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ENTROPY SOLUTIONS FOR NONLINEAR UNILATERAL

PARABOLIC INEQUALITIES IN ORLICZ–SOBOLEV

SPACES

Abstract. We discuss the existence of entropy solution for the strongly
nonlinear unilateral parabolic inequalities associated to the nonlinear para-
bolic equations ∂u

∂t − div(a(x, t, u,∇u) + Φ(u)) + g(u)M(|∇u|) = µ in Q,
in the framework of Orlicz–Sobolev spaces without any restriction on the
N -function of the Orlicz spaces, where −div(a(x, t, u,∇u)) is a Leray–Lions
operator and Φ ∈ C0(R,RN ). The function g(u)M(|∇u|) is a nonlinear lower
order term with natural growth with respect to |∇u|, without satisfying the
sign condition, and the datum µ belongs to L1(Q) or L1(Q)+W−1,xEM (Q).

1. Introduction. Let Q be the cylinder Ω × (0, T ), where T > 0 and
Ω is a bounded domain of RN with the segment property, and let M and
P be two N -functions such that P �M . In the present paper, we consider
the following boundary value problem:

(1.1)


u ≥ ψ a.e. in Q,
∂u

∂t
− div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(u)M(|∇u|) = f in Q,

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

where a : Ω × (0, T ) × R × RN → RN is a Carathéodory function (that is,
measurable with respect to x in Ω for every (t, s, ξ) in R × R × RN , and
continuous with respect to (s, ξ) in R × RN for almost every x in Ω) such
that for all ξ and ξ∗ in RN , ξ 6= ξ∗,
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a(x, t, s, ξ)ξ ≥ αM(|ξ|),(1.2)

[a(x, t, s, ξ)− a(x, t, s, ξ∗)][ξ − ξ∗] > 0,(1.3)

|a(x, t, s, ξ)| ≤ c(x, t) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ξ|),(1.4)

where c(·, ·) belongs to EM (Q), c ≥ 0, ki ≥ 0 (i = 1, 2, 3, 4) and α > 0.
Moreover,

Φ : R→ RN is a continuous function,(1.5)

f ∈ L1(Q),(1.6)

u0 ∈ L1(Ω), u0 ≥ ψ(x) a.e. in Ω,

ψ ∈ L∞(Ω) ∩W 1,x
0 EM (Ω), ψ(x) ≤ 0 a.e. in Ω,

(1.7)

g : R+ → R+ is an integrable continuous function.(1.8)

Remark 1.1. We remark that if u0 ∈ L1(Ω), u0 ≥ 0, then the convex
subset {v ∈ L1(Ω) : v ≥ ψ} is nonempty.

In [P] where Φ ≡ 0, the author has shown the existence of a renormalized
solution for the corresponding equation. In [P], the function a(x, t, u,∇u)
was assumed to satisfy a polynomial growth condition with respect to u
and ∇u. When trying to relax this restriction on the function a(x, t, u,∇u),

we are led to replace the space Lp(0, T ;W 1,p
0 (Ω)) by an inhomogeneous

Orlicz–Sobolev space W 1,xLM (Q) built from an Orlicz space LM instead
of Lp, where the N -function M which defines LM is related to the actual
growth of the Carathéodory function. Recently M. Kbiri Alaoui et al. [KMS]
proved the existence result for the obstacle problem associated to (1.1) in
the setting of Orlicz–Sobolev spaces where Φ ≡ 0. The above problem does
not admit, in general, a weak solution since the fields a(x, t, u,∇u) and Φ(u)
do not belong in (L1

loc(Q))N in general. For analogous elliptic or parabolic
problems in the setting of Sobolev spaces or Orlicz–Sobolev spaces, we refer
the reader to [ABT, ABM15, ABM, ABMR, AB, BE, D, E, EM1, EM3,
GM, L, R, YBM1, YBM2].

This paper is motivated by recent advances in mathematical model-
ing of non-Newtonian fluids and elastic mechanics, in particular, electro-
rheological fluids (smart fluids). This important class of fluids is character-
ized by the change of viscosity which depends on the electric field. These
fluids, also known as ER fluids, have many applications in elastic mechanics,
fluid dynamics etc.

The scope of the present paper is to solve the obstacle problem associated
to (1.1) in the case where f ∈ L1(Q) +W−1,xEM (Q) and without assuming
any growth restriction on M , Φ(u) 6≡ 0, while the function g(u)M(|∇u|)
does not satisfy the sign condition. The existence of solutions is proved via
a sequence of penalized problems.
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2. Existence results. This section is devoted to establishing the fol-
lowing existence theorem.

Theorem 2.1. Assume that (1.2)–(1.8) hold. Then there exists a solu-
tion of problem (1.1) in the following sense:

u ≥ ψ a.e. in Q, Tk(u) ∈W 1,x
0 LM (Q), Sk(u(·, t)) ∈ L1(Ω),

�

Ω

Sk(u(T )−v(T )) dx+

〈
∂v

∂t
, Tk(u−v)

〉
+
�

Q

a(x, t, u,∇u)∇Tk(u−v) dx dt

+
�

Q

Φ(u)∇Tk(u−v) dx dt ≤
�

Q

g(u)M(|∇u|)Tk(u−v) dx dt

+
�

Q

fTk(u−v) dx dt+
�

Ω

Sk(u0−v(0)) dx,

for all k > 0 and v ∈W 1,x
0 LM (Q)∩L∞(Q) such that ∂v/∂t ∈W−1,xLM (Q)

+L1(Q) and v ≥ ψ. Here Sk is the truncation defined by Sk(τ) =
	τ
0 Tk(s) ds

where the standard truncation function Tk, k > 0, is defined for all s ∈ R
by Tk(s) = max{−k,min{k, s}}.

The proof is divided into four steps.

Step 1: Approximate problems and a priori estimate. Consider the fol-
lowing approximate problem:

(2.1)


∂un
∂t
− div

(
a(x, t, un,∇un) + Φn(un)

)
− nTn((un − ψ)−)

= g(un)M(|∇un|) + fn in Q,

un(x, 0) = u0n(x) in Ω,

where we have set Φn(s) = Φ(Tn(s)). For fixed n > 0, since Φ is continuous,
it is obvious that |Φn(t)| ≤ max|t|≤n |Φ(t)| = Cn. Moreover, the sequence

(fn) ⊂ D(Q) is such that fn → f strongly in L1(Q) and (u0n) ⊂ D(Ω) is
such that u0n → u0 strongly in L1(Ω). By Lemma 3.1 of [KMS], there exists

a weak solution un ≥ 0 in W 1,x
0 LM (Q) of problem (2.1). Let h > 0 and

consider the test function v = Th(un) exp(
	un
0 g(s) ds) in (2.1). We have〈

∂un
∂t

, Th(un) exp
(un�

0

g(s) ds
)〉

+
�

{un≤h}

a(·, un,∇un)∇un exp
(un�

0

g(s) ds
)
dx dt

+
�

Q

a(·, un,∇un)∇unTh(un)g(un) exp
(un�

0

g(s) ds
)
dx dt
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+
�

Q

Φn(un)∇
(
Th(un) exp

(un�
0

g(s) ds
))

dx dt

−
�

Q

nTn((un − ψ)−)Th(un) exp
(un�

0

g(s) ds
)
dx dt

=
�

Q

g(un)M(|∇un|)Th(un) exp
(un�

0

g(s) ds
)
dx dt

+
�

Q

fnTh(un) exp
(un�

0

g(s) ds
)
dx dt.

The Lipschitz character of Φn and the Stokes formula together with the
boundary condition un = 0 on (0, T )× ∂Ω make it possible to obtain

(2.2)
�

Q

Φn(un)∇
(
Th(un − Tk(un)) exp

(un�
0

g(s) ds
))

dx dt = 0.

Using (2.2) and (1.2), and since un ≥ 0 gives Th(un) ≥ 0, we have〈
∂un
∂t

, Th(un) exp
(un�

0

g(s) ds
)〉

+
�

{un≤h}

M(|∇un|) exp
(un�

0

g(s) ds
)

− n
�

Q

Tn((un − ψ)−)Th(un) exp
(un�

0

g(s) ds
)
dx dt

≤
�

Q

fnTh(un − Tk(un)) exp
(un�

0

g(s) ds
)
dx dt.

We have〈
∂un
∂t

, Th(un) exp
(un�

0

g(s) ds
)〉

=
�

Ω

un(x,T )�

0

Th(s) exp
(s�
0

g(s) ds
)
−

�

Ω

u0�

0

Th(s) exp
(s�
0

g(s) ds
)
≥ −Ch,

where

C = ‖u0‖L1(Ω)

u0�

0

Th(s) exp
( u0�

0

g(s) ds
)
.

So, we obtain

−n
�

Q

Tn((un − ψ)−)Th(un) ≤ Ch,
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and since ψ(x) ≤ 0 a.e. in Ω,

Th(un) ≤ Th((un − ψ)

and

−
�

Q

nTn((un − ψ)−)Th(un − ψ) ≤ −
�

Q

nTn((un − ψ)−)Th(un) ≤ Ch.

Then �

Q

nTn((un − ψ)−)
Th((un − ψ)−)

h
≤ C.

Letting h to tend to zero, one has

(2.3) 0 ≤
�

Q

nTn((un − ψ)−) ≤ C.

If we use v = Tk(un) exp(
	un
0 g(s) ds) as a test function in (2.1), then as

above we obtain

(2.4)
�

Q

M(|∇Tk(un)|) exp
(un�

0

g(s) ds
)
≤ C1k.

Thus (Tk(un))n is bounded in W 1,x
0 LM (Q), and so there exist some wk ∈

W 1,x
0 LM (Q) such that

Tk(un) ⇀ wk weakly in W 1,x
0 LM (Q) for σ

(∏
LM ,

∏
EM

)
,

Tk(un)→ wk strongly in EM (Q) and a.e. in Q,

where
∏
LM is the product of N +1 copies of LM and

∏
EM is the product

of N + 1 copies of EM .

Let ηk be the nondecreasing C2(R) function with

ηk(s) =

{
s, |s| ≤ k/2,
k sign(s), |s| ≥ k.

Multiplying the approximating equation by η′k(un), we get

∂ηk(un)

∂t
− div

(
a(x, t, un,∇un)η′k(un)

)
+ a(x, t, un,∇un) · ∇unη′′k(un)

−div
(
Φn(un)η′k(un)

)
+ Φn(un)η′′k(un)∇un

= g(un)M(|∇un|)η′k(un) + fnη
′
k(un) + nTn((un − ψ)−)η′k(un)

in the distribution sense. We deduce that ηk(un) is bounded in W 1,x
0 LM (Q)

and ∂ηk(un)/∂t in W−1,xLM (Q)+L1(Q). By the Corollary of [EM1], ηk(un)
is compact in L1(Q).
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In the same way as in [P] we obtain, for every k > 0,

(2.5)
Tk(un) ⇀ Tk(u) weakly in W 1,x

0 LM (Q) for σ
(∏

LM ,
∏
EM

)
,

Tk(un)→ Tk(u) strongly in L1(Q) and a.e. in Q.

Now using the estimate (2.3) and Fatou’s Lemma, we obtain

(u− ψ)− = 0,

and so u ≥ ψ.

Step 2: Almost everywhere convergence of the gradients

Lemma 2.2. Let un be a solution of the approximate problem (2.1). Then
there exists a subsequence also denoted by un such that

∇un → ∇u a.e. in Q.

The proof is similar to Step 2 in [KMS]. Now, there exists a subsequence
also denoted by un such that

∇un → ∇u a.e. in Q.

We deduce that

a(·, Tk(un),∇Tk(un)) ⇀ a(·, Tk(u),∇Tk(u))

in (LM (Q))N for σ(ΠLM , ΠEM ).

Step 3: Modular convergence of the truncations. We use the same tech-
nique as in [GM] in the parabolic case. The functions vj , χ

s
j , ε(n, j, µ, i, s,m),

χs and ε(n, j, s) below are as in Step 2 in [KMS]. By using the same argu-
ment as in Step 2 in [KMS], we prove that
�

Q

(
a(·, Tk(un),∇Tk(un))− a(·, Tk(un),∇Tk(vj)χsj)

)(
∇T ∗k (un)−∇Tk(vj)χsj

)
× exp

(un�
0

g(s) ds
)
dx dt ≤ ε(n, j, µ, i, s,m),

where

T ∗k (s) =
(Tk(s)�

0

exp
(t�
0

g(s) ds
)
dt
)(

exp
(
−
∞�

0

g(s) ds
))
.

We can also deduce that�

Q

(
a(·, Tk(un),∇Tk(un))− a(·, Tk(un),∇T ∗k (u)χs)

)(
∇T ∗k (un)−∇T ∗k (u)χs

)
× exp

(un�
0

g(s) ds
)
dx dt
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=
�

Q

(
a(·, Tk(un),∇Tk(un))−a(·, Tk(un),∇Tk(vj)χsj)

)(
∇T ∗k (un)−∇Tk(vj)χsj

)
× exp

(un�
0

g(s) ds
)
dx dt+ ε(n, j, s).

Then
�

Q

a(·, Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
�

Q

a(·, Tk(un),∇Tk(un))∇T ∗k (u)χs dx dt

+
�

Q

a(·, Tk(un),∇T ∗k (u)χs)(∇T ∗k (un)− Tk(u)χs) dx dt

+ ε(n, j, µ, i, s,m).

We deduce that

lim sup
n

�

Q

a(·, Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
�

Q

a(·, Tk(u),∇Tk(u))∇T ∗k (u)χs dx dt+ lim
n
ε(n, j, µ, i, s,m),

so that

lim sup
n

�

Q

a(·, Tk(un),∇Tk(un))∇T ∗k (un) dx dt

≤
�

Q

a(·, Tk(u),∇Tk(u))∇T ∗k (u)χs dx dt

≤ lim inf
n

�

Q

a(·, Tk(un),∇Tk(un))∇T ∗k (un) dx dt,

as n→∞. Hence

a(·, Tk(un),∇Tk(un))∇T ∗k (un)→ a(·, Tk(u),∇Tk(u))∇T ∗k (u) in L1(Q).

Using the same argument as above, we obtain

a(·, Tk(un),∇Tk(un))∇Tk(un)→ a(·, Tk(u),∇Tk(u))∇Tk(u) in L1(Q),

and Vitali’s theorem and (1.2) give

∇Tk(un)→ ∇Tk(u) for the modular convergence in (LM (Q))N .

Step 4: Passing to the limit. Using the approximate function of Lem-
ma 3.2 of [KMS], the passing to the limit is easy, as in [EM2, EM3].

Remark 2.3. A similar result can be proved when dealing with the
right-hand side in L1(Q) +W−1,xEM (Q).
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