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INEXACT NEWTON METHODS AND
RECURRENT FUNCTIONS

Abstract. We provide a semilocal convergence analysis for approximating
a solution of an equation in a Banach space setting using an inexact Newton
method. By using recurrent functions, we provide under the same or weaker
hypotheses: finer error bounds on the distances involved, and an at least
as precise information on the location of the solution as in earlier papers.
Moreover, if the splitting method is used, we show that a smaller number
of inner/outer iterations can be obtained.

Furthermore, numerical examples are provided using polynomial, inte-
gral and differential equations.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x? of the equation

(1.1) F (x) = 0,

where F is a Fréchet differentiable operator defined on a convex subset D
of a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engi-
neering are solved by finding solutions of certain equations. For example,
dynamical systems are mathematically modeled by difference or differen-
tial equations, and their solutions usually represent the states of the sys-
tems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation ẋ = Q(x), for some suitable operator Q, where x
is the state. Then the equilibrium states are determined by solving equa-
tion (1.1). Similar equations are used in the case of discrete systems. The
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unknowns of engineering equations can be functions (difference, differen-
tial, and integral equations), vectors (systems of linear or nonlinear alge-
braic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used
solution methods are iterative—when starting from one or several initial
approximations a sequence is constructed that converges to a solution of
the equation. Iteration methods are also applied for solving optimization
problems. In such cases, the iteration sequences converge to an optimal
solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general frame-
work.

We shall use the inexact Newton method (INM)

(1.2) xn+1 = xn + sn (n ≥ 0),

where step sn satisfies

(1.3) F ′(xn) sn = −F (xn) + rn (n ≥ 0)

for some null residual sequence {rn} ⊆ Y, to generate a sequence {xn}
approximating the solution x?.

A convergence analysis of (INM) has been given by many authors and
under various assumptions [1]–[7], [13], [15]–[17].

If rn = 0 (n ≥ 0), we obtain the ordinary Newton method for solv-
ing nonlinear equations. Otherwise, iterative procedure (1.2) is called the
inexact Newton method. By semilocal convergence we mean that we are
seeking a solution x? inside a ball centered at the initial guess x0, and of a
certain finite radius. We recommend the reading of Chapter XVIII on New-
ton’s method of Kantorovich and Akilov’s book [18], especially Theorem 6
in Subsection 1.5, along with the proof, to see how the majorizing function
is constructed there (whose least zero plays an important role); see also the
relevant Section 4.2 in [6].

There are two kinds of methods for the solution of linear equations.
The first kind is the so-called direct methods, elimination methods. In this
case the exact solution is determined through a finite number of arithmetic
operations in real arithmetic without considering the round-off errors. For
a list of difficulties and how to handle them we refer the reader to [9].

Another kind of methods are the iterative ones, which result in a two-
stage method, sometimes termed as inner/outer iterations for solving nonlin-
ear equation (1.1). In the two-stage method, Newton’s method is the outer
iteration, while an iterative method which is used to solve the Newton iter-
ation is the inner iteration. In the case X = Y = Rj (j fixed in N), we can
split the matrix F ′(xn) into F ′(xn) = Bn − Cn, to obtain the inner-outer
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iteration

xn+1 = xn − (Hmn−1
n + · · ·+Hn + I)B−1

n F (xn) (n ≥ 0),(1.4)

Hn = B−1
n Cn,(1.5)

where mn is the number of inner iterations. We usually let mn = m, or
choose any sequence in advance, like mn = n + 1 (n ≥ 0). As an example,
consider the case when the nonlinear mapping F (x) is mildly continuous,
i.e.,

F (x) = Ax− φ(x),

where A ∈ Rj×j is nonsingular, and φ : Rj → Rj is a nonlinear diagonal
function with certain local smoothness properties [9]. Another case is when
F is an affine mapping, i.e.,

F (x) = Ax− b,

where A ∈ Rj×j is a large sparse, maybe ill-conditioned symmetric positive
definite matrix, and b is fixed vector in Rj .

In this study, we are motivated by optimization considerations and the
elegant works by Guo [13]. Guo provided semilocal convergence analysis for
(INM) using Lipschitz conditions on the Fréchet derivative F ′ of the oper-
ator F . He also provided bounds on the number of inner iteration steps.
Using a combination of Lipschitz and center-Lipschitz conditions, we pro-
vided in [8] a semilocal convergence analysis (under the same or weaker
hypotheses) with the following advantages over the work in [13]: finer error
bounds on the distances ‖xn+1 − xn‖, ‖xn − x?‖ (n ≥ 0), and an at least as
precise information on the location of the solution x?.

We also show that the above advantages simplify our sufficient conver-
gence conditions given in [8]. To achieve this goal, we use our new idea of re-
current polynomials in Section 2, where the semilocal convergence of (INM)
is examined. Finally, in Section 3, numerical examples are provided, using a
polynomial equation, an integral equation of Chandrasekhar type [11], and
a differential equation involving Green’s function. As a last application, we
also provide a result (see Theorem 3.6) that simplifies the convergence con-
dition for our Theorem 3.7 in [8], concerning the number of inner iterations
under the conditions of Theorem 2.2.

2. Semilocal convergence analysis of (INM). We need the follow-
ing result on majorizing sequences for (INM).

Lemma 2.1. Let β, γ0, γ, η > 0 be given constants. Assume that

(2.1) (2γ0 + γ)β < 2
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and the quadratic polynomials

f1(s) = 2γ0βs
2 − (2− (2γ0 + γ)β)s+ 2η,(2.2)

f∞(s) = s2 − (1 + η − γ0β)s+ η(2.3)

have minimal positive zeros in (0, 1) denoted by s1, s∞, respectively. More-
over, suppose that for

δ0 =
γβ + 2η
1− γ0β

,(2.4)

δ+ =
−γ +

√
γ2 + 8γ0γ

4γ0
,(2.5)

δ∞ = 2s∞,(2.6)

the following hold:

δ0 ≤ δ∞,(2.7)
s1 ≤ δ+.(2.8)

Choose

(2.9) δ ∈ [δ∞, 2δ+].

Then the scalar sequence {tn} (n ≥ 0) generated by

(2.10) t0 = 0, t1 = β, tn+2 = tn+1 +
γ(tn+1 − tn) + 2η

2(1− γ0tn+1)
(tn+1 − tn)

is increasing, bounded above by

(2.11) t?? =
2β

2− δ
,

and converges to its unique least upper bound t? such that

(2.12) t? ∈ [0, t??].

Moreover, the following estimates hold for all n ≥ 0:

(2.13) 0 ≤ tn+2 − tn+1 ≤
δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

β.

Note that the most appropriate choice for δ seems to be δ = δ∞.

Proof. We shall show by induction on m that

(2.14) 0 < tm+2−tm+1 =
γ(tm+1− tm) + 2η

2(1− γ0tm+1)
(tm+1−tm) ≤ δ

2
(tm+1−tm),

and

(2.15) γ0tm+1 < 1.
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If (2.14) and (2.15) hold, then (2.13) holds, and

tm+2 ≤ tm+1 +
δ

2
(tm+1 − tm)(2.16)

≤ tm +
δ

2
(tm − tm−1) +

δ

2
(tm+1 − tm)

≤ β +
(
δ

2

)
β + · · ·+

(
δ

2

)m+1

β

=
1− (δ/2)m+2

1− δ/2
β

<
2β

2− δ
= t?? (by (2.11)).

It will then also follow that the sequence {tm} is increasing, bounded above
by t??, and hence converges to some t? satisfying (2.12).

Estimates (2.14) and (2.15) hold for m = 0, by the initial conditions,
(2.1), and the choice of δ, δ0:

γ(t1 − t0) + 2η
1− γ0t1

=
γβ + 2η
1− γ0β

= δ0 ≤ δ,

γ0t1 = γ0β < 1.

Let us assume (2.13)–(2.15) hold for all m ≤ n+ 1. Estimate (2.14) can
be rewritten as

γ(tm+1 − tm) + 2η + γ0δtm+1 − δ ≤ 0,

or

(2.17) γ

(
δ

2

)m
β + γ0δ

1− (δ/2)m+1

1− δ/2
β + 2η − δ ≤ 0.

By letting m→∞ in (2.17), and using the definition of f∞, we see that s∞
solves the equation

η +
γ0βs

1− s
− s = 0,

or equivalently, s∞ is a zero of the polynomial f∞.
Estimate (2.17) motivates us to introduce functions fm on [0,+∞)

(m ≥ 1) for s = δ/2 by:

(2.18) fm(s) = γsmβ + 2γ0s(1 + s+ s2 + · · ·+ sm)β − 2s+ 2η.

Estimate (2.17) certainly holds if

(2.19) fm(s) ≤ 0 for all s ∈ [s∞, δ+] (m ≥ 1).
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We need to find a relationship between two consecutive polynomials fm:

fm+1(s) = γsm+1β+2γ0s(1+s+s2 + · · ·+sm+sm+1)β−2s+2η(2.20)
= γsmβ − γsmβ + γsm+1β

+ 2γ0s(1 + s+ s2 + · · ·+ sm)β + 2γ0s
m+2β − 2s+ 2η

= fm(s) + g(s)βsm,

where

(2.21) g(s) = 2γ0s
2 + γs− γ.

Note that g has a positive zero δ+ given by (2.5).
By hypothesis, the function f1 has a minimal positive zero s1. Using

(2.20) for m = 1, and (2.8), we have

(2.22) f2(s1) = f1(s1) + g(s1)βsm1 = g(s1)βsm1 < 0.

From (2.18) we also have

(2.23) fm(0) = 2η > 0 (m ≥ 1).

It follows from (2.22), (2.23), and the intermediate value theorem that
there exists s2 ∈ (0, s1] such that f2(s2) = 0. Note that s2 is the unique
positive zero of f2 in (0, s1], since

(2.24) f ′m(s) > 0 (s > 0).

Assume that there exists sm ∈ (0, sm−1] such that fm(sm) = 0. Then we
have as above

(2.25) fm+1(sm) = fm(sm) + g(sm)βsmm = g(sm)βsmm < 0.

since fm(sm) = 0 and sm ≤ δ+.
Estimates (2.23)–(2.25) establish the existence of a unique zero sm+1 of

fm+1 in (0, sm).
The sequence {sm} is nonincreasing, bounded below by zero, and so it

converges to its unique maximum lowest bound s? satisfying s? ≥ s∞. Hence,
we showed (2.17) holds, since δ/2 ∈ [s∞, δ+]. That completes the induction
for (2.14) and (2.15).

If
(4γ0 + γ)β + 2η < 2,

then it follows from the intermediate value theorem applied to the function
f1 for s ∈ (0, 1) that

f1(0)f1(1) = 2η((4γ0 + γ)β + 2η − 2) < 0.

Hence, s1 exists in (0, 1).
By the induction hypotheses s∞ exists, and if

η < 1 + γ0β,

then s∞ ∈ (0, 1).
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Hence, the above conditions can replace the hypotheses on the functions
f1 and f∞ given in Lemma 2.1.

We can now provide a semilocal convergence theorem for (INM) using
information on the differences rn − rn−1, and ‖xn − xn−1‖ (n ≥ 1):

Theorem 2.2. Let F : D ⊆ X → Y be a Fréchet differentiable operator.
Assume that F ′(x0)−1 ∈ L(Y,X ) for some x0 ∈ D, and there exist constants
β, γ0, γ > 0 and η ∈ [0, 1) such that for all x, y ∈ D,

‖F ′(x0)−1[F (x0)− r0]‖ ≤ β,
‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ γ0‖x− x0‖,
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ γ‖x− y‖,
‖F ′(x0)−1(rn − rn−1)‖ ≤ ηn‖xn−xn−1‖, η= max

n
{ηn},

(2.26)

U = U(x0, t
?) ⊆ D,

and the hypotheses of Lemma 2.1 hold. Then the sequence {xn} generated
by (INM) is well defined, remains in U for all n ≥ 0, and converges to a
solution x? of the equation F (x) = 0.

Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn,(2.27)
‖x? − xn‖ ≤ t? − tn,(2.28)

where the scalar sequence {tn} and t? are given in Lemma 2.1.

Proof. If ‖xk − xk−1‖ ≤ tk − tk−1, using (2.26), and the estimate

‖F ′(xk)−1F ′(x0)‖ ≤ 1
1− γ0‖xk − x0‖

≤ 1
1− γtk

(see [8]),

we can get in turn

‖xk+1−xk‖ = ‖F ′(xk)−1[F (xk)− rk]‖(2.29)

≤ ‖F ′(xk)−1F ′(x0)‖{‖F ′(x0)−1[F (xk)− F (xk−1)

−F ′(xk−1)(xk−xk−1)]‖+‖F ′(x0)−1(rk−1−rk)‖}

≤ 1
1−γ0‖xk−x0‖

[
γ

2
‖xk−xk−1‖2 + ηk‖xk−xk−1‖

]
≤ 1

1−γ0tk

[
γ

2
(tk− tk−1) + η

]
(tk− tk−1) = tk+1− tk.

That is, we have shown estimate (2.27) for all k ≥ 0.
Estimate (2.28) follows from (2.27) by using standard majorization tech-

niques [6], [7], [18].
In view of the fact that the sequence {tn} is Cauchy, it follows that {xn}

is also a Cauchy sequence in the Banach space X and so it converges to
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some x? ∈ U (since U is a closed set). By letting k →∞ in (2.29) and since
limk→∞ rk = 0, we get F (x?) = 0.

Remark 2.3. Let us define a related majorizing sequence {tn} by simply
replacing γ0 by γ in the definition of {tn}. Then, under the hypotheses of
Theorem 2.7 in [13] (see, e.g., the hypothesis on hG in Application 3.1), and
our Theorem 2.2, since γ0 ≤ γ we have

tn ≤ tn (n ≥ 2),
tn − tn−1 ≤ tn − tn−1 (n ≥ 2),

t? − tn ≤ t? − tn (n ≥ 0),

where
t
? = lim

n→∞
tn.

Note that strict inequality holds in the first two error estimates provided
that γ0 < γ.

Hence, the claims made in the introduction of this study are now justi-
fied.

3. Special cases and applications .

Application 3.1 (Newton’s method). That is, set η = 0. The hypoth-
esis

(3.1) hG = βγ ≤ 1− η2

2
(see [13])

reduces to the famous Newton–Kantorovich hypothesis [6], [7], [18] for solv-
ing nonlinear equations:

(3.2) hK : γβ ≤ 1/2.

Note that in this case, the polynomials fm (m ≥ 1) should be

(3.3) fm(s) = (γsm−1 + 2γ0(1 + s+ s2 + · · ·+ sm))β − 2,

and

(3.4) fm+1(s) = fm(s) + g(s)sm−1β.

But this time,

(3.5) s∞ = 1− γ0β, δ∞ = 2s∞,

and the conditions corresponding to Lemma 2.1 should be

(3.6) δ1 = max {δ0/2, δ+} ≤ s∞,
whereas

(3.7) δ/2 ∈ [δ1, δ∞].
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It is then simple algebra to show that conditions (3.6)–(3.7) reduce to

(3.8) hA = αβ ≤ 1/2,

where

(3.9) α = 1
8(γ + 4γ0 +

√
γ2 + 8γ0γ).

In view of (3.2), (3.8), and (3.9), we get

(3.10) hK ≤ 1/2 ⇒ hA ≤ 1/2,

but not necessarily vice versa unless γ = γ0.

We provide examples where γ0 ≤ γ or (3.8) holds but (3.2) is violated.

Example 3.2. Let X = Y = R, x0 = 1, U0 = {x : |x − x0| ≤ 1 − p},
p ∈ [0, 1/2), and define a function F on U0 by

(3.11) F (x) = x3 − p.

Case 1: η = 0. Using the hypotheses of Theorem 2.2, we get

β = 1
3(1− p), γ0 = 3− p, and γ = 2(2− p).

The Kantorovich condition (3.2) is violated, since
4
3(1− p)(2− p) > 1 for all p ∈ [0, 1/2).

Hence, there is no guarantee that Newton’s method converges to x? =
3
√
p, starting at x0 = 1.

However, our condition (3.8) is true for all p ∈ I = [.450339002, 1/2).
Hence, the conclusions of our Theorem 2.2 can apply to solve equation (3.11)
for all p ∈ I.

Case 2: 0 6= η = 0.01. Choose p = .49; then using (2.2)–(2.5) and the
above, we get

γ0 = 2.51 < γ = 3.02, β = .17,
s1 = .033058514 < δ+ = .53112045,
δ0 = .3347085 < s∞ = .03587956.

Note also that condition (3.1) is violated no matter how η is chosen in (0, 1).

Example 3.3. Let X = Y = C[0, 1] be the space of real-valued continu-
ous functions defined on the interval [0, 1] with the norm

‖x‖ = max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the “cubic” integral equation

(3.12) u(s) = u3(s) + λu(s)
1�

0

q(s, t)u(t) dt+ y(s)− θ.
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Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1]×[0, 1]; the parameter λ is a real number called the “albedo” for scatter-
ing; y(s) is a given continuous function defined on [0, 1]; and x(s) is the un-
known function sought in C[0, 1]. Equations of the form (3.12) arise in the ki-
netic theory of gases [7], [11]. For simplicity, we choose u0(s) = y(s) = 1, and
q(s, t) = s/(s+ t) for all s, t ∈ [0, 1] with s+t 6= 0. If we let D = U(u0, 1−θ),
and define the operator F on D by

(3.13) F (x)(s) = x3(s)− x(s) + λx(s)
1�

0

q(s, t)x(t) dt+ y(s)− θ

for all s ∈ [0, 1], then every zero of F satisfies equation (3.12). We have the
estimates

max
0≤s≤1

∣∣∣∣ � s

s+ t
dt

∣∣∣∣ = ln 2.

Therefore, if we set ξ = ‖F ′(u0)−1‖, then it follows from the hypotheses of
Theorem 2.2 that

β = ξ(|λ| ln 2 + 1− θ),
γ = 2ξ(|λ| ln 2 + 3(2− θ)), γ0 = ξ(2|λ| ln 2 + 3(3− θ)).

It follows from Theorem 2.2 that if condition (3.8) holds, then problem
(3.12) has a unique solution near u0. This assumption is weaker than the
one given before using the Newton–Kantorovich hypothesis (3.2).

Note also that γ0 < γ for all θ ∈ [0, 1].

Example 3.4. Consider the following nonlinear boundary value prob-
lem [7]: {

u′′ = −u3 − γu2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.14) u(s) = s+
1�

0

Q(s, t)(u3(t) + γu2(t)) dt

where Q is the Green function

Q(s, t) =
{
t(1− s), t ≤ s,
s(1− t), s < t.

We observe that

max
0≤s≤1

1�

0

|Q(s, t)| dt =
1
8
.

Let X = Y = C[0, 1], with norm ‖x‖ = max0≤s≤1 |x(s)|. Then problem
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(3.14) is in the form (1.1), where F : D → Y is defined as

[F (x)](s) = x(s)− s−
1�

0

Q(s, t)(x3(t) + γx2(t)) dt.

It is easy to verify that the Fréchet derivative of F is

[F ′(x)v](s) = v(s)−
1�

0

Q(s, t)(3x2(t) + 2γx(t))v(t) dt.

If we set u0(s) = s and D = U(u0, R), then since ‖u0‖ = 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that 2γ < 5. Then

‖I − F ′(u0)‖ ≤ 3‖u0‖2 + 2γ‖u0‖
8

=
3 + 2γ

8
‖F ′(u0)−1‖

≤ 1
1− 3+2γ

8

=
8

5− 2γ
,

‖F (u0)‖ ≤ ‖u0‖3 + γ‖u0‖2

8
=

1 + γ

8
,

‖F (u0)−1F (u0)‖ ≤ 1 + γ

5− 2γ
.

On the other hand, for x, y ∈ D, we have

[(F ′(x)− F ′(y))v](s) = −
1�

0

Q(s, t)(3x2(t)− 3y2(t) + 2γ(x(t)− y(t)))v(t) dt.

Consequently,

‖F ′(x)− F ′(y)‖ ≤ ‖x− y‖(2γ + 3(‖x‖+ ‖y‖))
8

≤ ‖x− y‖(2γ + 6R+ 6‖u0‖)
8

=
γ + 6R+ 3

4
‖x− y‖,

‖F ′(x)− F ′(u0)‖ ≤ ‖x− u0‖(2γ + 3(‖x‖+ ‖u0‖))
8

≤ ‖x− u0‖(2γ + 3R+ 6‖u0‖)
8

=
2γ + 3R+ 6

8
‖x− u0‖.

Therefore, the conditions of Theorem 2.2 hold with

β =
1 + γ

5− 2γ
, γ =

γ + 6R+ 3
4

, γ0 =
2γ + 3R+ 6

8
.

Note also that γ0 < γ.



124 I. K. Argyros and S. Hilout

Application 3.5. Let us assume mn = m in iteration (1.4). We can
obtain a result concerning the estimation of the number of inner iterations
under the conditions of Theorem 2.2:

Theorem 3.6. Under the hypotheses of Theorem 2.2, further assume:

‖B−1
0 F ′(x0)‖ ≤ q,

a0h
m +mbhm−1 ≤ ηn, sup

n
‖Hn‖ ≤ h < 1,

where

a0 =
3− 2η + 2βγn

η2
,

b =
2− η
η

q(q + 1)γ0

[1− (1− η)γ0q]2

[
(1− η)2

2γ
+

1− η
γ

+ β

]
.

(3.15)

Moreover, suppose that

‖F ′(x0)−1R‖ ≤ ‖F ′(x0)−1S‖
with R any submatrix of S, and

U(x0, t
?) ⊆ D,

and the hypotheses of Lemma 2.1 hold. Then the conclusions of Theorem 2.2
hold true for the inexact iteration (1.4).

Proof. This follows exactly as in Corollary 3.3 of [13], and our Theo-
rem 3.7 in [8]. Here are the changes (with γ0 replacing γ in the proof):

‖F ′(x0)−1F ′(xn)‖ ≤ 1 + γ0‖xn − x0‖,

‖F ′(xn)−1F ′(x0)‖ ≤ 1
1− γ0‖xn − x0‖

,

‖F ′(x0)−1F (xn)‖ ≤ γ

2
‖xn − x0‖2 + ‖xn − x0‖+ β,

‖F ′(x0)−1(Bn −Bn−1)‖ ≤ γ‖xn − xn−1‖,

‖B−1
n F ′(x0)−1‖ ≤ q

1− γ0‖xn − x0‖q
.

The constant b defined in [13] (for γ0 = γ) is larger than b, which is an
advantage of our approach for the selection of a smaller η, when γ < γ0.

Note that the hypotheses of Theorem 3.6 are simpler than the hypotheses
of our Theorem 3.7 in [8], and weaker than those of Corollary 3.3 in [13].

Conclusion.. We provided a semilocal convergence analysis for (INM)
in order to approximate a locally unique solution of an equation in a Banach
space.

Using recurrent functions, a combination of Lipschitz and center-Lip-
schitz conditions, instead of only Lipschitz conditions [1]–[10], [11]–[24], we
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provided an analysis with the following advantages over the work in [1]–[7],
[13], [15]–[17]:

(a) weaker sufficient convergence conditions in some interesting cases
(e.g., when F ′(xn) = Bn − Cn);

(b) larger convergence domain;
(c) finer majorizing sequences;
(d) an at least as precise information on the location of the solution.

Note that these advantages are obtained under the same computational
cost as in [1]–[7], [13], [15]–[17], since in practice the computation of the
Lipschitz constant γ requires the computation of γ0.

Numerical examples further validating the results were also provided in
this study.
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