}(\Omega)$. The vector field $a(\cdot, \cdot)$ is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in function spaces we prove existence of renormalized solutions for general L^{∞} -data.

1. Introduction. Let Ω be a bounded open subset of \mathbb{R}^N $(N \ge 1)$ with Lipschitz boundary if $N \ge 2$, let p be a real number such that 1 $and <math>w = \{w_i(x), 0 \le i \le N\}$ be a vector of weight functions on Ω (i.e., every component $w_i(x)$ is a measurable function which is positive a.e. in Ω). Let $W_0^{1,p}(\Omega, w)$ be the weighted Sobolev space associated with the vector w. Our aim is to show existence of renormalized solutions to the nonlinear elliptic equation

$$(E,f) \quad \begin{cases} \beta(u) - \operatorname{div}(a(x,Du) + F(u)) \ni f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

with right-hand side $f \in L^{\infty}(\Omega)$. Furthermore, F and β are functions satisfying the following assumption:

(A₀) $F : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ is locally Lipschitz continuous and $\beta : \mathbb{R} \to 2^{\mathbb{R}}$ a set valued, maximal monotone mapping such that $0 \in \beta(0)$. Moreover,

(1.1)
$$\beta^0(l) \in L^1(\Omega)$$

for each $l \in \mathbb{R}$, where β^0 denotes the minimal selection of the graph of β , that is, $\beta_0(l) = \inf\{|r| \mid r \in \mathbb{R} \text{ and } r \in \beta(l)\}.$

Moreover, $a: \, \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function satisfying the following assumptions:

Key words and phrases: weighted Sobolev spaces, Hardy inequality, degenerate elliptic.

²⁰¹⁰ Mathematics Subject Classification: Primary 35J70; Secondary 35J85.

(A₁) There exists a positive constant λ such that

$$a(x,\xi) \cdot \xi \ge \lambda \sum_{i=1}^{N} w_i |\xi_i|^p$$

for all $\xi \in \mathbb{R}^N$ and almost every $x \in \Omega$.

- (A₂) $|a_i(x,\xi)| \leq \alpha w_i^{1/p}(x)[k(x) + \sum_{j=1}^N w_j^{1/p'}(x)|\xi_j|^{p-1}]$ for almost every $x \in \Omega$, all i = 1, ..., N, and every $\xi \in \mathbb{R}^N$, where $k(\cdot)$ is a non-negative function in $L^{p'}(\Omega), p' = p/(p-1)$, and $\alpha > 0$.
- (A₃) $(a(x,\xi) a(x,\eta)) \cdot (\xi \eta) \ge 0$ for almost every $x \in \Omega$ and every $\xi, \eta \in \mathbb{R}^N$.

Note that in the case with variable exponents and Orlicz spaces the problem was studied by Wittbold et al. [9, 12]. Other work in this direction can be found in [2, 5, 6].

2. Preliminaries. Let Ω be a bounded open subset of \mathbb{R}^N $(N \ge 1)$, let p be a real number such that $1 , and let <math>w = \{w_i(x), 0 \le i \le N\}$ be a vector of weight functions, i.e., every component $w_i(x)$ is a measurable function which is positive a.e. in Ω . Further, we suppose in all our considerations that

(2.1)
$$w_i \in L^1_{\text{loc}}(\Omega),$$

(2.2)
$$w_i^{-1/(p-1)} \in L^1_{\text{loc}}(\Omega),$$

for any $0 \leq i \leq N$. We denote by $W^{1,p}(\Omega, w)$ the space of all real-valued functions $u \in L^p(\Omega, w_0)$ such that the derivatives in the sense of distributions fulfill $\partial u/\partial x_i \in L^p(\Omega, w_i)$ for $i = 1, \ldots, N$, which is a Banach space under the norm

(2.3)
$$||u||_{1,p,w} = \left[\int_{\Omega} |u(x)|^p w_0(x) \, dx + \sum_{i=1}^N \int_{\Omega} \left|\frac{\partial u(x)}{\partial x_i}\right|^p w_i(x) \, dx\right]^{1/p}.$$

The condition (2.1) implies that $C_0^{\infty}(\Omega)$ is a subspace of $W^{1,p}(\Omega, w)$, and consequently we can define the subspace $X = W_0^{1,p}(\Omega, w)$ of $W^{1,p}(\Omega, w)$ as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm (2.3). Moreover, condition (2.2) implies that $W^{1,p}(\Omega, w)$ as well as $W_0^{1,p}(\Omega, w)$ are reflexive Banach spaces. We recall that the dual space of $W_0^{1,p}(\Omega, w)$ is equivalent to $W^{-1,p'}(\Omega, w^*)$, where $w^* = \{w_i^* = w_i^{1-p'}, i = 0, \dots, N\}$ and where p' is the conjugate of p, i.e. p' = p/(p-1) (for more details we refer to [10]).

Assumption (H1). The expression

$$|||u|||_X = \left(\sum_{i=1}^N \int_{\Omega} \left| \frac{\partial u(x)}{\partial x_i} \right|^p w_i(x) \, dx \right)^{1/p}$$

is a norm defined on X and is equivalent to the norm (2.3). There exist a weight function σ on Ω and a parameter q, $1 < q < \infty$, such that

(2.4)
$$\sigma^{1-q'} \in L^1(\Omega),$$

with q' = q/(q-1). The Hardy inequality,

(2.5)
$$\left(\int_{\Omega} |u(x)|^q \sigma \, dx\right)^{1/q} \le c \left(\sum_{i=1}^N \int_{\Omega} \left|\frac{\partial u(x)}{\partial x_i}\right|^p w_i(x) \, dx\right)^{1/p}$$

holds for every $u \in X$ with a constant c > 0 independent of u, and moreover the imbedding

$$(2.6) X \hookrightarrow L^q(\Omega, \sigma)$$

expressed by the inequality (2.5), is compact. Note that $(X, || \cdot ||_X)$ is a uniformly convex (and thus reflexive) Banach space.

3. Notion of solutions and existence results

DEFINITION 3.1. A renormalized solution to (E, f) is a pair of functions (u, b) satisfying the following conditions:

- (R1) $u: \Omega \to \mathbb{R}$ is measurable, $b \in L^1(\Omega)$, $u(x) \in \mathcal{D}(\beta(x))$ and $b(x) \in \beta(u(x))$ for a.e. $x \in \Omega$.
- (R2) For each k > 0, $T_k(u) \in W_0^{1,p}(\Omega, w)$ and

(

3.1)
$$\int_{\Omega} b \cdot h(u)\varphi + \int_{\Omega} (a(x, Du) + F(u)) \cdot D(h(u)\varphi) = \int_{\Omega} fh(u)\varphi$$

for all $h \in C_c^1(\mathbb{R})$ and all $\varphi \in W_0^{1,p}(\Omega, w) \cap L^{\infty}(\Omega)$, where $T_k(\cdot)$ is truncation at height k.

(R3) $\int_{\{k \le |u| \le k+1\}} a(x, Du) \cdot Du \to 0$ as $k \to \infty$.

THEOREM 3.2. Under assumptions (H_1) , (A_0) - (A_3) and $f \in L^{\infty}(\Omega)$ there exists at least one renormalized solution (u, b) to (E, f).

Proof. STEP 1: Approximate problem. First we approximate (E, f) for $f \in L^{\infty}(\Omega)$ by problems for which existence can be proved by standard variational arguments. For $0 < \varepsilon \leq 1$, let $\beta_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ be the Yosida approximation of β (see [7]). We introduce the operators

$$A_{1,\varepsilon}: W_0^{1,p}(\Omega, w) \to W^{-1,p'}(\Omega, w^*), \quad u \mapsto \beta_{\varepsilon}(T_{1/\varepsilon}(u)) - \operatorname{div} a(x, Du), A_{2,\varepsilon}: W_0^{1,p}(\Omega, w) \to W^{-1,p'}(\Omega, w^*), \quad u \mapsto -\operatorname{div} F(T_{1/\varepsilon}(u)).$$

Because of (A₂) and (A₃), $A_{1,\varepsilon}$ is well-defined and monotone (see [11, p. 157]). Since $\beta_{\varepsilon} \circ T_{1/\varepsilon}$ is bounded and continuous and thanks to the growth condition (A₂) on *a*, it follows that $A_{1,\varepsilon}$ is hemicontinuous (see [11, p. 157]). From the continuity and boundedness of $F \circ T_{1/\varepsilon}$ it follows that $A_{2,\varepsilon}$ is strongly continuous. Therefore $A_{\varepsilon} := A_{1,\varepsilon} + A_{2,\varepsilon}$ is pseudomonotone. Using the monotonicity of β_{ε} , the Gauss–Green Theorem for Sobolev functions and the boundary condition on the convection term $\int_{\Omega} F(T_{1/\varepsilon}(u)) \cdot Du$, we show by similar arguments to [5] that A_{ε} is coercive and bounded. Then it follows from [11, Theorem 2.7] that A_{ε} is surjective, i.e., for each $0 < \varepsilon \leq 1$ and $f \in W^{-1,p'}(\Omega, w^*)$ there exists a solution $u_{\varepsilon} \in W_0^{1,p}(\Omega, w)$ to the problem

$$(E_{\varepsilon}, f) \quad \begin{cases} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon})) - \operatorname{div} \left(a(x, Du_{\varepsilon}) + F(T_{1/\varepsilon}(u_{\varepsilon})) \right) = f & \text{in } \Omega, \\ u_{\varepsilon} = 0 & \text{on } \partial\Omega, \end{cases}$$

such that

(3.2)
$$\int_{\Omega} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))\varphi + \int_{\Omega} \left(a(x, Du_{\varepsilon}) + F(T_{1/\varepsilon}(u_{\varepsilon}))\right) \cdot D\varphi = \langle f, \varphi \rangle$$

for all $\varphi \in W_0^{1,p}(\Omega, w)$.

Step 2: A priori estimates

LEMMA 3.3. For $0 < \varepsilon \leq 1$ and $f \in L^{\infty}(\Omega)$ let $u_{\varepsilon} \in W_0^{1,p}(\Omega, w)$ be a solution of (E_{ε}, f) . Then:

(i) There exists a constant $C_1 = C_1(||f||_{\infty}, \lambda, p, N) > 0$, not depending on ε , such that

$$(3.3) || u_{\varepsilon} || \le C_1.$$

(3.4)
$$\|\beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))\|_{\infty} \le \|f\|_{\infty}$$

(iii) For all l, k > 0 we have

(3.5)
$$\int_{\{l \le |u_{\varepsilon}| \le l+k\}} a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} \le k \int_{\{|u_{\varepsilon}| > l\}} |f|.$$

Proof. (i) Taking u_{ε} as a test function in (3.2) we obtain

$$\int_{\Omega} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))u_{\varepsilon} \, dx + \int_{\Omega} a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} \, dx + \int_{\Omega} F(T_{1/\varepsilon}(u_{\varepsilon}))) \cdot Du_{\varepsilon} \, dx = \int_{\Omega} fu_{\varepsilon} \, dx$$

As the first term on the left-hand side is nonnegative and the integral over the convection term vanishes, by (A_1) we have

$$\begin{split} \lambda \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_{\varepsilon}}{\partial x_{i}} \right|^{p} w_{i}(x) \, dx &\leq \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, Du_{\varepsilon}) \cdot \frac{\partial u_{\varepsilon}}{\partial x_{i}} \, dx \leq \int_{\Omega} fu_{\varepsilon} \, dx \\ &\leq C \|f\|_{\infty} \left(\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_{\varepsilon}(x)}{\partial x_{i}} \right|^{p} w_{i}(x) \, dx \right)^{1/p} \left(\int_{\Omega} \sigma^{1-q'} \, dx \right)^{1/q'} \end{split}$$

(due to (2.5)). Thus $|||u_{\varepsilon}|||^{p} \leq C_{2} |||u_{\varepsilon}|||$ where C_{2} is a positive constant. Hence we can deduce that u_{ε} remains bounded in $W_{0}^{1,p}(\Omega, w)$, i.e., $|||u_{\varepsilon}||| \leq C_{1}$.

(ii) Taking $\frac{1}{\delta}[T_{k+\delta}(\beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))) - T_k(\beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon})))]$ as a test function in (3.2), letting $\delta \to 0$ and choosing $k > \|f\|_{\infty}$ we obtain (ii).

(iii) For k, l > 0 fixed we take $T_k(u_{\varepsilon} - T_l(u_{\varepsilon}))$ as a test function in (3.2). Using $\int_{\Omega} a(x, Du_{\varepsilon}) \cdot DT_k(u_{\varepsilon} - T_l(u_{\varepsilon})) dx = \int_{\{l < |u_{\varepsilon}| < l+k\}} a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} dx$, and as the first term on the left-hand side is nonnegative and the convection term vanishes, we get

$$\int_{\{l < |u_{\varepsilon}| < l+k\}} a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} \, dx \leq \int_{\Omega} fT_k(u_{\varepsilon} - T_l(u_{\varepsilon})) \, dx \leq k \int_{\{|u_{\varepsilon}| > l\}} |f| \, dx$$

REMARK 3.4. For k > 0, since

(3.6)
$$|\{|u_{\varepsilon}| > l\}| \le \frac{C_2}{l^{1-1/p}}$$

from Lemma 3.3(iii) we deduce that

(3.7)
$$\int_{\{l \le |u_{\varepsilon}| \le l+k\}} a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} \le k ||f||_{\infty} |\{|u_{\varepsilon}| > l\}| \le \frac{C_2(k)}{l^{1-1/p}}.$$

STEP 3: Basic convergence results

LEMMA 3.5. For $0 < \varepsilon \leq 1$ and $f \in L^{\infty}(\Omega)$ let $u_{\varepsilon} \in W_0^{1,p}(\Omega, w)$ be the solution of (E_{ε}, f) . There exist $u \in W_0^{1,p}(\Omega, w)$ and $b \in L^{\infty}(\Omega)$ such that for a not relabeled subsequence of $(u_{\varepsilon})_{0 < \varepsilon \leq 1}$ as $\varepsilon \downarrow 0$:

(3.8) $u_{\varepsilon} \rightharpoonup u$ in $W_0^{1,p}(\Omega, w)$ and a.e. in Ω ,

(3.9)
$$T_k(u_{\varepsilon}) \rightharpoonup T_k(u)$$
 in $W_0^{1,p}(\Omega, w)$ and strongly in $L^q(\Omega, \sigma)$,

(3.10)
$$\beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon})) \rightharpoonup b \quad in \ L^{\infty}(\Omega),$$

Moreover, for any k > 0

(3.11)
$$DT_k(u_{\varepsilon}) \rightharpoonup DT_k(u)$$
 in $\prod_{i=1}^N L^p(\Omega, w_i)$,
(3.12) $a(x, DT_k(u_{\varepsilon})) \rightharpoonup a(x, DT_k(u))$ in $\prod_{i=1}^N L^{p'}(\Omega, w_i^*)$.

Proof. (3.10) follows directly from Lemma 3.3 and Remark 3.4. From (3.6), (3.3) and (2.6) we deduce with a classical argument (see, e.g., [1]) that for a subsequence still indexed by ε , (3.8)–(3.9) and (3.11) hold as ε tend to 0, where u is a measurable function defined on Ω .

It is left to prove (3.12). For this, by (A₂) and (3.3) it follows that given any subsequence of $(a(x, DT_k(u_{\varepsilon}))_{\varepsilon})$, there exists a subsequence, still denoted by $(a(x, DT_k(u_{\varepsilon})))_{\varepsilon}$, such that $a(x, DT_k(u_{\varepsilon})) \rightarrow \Phi_k$ in $\prod_{i=1}^N L^{p'}(\Omega, w_i^*)$. We will prove that $\Phi_k = a(x, DT_k(u))$ a.e. on Ω . The proof consists of three steps.

 α (1)

Step i: For every $h \in W^{1,\infty}(\mathbb{R}), h \ge 0$ and $\operatorname{supp}(h)$ compact, we will prove that

(3.13)
$$\limsup_{\varepsilon \to 0} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot D[h(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))] \, dx \le 0$$

Taking $h(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))$ as a test function in (3.2) we have

$$(3.14)$$

$$\int_{\Omega} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))h(u_{\varepsilon})(T_{k}(u_{\varepsilon}) - T_{k}(u)) + \int_{\Omega} a(x, Du_{\varepsilon}) \cdot D[h(u_{\varepsilon})(T_{k}(u_{\varepsilon}) - T_{k}(u))]$$

$$+ \int_{\Omega} F(T_{1/\varepsilon}(u_{\varepsilon})) \cdot D[h(u_{\varepsilon})(T_{k}(u_{\varepsilon}) - T_{k}(u))] = \int_{\Omega} fh(u_{\varepsilon})(T_{k}(u_{\varepsilon}) - T_{k}(u)).$$

Using $|h(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))| \leq 2k ||h||_{\infty}$, by Lebesgue's dominated convergence theorem we find that $\lim_{\varepsilon \to 0} \int_{\Omega} fh(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u)) = 0$ and $\lim_{\varepsilon \to 0} \int_{\Omega} F(T_{1/\varepsilon}(u_{\varepsilon}))D[h(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))] = 0$. By using the same arguments as in [4] we can prove that

$$\limsup_{\varepsilon \to 0} \int_{\Omega} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon})) \cdot [h(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))] \, dx \ge 0.$$

Passing to the limit in (3.14) and using the above results we obtain (3.13).

Step ii: We now prove that for every k > 0,

(3.15)
$$\limsup_{\varepsilon \to 0} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot \left[DT_k(u_{\varepsilon}) - DT_k(u) \right] dx \le 0.$$

Indeed, for k > l, take $h_l(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))$ as a test function in (3.2). Letting $\varepsilon \downarrow 0$ and then $l \to \infty$ we obtain

$$\begin{split} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot D[h_l(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))] \, dx \\ &= \int_{[|u_{\varepsilon}| \le k]} h_l(u_{\varepsilon})a(x, DT_k(u_{\varepsilon})) \cdot [DT_k(u_{\varepsilon}) - DT_k(u)] \, dx \\ &+ \int_{[|u_{\varepsilon}| > k]} h_l(u_{\varepsilon})a(x, DT_k(u_{\varepsilon})) \cdot (-DT_k(u)) \, dx \\ &+ \int_{\Omega} h'_l(u_{\varepsilon})(T_k(u_{\varepsilon}) - T_k(u))a(x, DT_k(u_{\varepsilon})) \cdot Du_{\varepsilon} \, dx \\ &= E_1 + E_2 + E_3. \end{split}$$

Since l > k, on the set $[|u_{\varepsilon}| \le k]$ we have $h_l(u_{\varepsilon}) = 1$ so that we can write

$$\limsup_{\varepsilon \to 0} E_1 = \limsup_{\varepsilon \to 0} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot (DT_k(u_{\varepsilon}) - DT_k(u)) \, dx.$$

136

For E_2 , using Lebesgue's dominated convergence theorem we get

$$\lim_{\varepsilon \to 0} E_2 = -\int_{[|u| > k]} h_l(u) \Phi_{l+1} \cdot DT_k(u) \, dx = 0.$$

For E_3 , we have

$$-\int_{\Omega} h'_{l}(u_{\varepsilon})(T_{k}(u_{\varepsilon}) - T_{k}(u))a(x, DT_{k}(u_{\varepsilon}))Du_{\varepsilon} dx$$
$$\leq 2k \int_{[l < |u_{\varepsilon}| \le l+1]} a(x, Du_{\varepsilon})Du_{\varepsilon} dx.$$

Using (3.7) we deduce that

$$\limsup_{l \to \infty} \limsup_{\varepsilon \to 0} \left(-\int_{\Omega} h'_l(u_{\varepsilon}) (T_k(u_{\varepsilon}) - T_k(u)) a(x, DT_k(u_{\varepsilon})) \cdot Du_{\varepsilon} \, dx \right) \le 0.$$

Applying (3.13) with h replaced by h_l , l > k, we get

$$\begin{split} \limsup_{\varepsilon \to 0} & \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot (DT_k(u_{\varepsilon}) - DT_k(u)) \, dx \\ & \leq \limsup_{\varepsilon \to 0} \left(-\int_{\Omega} h'_l(u_{\varepsilon}) (T_k(u_{\varepsilon}) - T_k(u)) a(x, DT_k(u_{\varepsilon})) \cdot Du_{\varepsilon} \, dx \right). \end{split}$$

Now letting $l \to \infty$ yields (3.15).

Step iii: In this step we prove by monotonicity arguments that for k > 0, $\Phi_k = a(x, DT_k(u))$ for almost every $x \in \Omega$. Let $\varphi \in \mathcal{D}(\Omega)$ and $\tilde{\alpha} \in \mathbb{R}$. Using (3.15), we have

$$\tilde{\alpha} \lim_{\varepsilon \to 0} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot D\varphi \, dx \ge \tilde{\alpha} \int_{\Omega} a(x, D(T_k(u) - \tilde{\alpha}\varphi)) \cdot D\varphi \, dx.$$

Dividing by $\tilde{\alpha} > 0$ and by $\tilde{\alpha} < 0$ and letting $\tilde{\alpha} \to 0$ we obtain

$$\lim_{\varepsilon \to 0} \int_{\Omega} a(x, DT_k(u_{\varepsilon})) \cdot D\varphi \, dx = \int_{\Omega} a(x, DT_k(u)) \cdot D\varphi \, dx.$$

This means that for all k > 0, $\int_{\Omega} \Phi_k \cdot D\varphi dx = \int_{\Omega} a(x, DT_k(u)) \cdot D\varphi dx$ and so $\Phi_k = a(x, DT_k(u))$ in $\mathcal{D}'(\Omega)$ for all k > 0. Hence $\Phi_k = a(x, DT_k(u))$ a.e. in Ω and so $a(x, DT_k(u_{\varepsilon})) \rightharpoonup a(x, DT_k(u))$ weakly in $\prod_{i=1}^N L^{p'}(\Omega, w_i^*)$.

STEP 4: Proof of existence. Let $h \in C_c^1(\mathbb{R})$ and $\phi \in W_0^{1,p}(\Omega, w) \cap L^{\infty}(\Omega)$. Taking $h_l(u_{\varepsilon})h(u)\phi$ as a test function in (3.2), we obtain

(3.16)
$$I_{\varepsilon,l}^1 + I_{\varepsilon,l}^2 + I_{\varepsilon,l}^3 = I_{\varepsilon,l}^4$$

where

$$\begin{split} I_{\varepsilon,l}^1 &= \int_{\Omega} \beta_{\varepsilon}(T_{1/\varepsilon}(u_{\varepsilon}))h_l(u_{\varepsilon})h(u)\phi, \\ I_{\varepsilon,l}^2 &= \int_{\Omega} a(x, Du_{\varepsilon}) \cdot D(h_l(u_{\varepsilon})h(u)\phi), \\ I_{\varepsilon,l}^3 &= \int_{\Omega} F(T_{1/\varepsilon}(u_{\varepsilon})) \cdot D(h_l(u_{\varepsilon})h(u)\phi), \\ I_{\varepsilon,l}^4 &= \int_{\Omega} fh_l(u_{\varepsilon})h(u)\phi. \end{split}$$

Step i: Letting $\varepsilon \downarrow 0$ using the convergence results (3.8), (3.10) from Lemma 3.5 we can immediately calculate the following limits:

(3.17)
$$\lim_{\varepsilon \to 0} I^{1}_{\varepsilon,l} = \int_{\Omega} bh_{l}(u)h(u)\phi,$$

(3.18)
$$\lim_{\varepsilon \to 0} I^{4}_{\varepsilon,l} = \int_{\Omega} fh_{l}(u)h(u)\phi.$$

(3.18)
$$\lim_{\varepsilon \to 0} I_{\varepsilon,l}^4 = \int_{\Omega} fh_l(u)h(u)\phi$$

We write $I_{\varepsilon,l}^2 = I_{\varepsilon,l}^{2,1} + I_{\varepsilon,l}^{2,2}$ where $I_{\varepsilon,l}^{2,1} = \int_{\Omega} h'_l(u_{\varepsilon}) a(x, Du_{\varepsilon}) \cdot Du_{\varepsilon} h(u) \phi, \quad I_{\varepsilon,l}^{2,2} = \int_{\Omega} h_l(u_{\varepsilon}) a(x, Du_{\varepsilon}) \cdot D(h(u)\phi).$

Using (3.7) we get the estimate

(3.19)
$$\left|\lim_{\varepsilon \to 0} I_{\varepsilon,l}^{2,1}\right| \le \|h\|_{\infty} \|\phi\|_{\infty} \cdot C_2 l^{-(1-1/p)}$$

By Lebesgue's dominated convergence theorem it follows that for any $i \in \{1, \ldots, N\}$ we have

$$h_l(u_{\varepsilon})\frac{\partial}{\partial x_i}(h(u)\phi) \to h_l(u)\frac{\partial}{\partial x_i}(h(u)\phi) \quad \text{in } L^p(\Omega,\sigma) \text{ as } \varepsilon \downarrow 0.$$

Keeping in mind that $I_{\varepsilon,l}^{2,2} = \int_{\Omega} h_l(u_{\varepsilon}) a(x, DT_{l+1}(u_{\varepsilon})) \cdot D(h(u)\phi)$, by (3.12), we get

(3.20)
$$\lim_{\varepsilon \to 0} I_{\varepsilon,l}^{2,2} = \int_{\Omega} h_l(u) a(x, DT_{l+1}(u)) \cdot D(h(u)\phi)$$

Let us write $I_{\varepsilon,l}^3 = I_{\varepsilon,l}^{3,1} + I_{\varepsilon,l}^{3,2}$, where

$$I_{\varepsilon,l}^{3,1} = \int_{\Omega} h'_l(u_{\varepsilon}) F(T_{1/\varepsilon}(u_{\varepsilon})) \cdot Du_{\varepsilon}h(u)\phi,$$

$$I_{\varepsilon,l}^{3,2} = \int_{\Omega} h_l(u_{\varepsilon}) F(T_{1/\varepsilon}(u_{\varepsilon})) \cdot D(h(u)\phi).$$

For any $l \in \mathbb{N}$, there exists $\varepsilon_0(l)$ such that for all $\varepsilon < \varepsilon_0(l)$,

(3.21)
$$I_{\varepsilon,l}^{3,1} = \int_{\Omega} h'_l(T_{l+1}(u_{\varepsilon})) F(T_{l+1}(u_{\varepsilon})) \cdot DT_{l+1}(u_{\varepsilon}) h(u)\phi.$$

Using the Gauss–Green Theorem for Sobolev functions in (3.21) we get

(3.22)
$$I_{\varepsilon,l}^{3,1} = -\int_{\Omega} \int_{0}^{T_{l+1}(u_{\varepsilon})} h_l'(r) F(r) \, dr \cdot D(h(u)\phi).$$

Now, using (3.8) and the Gauss–Green Theorem, after letting $\varepsilon \downarrow 0$ we get

(3.23)
$$\lim_{\varepsilon \to 0} I_{\varepsilon,l}^{3,1} = \int_{\Omega} h_l'(u) F(u) \cdot Du h(u) \phi$$

Choosing ε small enough, we can write

(3.24)
$$I_{\varepsilon,l}^{3,2} = \int_{\Omega} h_l(u_{\varepsilon}) F(T_{l+1}(u_{\varepsilon})) \cdot D(h(u)\phi)$$

and conclude

(3.25)
$$\lim_{\varepsilon \to 0} I_{\varepsilon,l}^{3,2} = \int_{\Omega} h_l(u) F(u) \cdot D(h(u)\phi).$$

Step ii: We let $l \to \infty$. Combining (3.16) and (3.17)–(3.25) we find

(3.26)
$$I_l^1 + I_l^2 + I_l^3 + I_l^4 + I_l^5 = I_l^4$$

where

$$I_l^1 = \int_{\Omega} bh_l(u)h(u)\phi, \qquad I_l^2 = \int_{\Omega} h_l(u)a(x, DT_{l+1}(u)) \cdot D(h(u)\phi),$$

$$|I_l^3| \le C_2 l^{-(1-1/p)} \|h\|_{\infty} \|\phi\|_{\infty}, \qquad I_l^4 = \int_{\Omega} h_l(u)F(u) \cdot D(h(u)\phi),$$

$$I_l^5 = \int_{\Omega} h_l'(u)F(u) \cdot Duh(u)\phi, \qquad I_l^6 = \int_{\Omega} fh_l(u)h(u)\phi.$$

Obviously, we have

$$\lim_{l \to \infty} I_l^3 = 0.$$

Choosing m>0 such that ${\rm supp}\,h\subset [-m,m],$ we can replace u by $T_m(u)$ in $I_l^1,I_l^2,\ldots,I_l^6,$ and

$$h'_l(u) = h'_l(T_m(u)) = 0$$
 if $l + 1 > m$, $h_l(u) = h_l(T_m(u)) = 1$ if $l > m$.

Therefore, letting $l \to \infty$ and combining (3.26) with (3.27) we obtain

(3.28)
$$\int_{\Omega} bh(u)\phi + \int_{\Omega} (a(x, Du) + F(u)) \cdot D(h(u)\phi) = \int_{\Omega} fh(u)\phi$$

for all $h \in C_c^1(\mathbb{R})$ and all $\phi \in W_0^{1,p}(\Omega, w) \cap L^{\infty}(\Omega)$.

Step iii: Subdifferential argument. It is left to prove that $u(x) \in \mathcal{D}(\beta(x))$ and $b(x) \in \beta(u(x))$ for almost all $x \in \Omega$. Since β is a maximal monotone graph, there exists a convex, l.s.c., proper function $j : \mathbb{R} \to [0, \infty]$ such that $\beta(r) = \partial j(r)$ for all $r \in \mathbb{R}$. According to [7], for $0 < \varepsilon \leq 1$, $j_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ defined by $j_{\varepsilon}(r) = \int_{0}^{r} \beta_{\varepsilon}(s) ds$ has the properties as in [12]. Using the same argument as in [12] we can prove that for all $r \in \mathbb{R}$ and almost every $x \in \Omega$, $u \in \mathcal{D}(\beta)$ and $b \in \beta(u)$ almost everywhere in Ω . With this last step the proof of Theorem 3.2 is completed.

References

- L. Aharouch, E. Azroul and A. Benkirane, Quasilinear degenerated equations with L¹ datum and without coercivity in perturbation terms, Electron. J. Qualit. Theory Differential Equations 2006, no. 19, 18 pp.
- [2] L. Aharouch, A. Benkirane, J. Bennouna and A. Touzani, Existence and uniqueness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev spaces, in: Recent Development in Nonlinear Analysis, World Sci., 2010, 170–180.
- [3] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasi-linear degenerated elliptic equations, Electron. J. Differential Equations 2001, no. 71, 19 pp.
- [4] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, L¹ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 61–89.
- [5] M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L¹-data, Nonlinear Anal. 70 (2009), 567–583.
- [6] A. Benkirane and J. Bennouna, Existence of solutions for nonlinear elliptic degenerate equations, Nonlinear Anal. 54 (2003), 9–37.
- [7] H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
- [8] R.-J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321–366.
- [9] P. Gwiazda, P. Wittbold, A. Wróblewska and A. Zimmermann, *Renormalized so*lutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2012), 635–666.
- [10] A. Kufner, Weighted Sobolev Spaces, Wiley, 1985.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
- [12] P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L¹-data, Nonlinear Anal. 72 (2010), 2990–3008.

Youssef Akdim, Chakir Allalou LIMAO, Faculté Polydisciplinaire B.P. 1223 Taza Gare, Taza, Morocco E-mail: akdimyoussef@yahoo.fr chakir.allalou@yahoo.fr

> Received on 25.2.2014; revised version on 18.7.2014

(2233)