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POINTS AND APPLICATIONS

Abstract. The purpose of this paper is to study global existence and
uniqueness of solutions of initial value problems for nonlinear fractional dif-
ferential equations. By constructing a special Banach space and employing
fixed-point theorems, some sufficient conditions are obtained for the global
existence and uniqueness of solutions of this kind of equations involving
Caputo fractional derivatives and multiple base points. We apply the re-
sults to solve the forced logistic model with multi-term fractional deriva-
tives.

1. Introduction. Fractional differential equations (FDEs for short)
are generalizations of ordinary differential equations to arbitrary nonin-
teger orders. The origin of fractional calculus goes back to Newton and
Leibniz in the seventieth century. Recent investigations have shown that
many physical systems can be represented more accurately through frac-
tional derivative formulation [12]. Fractional differential equations therefore
find numerous applications in different branches of physics, chemistry and
biological sciences, including visco-elasticity, feedback amplifiers, electrical
circuits, electro-analytical chemistry, fractional multipoles and neuron mod-
elling [15]. Many excellent books and monographs on this field are available
[5, 6, 7, 9, 14, 11, 10, 16, 17].

In the literature, cDα
0+u(t) + f(t, u(t)) = 0 is known as a single term

equation. In certain cases, we find equations containing more than one dif-
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ferential term. These are called multi-term equations. A classical example is
the so-called Basset equation

AD1
0+y(x) + bDn

0+y(x) + cy(x) = f(x), y(0) = y0,

where 0 < n < 1. This equation is most frequently, but not exclusively, used
with n = 1/2. It describes the forces that occur when a spherical object
sinks in a (relatively dense) incompressible viscous fluid (see [1, 10]).

In the left and right fractional derivatives Dα
a+x and Dα

b−x, a is called a
left base point and b a right base point. Both a and b are called base points
of fractional derivatives. An FDE containing more than one base point is
called a multiple base point FDE. An FDE containing only one base point
is called a single base point FDE.

In [2], the authors studied the initial value problem (IVP for short) for
the fractional functional differential equation with one base point{ cDα

0+x(t) = f(t, xt), t ∈ (t0,∞), t0 ≥ 0, 0 < α < 1,

x(t) = φ(t), t ∈ [t0 − τ, t0],
where cDα

0+ is the standard Caputo fractional derivative at the base point
t = 0, f : J ×C0([−τ, 0],R)×R with J = (t0,∞) is a given function, τ > 0
and φ ∈ C0([t0− τ, t0],R); if x ∈ C0([t0− τ,∞),R), then for any t ∈ [t0,∞),
we define xt(θ) = x(t+ θ) for θ ∈ [−τ, 0].

In [8], the authors studied the global existence of solutions of the initial
value problem for the fractional functional differential equation with one
base point {

Dα
0+x(t) = f(t, x(t)), t ∈ (0,∞), 0 < α ≤ 1,

lim
t→0

t1−αx(t) = u0,

where Dα
0+ is the standard Riemann–Liouville fractional derivative at the

base point t = 0, and f : J × R→ R with J = (0,∞) is a given function.

In this paper, we study the following IVP for the nonlinear multi-term
fractional differential equation on the half line:

(1)

{ cDα
∗ x(t) = q(t)f(t, x(t), cDp

∗x(t)), t ∈ (0,∞),

x(0) = x0,

where x0 ∈ R, α ∈ (0, 1], 0 < p < α, q : (0,∞) → R has the property
that there exists l > −α such that |q(t)| ≤ tl for all t ∈ (0,∞), q may be
singular at t = 0, cD∗ is the standard Caputo fractional derivative at the
base points t = tk (k = 1, 2, . . .), 0 = t0 < t1 < t2 < · · · with limk→∞ tk =∞
and λ0 = infk=0,1,2,...[tk+1 − tk] > 0, i.e., cDα

∗ |(tk,tk+1]u(t) = cDα
t+k
u(t) for all

t ∈ (tk, tk+1], and f : [0,∞)× R2 → R is a Carathéodory function.

Malthusian Geometrical Law is expressed as N ′(t) = rN(t), where N(t)
is the population at time t and r is the proportionality constant. When one
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considers the case where the growth of the population in any environment
may be stopped due to the density of the population, this model is modified
to the nonlinear logistic model N ′(t) = rN(t)(1 − N(t)/π), where π is the
maximum that a given amount of food can support. A generalization of the
nonlinear logistic model is represented by N ′(t) = rN(t)[1− (N(t)/π)α]/α;
for α→ 0 this model is known as the Gompertz model and can be found in
the actuarial literature and in the mortality analysis of elderly persons [3].

In [4], Das, Gupta and Vishal presented the following fractional-order
logistic model (Das model):

(2) Dβ
0+
N(t) =

r

α
N(t)

[
1−

(
N(t)

π

)α]
, 0 < β ≤ 1.

One purpose of this paper is to establish sufficient conditions for the exis-
tence and uniqueness of solutions of (1) (the definitions of positive solutions
can be found in Section 2). Another purpose is to establish sufficient con-
ditions for the existence of solutions of the following forced logistic models
with multi-term fractional derivatives:

(3)


cDα
∗ x(t) = q(t)[r(t) + a(t)x(t)− b(t)(x(t))δ + c(t)x(t)(Dp

∗x(t))µ],

t ∈ (0,∞),
x(0) = x0,

where α ∈ (0, 1] and p ∈ (0, α), 0 < t1 < t2 < · · · with limk→∞ tk = ∞
and λ0 = infk=0,1,2,...[tk+1 − tk] > 0, δ > 1, µ > 0, a, b, c, r : (0,∞) → R are
continuous functions and r is called a forced term, x0 ∈ R.

The remainder of this paper is organized as follows: Preliminary results
are given in Section 2, the main results are presented in Sections 3 and 4,
and an application is shown in Section 5.

2. Preliminary results. For the convenience of the reader, we present
here the necessary definitions from fixed point theory and fractional calculus
theory. They can be found in [13, 14, 16]. Denote the Gamma function and
Beta function respectively by

Γ (α1) =

∞�

0

sα1−1e−s ds, α1 > 0,

B(α2, β2) =

1�

0

(1− x)α2−1xβ2−1 dx, α2, β2 > 0.

Definition 2.1 ([14]). Let c ≥ 0. The Riemann–Liouville fractional
integral of order α > 0 of a function f : (c,∞)→ R is given by

Iαc+f(t) =
1

Γ (α)

t�

c

(t− s)α−1f(s) ds,

provided that the right-hand side exists.
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Definition 2.2 ([14]). Let c ≥ 0. The Caputo derivative of order α for
a function f : (c,∞)→ R is defined as

(4) cDα
c+f(t) =

1

Γ (n− α)

t�

c

(t− s)n−α−1f (n)(s) ds,

for n− 1 ≤ α < n, n ∈ N. If 0 < α ≤ 1, then

(5) Dα
c+f(t) =

1

Γ (1− α)

t�

c

(t− s)−αf (1)(s) ds.

Obviously, the Caputo derivative of a constant is equal to zero.

Lemma 2.1 ([14]). For α > 0, the general solution of the fractional differ-
ential equation cDα

c+x(t) = 0 is given by x(t) = c0+c1t+c2t
2+· · ·+cn−1tn−1,

where ci ∈ R, i = 0, 1, . . . , n− 1, n− 1 < α ≤ n.

Definition 2.3. A continuous function x : [0,∞) → R is said to be
a solution of the IVP (1) if x satisfies the differential equation cDα

t+k
x(t) =

q(t)f(t, x(t), cDp

t+k
x(t)) on (tk, tk+1] and x(0) = x0.

Choose σ > α+ l and µ > σ. Let

X =

x ∈ C0([0,∞),R) :

cDp
∗x|(tk,tk+1] ∈ C

0((tk, tk+1]), k = 0, 1, 2, . . . ,

tσ−α−l

(1+t)(1+tµ)x(t) is bounded on (0,∞),

tp+σ−α−l

1+tµ
cDp
∗x(t) is bounded on (0,∞).


For x ∈ X, define

‖x‖ = max

{
sup

t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|x(t)|, sup

t∈(0,∞)

tp+σ−α−l

1 + tµ
|cDp
∗x(t)|

}
.

It is easy to show that X is a real Banach space.

Definition 2.4. f : [0,∞)× R2 → R is called a Carathéodory function
if it satisfies the following assumptions:

(i) (t, x, y)→ f
(
t, (1+t)(1+tµ)

tσ−α−l
x, 1+tµ

tp+σ−α−l
y
)

is continuous on [0,∞)×R2;
(ii) for each r > 0 there exists a constant Mr > 0 such that |x|, |y| ≤ r

imply∣∣∣∣f(t, (1 + t)(1 + tµ)

tσ−α−l
x,

1 + tµ

tp+σ−α−l
y

)∣∣∣∣ ≤Mr, t ∈ [0,∞).

If b > a > 0, then we have

(6) sup
t∈(0,∞)

ta

1 + tb
=

1

b
aa/b(b− a)(b−a)/b =: Ma,b.
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Lemma 2.2. Suppose that f is a Carathéodory function, and let x ∈ X.
Then y ∈ X is a solution of

(7)

{ cDα
∗ y(t) = q(s)f(t, x(t), cDp

∗x(t)), t ∈ (0,∞),

y(0) = x0,

if and only if y ∈ X is a solution of the fractional integral equation

y(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ x0(8)

+
k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+j−1

x(s)) ds,

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

Proof. As x ∈ X, there exists r > 0 such that

max

{
sup

t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|x(t)|,

sup
n=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
x(t)|

}
= r.

Since f is a Carathéodory function, there exists Mr ≥ 0 such that

|f(t, x(t), cDp

t+k
x(t))|

=

∣∣∣∣f(t, (1 + t)(1 + tµ)

tσ−α−l
tσ−α−l

(1 + t)(1 + tµ)
x(t),

1 + tµ

tp+σ−α−l
tp+σ−α−l

1 + tµ
cDp

t+k
x(t)

)∣∣∣∣
≤Mr, t ∈ [0,∞).

Assume y satisfies (7). Then
cDα
∗ y(t) = q(t)f(t, x(t), cDp

∗x(t)), y(0) = x0.

By using Lemma 2.1, we can write the solution of (7) as

y(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ ck

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . . We see that∣∣∣∣ t�
0

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣
≤

t�

0

(t− s)α−1

Γ (α)
slMr ds = Mrt

α+l
1�

0

(1− w)α−1

Γ (α)
wl dw → 0, t→ 0.

From y(0) = x0, we get c0 = x0. Since
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tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣ ≤Mr

t�

tk

(t− s)α−1

Γ (α)
sl ds

= Mrt
α+l

1�

tk/t

(1− w)α−1

Γ (α)
wl dw → 0 as t→ t+k , k = 1, 2, . . . ,

we get

ck −
( tk�

tk−1

(tk − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k−1

x(s)) ds+ ck−1

)
= 0.

It follows that

ck = ck−1 +

tk�

tk−1

(tk − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k−1

x(s)) ds

= x0 +

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+j−1

x(s)) ds, k = 0, 1, 2, . . . .

We have the following form of the solution:

y(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ x0

+

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+j−1

x(s)) ds,

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

Hence y satisfies (8). We need to prove that y ∈ X. In fact, we have

cDp

t+k
y(t) =

t�

tk

(t− s)α−p−1

Γ (α− p)
q(s)f(s, x(s), cDp

t+k
x(s)) ds.

It is easy to see that

y ∈ C0([0,∞)), cDp

t+k
y|(tk,tk+1] ∈ C

0(tk, tk+1], k = 0, 1, 2, . . . .

Furthermore, for t ∈ (tk, tk+1] we have

tσ−α−l

(1 + t)(1 + tµ)
|y(t)|

=
tσ−α−l

(1 + t)(1 + tµ)

∣∣∣∣ t�
tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ x0

+

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+j−1

x(s)) ds

∣∣∣∣
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≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
Mrs

l ds+Mσ−α−l,µ|x0|

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
Mrs

l ds

≤Mr
tσ

(1 + t)(1 + tµ)

1�

tk/t

(1− w)α−1

Γ (α)
wl dw +Mσ−α−l,µ|x0|

+
tσ−α−l

(1 + t)(1 + tµ)
Mr

k∑
j=1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw

≤MrMσ,µ

1�

0

(1− w)α−1

Γ (α)
wl dw +Mσ−α−l,µ|x0|

+Mr

k∑
j=1

tσ−α−ltα+lj

(1 + t)(1 + tµ)

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw

≤MrMσ,µ
B(α, l + 1)

Γ (α)
+Mσ−α−l,µ|x0|

+Mr

k∑
j=1

tσ−α−ltα+lj

tµ+1

1�

0

(1− w)α−1

Γ (α)
wl dw

≤MrMσ,µ
B(α, l + 1)

Γ (α)
+Mσ−α−l,µ|x0|+Mr

k∑
j=1

tα+lj

tµ+1−σ+α+l
j

B(α, l + 1)

Γ (α)

≤MrMσ,µ
B(α, l + 1)

Γ (α)
+Mσ−α−l,µ|x0|+Mr

k∑
j=1

1

tµ+1−σ
j

B(α, l + 1)

Γ (α)
.

Since tj − tj−1 ≥ λ0 and t0 = 0, we get tj ≥ jλ0 for all j = 0, 1, 2, . . . . Then

tσ−α−l

(1 + t)(1 + tµ)
|y(t)| ≤MrMσ,µ

B(α, l + 1)

Γ (α)
+Mσ−α−l,µ|x0|

+Mr
1

λµ+1−σ
0

B(α, l + 1)

Γ (α)

∞∑
j=1

1

jµ+1−σ , t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

So
tσ−α−l

(1 + t)(1 + tµ)
|y(t)| is bounded on (0,∞).

For t ∈ (tk, tk+1] we have
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tp+σ−α−l

1 + tµ
|cDp

t+k
y(t)| = tp+σ−α−l

1 + tµ

∣∣∣∣ t�
tk

(t− s)α−p−1

Γ (α− p)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣
≤ tp+σ−α−l

1 + tµ

t�

tk

(t− s)α−p−1

Γ (α− p)
Mrs

l ds =
Mrt

σ

1 + tµ

1�

tk/t

(1− w)α−p−1

Γ (α− p)
wl dw

≤MrMσ,µ
B(α− p, l + 1)

Γ (α− p)
<∞, t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

So
tp+σ−α−l

1 + tµ
|cDp
∗y(t)| is bounded on (0,∞).

It follows that y ∈ X.

Conversely, assume that y satisfies (8). By a direct computation, it fol-
lows that y ∈ X satisfies the system (7). This completes the proof of the
lemma.

3. Main theorems. We are now in a position to prove the existence
and uniqueness of solutions of (1). Let us define an operator T on X by

(Tx)(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ x0(9)

+
k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+j−1

x(s)) ds,

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

Lemma 3.1. Suppose that f is a Carathéodory function and

λ0 := inf
k=1,2,...

(tk − tk−1) > 0.

Then

(i) T : X → X is well defined;
(ii) the fixed points of the operator T coincide with the solutions of (1);
(iii) T : X → X is completely continuous.

Proof. (i) For x ∈ X, we get

r = max

{
sup

t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|x(t)|,

sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
x(t)|

}
<∞.
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Since f is a Carathéodory function, there exists Mr > 0 such that

|f(t, x(t), cDp

t+k
x(t))| ≤Mr, t ∈ [0,∞).

It is easy to show that

Tx ∈ C0([0,∞)), cDp

t+k
Tx|(tk,tk+1] ∈ C

0(tk, tk+1], k = 0, 1, 2, . . . .

As in Lemma 2.2, we can prove that

tσ−α−l

(1 + t)(1 + tµ)
(Tx)(t) is bounded

and {
sup

t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
cDp

t+k
(Tx)(t)

}∞
k=0

is bounded.

Hence Tx ∈ X. Thus T : X → X is well defined.

(ii) It follows from Lemma 2.2 that the fixed points of T coincide with
the solutions of (1).

(iii) To prove that T is completely continuous, we must show that

• T is continuous,
• T maps bounded subsets of X to bounded sets,
• T maps bounded subsets of X to relatively compact sets.

The proof is divided into five steps.

Step 1. We prove that T is continuous.

Let yn ∈ X with yn → y0 as n → ∞. We will prove that Tyn → Ty0 as
n→∞. It is easy to see that there exists r > 0 such that

sup
t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|yn(t)|, sup

k=0,1,2,...
sup

t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
yn(t)|≤r<∞,

n = 0, 1, 2, . . . ,

and

(10)

sup
t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|yn(t)− y0(t)| → 0 as n→∞,

sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
yn(t)− cDp

t+k
y0(t)| → 0 as n→∞.

Since f is a Carathéodory function, there exists Mr > 0 such that

|f(t, yn(t), cDp

t+k
yn(t))| ≤Mr, t ∈ [0,∞), k = 0, 1, 2, . . . .



370 Y. Liu and P. H. Yang

One sees that, for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

(Tyn)(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)f(s, yn(s), cDp

t+k
yn(s)) ds+ x0(11)

+
k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, yn(s), cDp

t+j−1

yn(s)) ds,

and

(12) cDp
tk

(Tyn)(t) =

t�

tk

(t− s)α−p−1

Γ (α− p)
q(s)f(s, yn(s), cDp

t+k
yn(s)) ds.

From λ0 = infk=1,2,...(tk − tk−1) > 0, we get tk > kλ0 for all k =
0, 1, 2, . . . . Since

∑∞
j=K+1 1/jµ+1−σ is convergent, there is K > 0 such

that
∞∑

j=K+1

1

jµ+1−σ < ε.

Then

(13)
tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)

× |q(s)f(s, yn(s), cDp

t+k
yn(s))− q(s)f(s, y0(s),

cDp

t+k
y0(s))| ds

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=K+1

tj�

tj−1

(tj − s)α−1

Γ (α)

× |q(s)f(s, yn(s), cDp

t+k
yn(s))− q(s)f(s, y0(s),

cDp

t+k
y0(s))| ds

≤ 2Mr
tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
sl ds

+ 2Mr
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=K+1

tj�

tj−1

(tj − s)α−1

Γ (α)
sl ds

≤ 2Mr
1

tµ+1−σ

1�

tk/t

(1− w)α−1

Γ (α)
wl dw

+ 2Mr
1

tµ+1−σ+α+l

k∑
j=K+1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw
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≤ 2Mr
1

tµ+1−σ
k

1�

0

(1− w)α−1

Γ (α)
wl dw

+ 2Mr

k∑
j=K+1

1

tµ+1−σ+α+l
j

tα+lj

1�

0

(1− w)α−1

Γ (α)
wl dw

≤ 4Mr

k∑
j=K+1

1

tµ+1−σ
j

B(α, l + 1)

Γ (α)
≤ 4Mr

B(α, l + 1)

Γ (α)

k∑
j=K+1

1

(jλ0)µ+1−σ

= 4Mr
B(α, l + 1)

Γ (α)

1

λµ+1−σ
0

∞∑
j=K+1

1

jµ+1−σ ≤ 4Mr
B(α, l + 1)

Γ (α)

1

λµ+1−σ
0

ε.

Since f is a Carathéodory function, there exists δ1 > 0 such that∣∣∣∣f(t, tσ−α−l

(1 + t)(1 + tµ)
u1,

tp+σ−α−l

1 + tµ
v1

)
− f

(
t,

tσ−α−l

(1 + t)(1 + tµ)
u2,

tp+σ−α−l

1 + tµ
v2

)∣∣∣∣ < ε∑K
j=1 1/tµ+1−σ

j

for all t ∈ [0, tK+1] and u1, u2 ∈ [−r, r] with |u1 − u2| < δ1, |v1 − v2| < δ1.
From (37), there exists an integer N2 > 0 such that

tσ−α−l

(1 + t)(1 + tµ)
|yn(t)− y0(t)| < δ1, t ∈ (0,∞), n > N2,

tp+σ−α−l

1 + tµ
|cDp

t+k
yn(t)− cDp

t+k
y0(t)| < δ1, t ∈ (tk, tk+1], n > N2.

So for t ∈ [tk, tk+1] (k ≤ K) and n > N2, we have

(14)
tσ−α−l

(1 + t)(1 + tµ)

K∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)

× |q(s)f(s, yn(s), cDp

t+k
yn(s))− q(s)f(s, y0(s),

cDp

t+k
y0(s))| ds

≤ tσ−α−l

(1 + t)(1 + tµ)

K∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
sl

ε∑K
j=1 1/tµ+1−σ

j

ds

≤ ε∑K
j=1 1/tµ+1−σ

j

1

tµ+1−σ+α+l

K∑
j=1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw

≤ ε∑K
j=1 1/tµ+1−σ

j

K∑
j=1

1

tµ+1−σ
j

1�

0

(1− w)α−1

Γ (α)
wl dw ≤ B(α, l + 1)

Γ (α)
ε.
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Using (13) and (14), we see that for t ∈ (tk, tk+1] (k = 0, 1, 2, . . . ) and
n > N2,

tσ−α−l

(1 + t)(1 + tµ)
|(Tyn)(t)− (Ty0)(t)|

≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
|f(s, yn(s), cDp

t+k
yn(s))

− f(s, y0(s),
cDp

t+k
y0(s))| ds

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
|q(s)| |f(s, yn(s), cDp

t+j−1

yn(s))

− f(s, y0(s),
cDp

t+j−1

y0(s))| ds

≤ 4Mr
B(α, l + 1)

Γ (α)

1

λµ+1−σ
0

ε+
B(α, l + 1)

Γ (α)
ε.

It follows that

(15) sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tσ−α−l

(1 + t)(1 + tµ)
|(Tyn)(t)− (Ty0)(t)| → 0 as n→∞.

Similarly we can show that

(16) sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDt+k

(Tyn)(t)− cDt+k
(Ty0)(t)| → 0

as n→∞. From (15) and (16) we get

lim
n→∞

Tyn = Ty0.

Thus T is continuous.

Recall that Ω ⊂ X is relatively compact if

(i) Ω is bounded,

(ii) bothK := tσ−α−l

(1+t)(1+tµ)Ω andL := tp+σ−α−l

1+tµ
cDp

0+
Ω are equi-continuous

on any closed subinterval [a, b] of (tk, tk+1] (k = 0, 1, 2, . . . ),
(iii) both K and L are equi-convergent at t = tk (k = 0, 1, 2, . . . ),
(iv) both K and L are equi-convergent at t =∞.

Let W ⊂ X be a nonempty bounded set. To prove that T is completely

continuous, we need to prove that T (W ) is bounded, both tσ−α−l

(1+t)(1+tµ)T (Ω)

and tp+σ−α−l

1+tµ
cDp

0+
T (Ω) are equi-continuous on finite closed subintervals of

(tk, tk+1] (k = 0, 1, 2 . . . ), both are equi-convergent at t= tk (k = 0, 1, 2, . . . ),
and both are equi-convergent at t = ∞. Since W is bounded, there exists
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r > 0 such that

sup
t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|x(t)| ≤ r,

sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
x(t)| ≤ r, x ∈W.

Since f is a Carathéodory function, there exists Mr > 0 such that

|f(t, x(t), cDp

t+k
x(t))| ≤Mr, t ∈ t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

Step 2. By similar methods to those used in the proof of Lemma 2.2,
it is easy to see that TW is bounded. We omit the details.

Step 3. We prove that both tσ−α−l

(1+t)(1+tµ)T (Ω) and tp+σ−α−l

1+tµ
cDp

0+
T (Ω) are

equi-continuous on finite closed subintervals of (tk, tk+1] (k = 0, 1, 2, . . . ).

For [a, b] ⊂ (tk, tk+1] with s1, s2 ∈ [a, b] with s1 < s2 and x ∈W , we have∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

tk

(s1 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

− sσ−α−l2

(1 + s2)(1 + sµ2 )

s2�

tk

(s2 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣
≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
×
s2�

tk

(s2 − s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

+
sσ−α−l1

(1 + s1)(1 + sµ1 )

s2�

s1

(s2 − s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

+
sσ−α−l1

(1 + s1)(1 + sµ1 )

×
s1�

tk

|(s1 − s)α−1 − (s2 − s)α−1|
Γ (α)

|q(s)f(s, x(s), cDp

t+k
x(s))| ds

≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣Mr

s2�

tk

(s2 − s)α−1

Γ (α)
sl ds

+
sσ−α−l1

(1 + s1)(1 + sµ1 )
Mr

s2�

s1

(s2 − s)α−1

Γ (α)
sl ds
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+Mr
sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

tk

|(s1 − s)α−1 − (s2 − s)α−1|
Γ (α)

sl ds

=

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣sα+l2 Mr

1�

0

(1− w)α−1

Γ (α)
wl dw

+
sσ−α−l1

(1 + s1)(1 + sµ1 )
Mrs

α+l
2

1�

s1/s2

(1− w)α−1

Γ (α)
wl dw

+Mr
sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

tk

(s1 − s)α−1 − (s2 − s)α−1

Γ (α)
sl ds

≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣sα+l2 Mr

1�

0

(1− w)α−1

Γ (α)
wl dw

+Mr max{aα+l, bα+l}
1�

s1/s2

(1− w)α−1

Γ (α)
wl dw

+Mr

[
sα+l1

1�

0

(1− w)α−1

Γ (α)
wl dw − sα+l2

s1/s2�

0

(1− w)α−1

Γ (α)
wl dw

]

≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣max{aα+l, bα+l}Mr

×
1�

0

(1− w)α−1

Γ (α)
wl dw

+Mr max{aα+l, bα+l}
1�

s1/s2

(1− w)α−1

Γ (α)
wl dw

+Mr|sα+l1 − sα+l2 |
1�

0

(1− w)α−1

Γ (α)
wl dw

+Mr max{aα+l, bα+l}
1�

s1/s2

(1− w)α−1

Γ (α)
wl dw → 0

uniformly as s1 → s2 with s1, s2 ∈ [a, b] ⊂ (tk, tk+1]. So∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
(Tx)(s1)−

sσ−α−l2

(1 + s2)(1 + sµ2 )
(Tx)(s2)

∣∣∣∣
=

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

tk

(s1 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds
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− sσ−α−l2

(1 + s2)(1 + sµ2 )

s2�

tk

(s2 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣
+ |x0|

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
+

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
×

k∑
j=1

tk�

tk−1

(tk − s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

0

(s1 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

0+
x(s)) ds

− sσ−α−l2

(1 + s2)(1 + sµ2 )

s2�

0

(s2 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

0+
x(s)) ds

∣∣∣∣
+ |x0|

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
+Mr

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣ k∑
j=1

tk�

tk−1

(tk − s)α−1

Γ (α)
sl ds

≤
∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )

s1�

0

(s1 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

0+
x(s)) ds

− sσ−α−l2

(1 + s2)(1 + sµ2 )

s2�

0

(s2 − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

0+
x(s)) ds

∣∣∣∣
+ |x0|

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
+Mr

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
− sσ−α−l2

(1 + s2)(1 + sµ2 )

∣∣∣∣
×

k∑
j=1

tα+lk

1�

0

(1− w)α−1

Γ (α)
wl dw → 0

uniformly as s1 → s2 with s1, s2 ∈ [a, b] ⊂ (tk, tk+1]. It follows that

(17)

∣∣∣∣ sσ−α−l1

(1 + s1)(1 + sµ1 )
(Tx)(s1)−

sσ−α−l2

(1 + s2)(1 + sµ2 )
(Tx)(s2)

∣∣∣∣→ 0

uniformly as s1 → s2 with s1, s2 ∈ [a, b] ⊂ (tk, tk+1].
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Furthermore, similarly we have

(18)

∣∣∣∣sp+σ−α−l1

1 + sµ1

cDp

t+k
(Tx)(s1)−

sp+σ−α−l2

1 + sµ2

cDp

t+k
(Tx)(s2)

∣∣∣∣
=

∣∣∣∣sp+σ−α−l1

1 + sµ1

s1�

tk

(s1 − s)α−p−1

Γ (α− p)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

− sp+σ−α−l2

1 + sµ2

s2�

tk

(s2 − s)α−p−1

Γ (α− p)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣→ 0

uniformly as s1 → s2 with s1, s2 ∈ [a, b] ⊂ (tk, tk+1]. From (17) and (18), we
see that TW is equi-continuous on finite closed subintervals of (tk, tk+1].

Step 4. We prove that both tσ−α−l

(1+t)(1+tµ)T (Ω) and tp+σ−α−l

1+tµ
cDp

0+
T (Ω) are

equi-convergent as t→ t+k (k = 0, 1, 2, . . . ).
Since µ > σ > 0 we see that

tσ−α−l

(1 + t)(1 + tµ)
|(Tx)(t)− x0|

≤ tσ−α−l

(1 + t)(1 + tµ)

t�

0

(t− s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

≤ Mrt
σ

(1 + t)(1 + tµ)

1�

0

(1− w)α−1

Γ (α)
wl dw → 0

uniformly in W as t→ 0. It follows that

(19)
tσ−α−l

(1 + t)(1 + tµ)
|(Tx)(t)− x0| → 0 uniformly in W as t→ 0.

Furthermore, we have

tp+σ−α−l

1 + tµ
|cDp

0+
(Tx)(t)|

≤ tp+σ−α−l

1 + tµ

t�

0

(t− s)α−p−1

Γ (α− p)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

≤ Mrt
p+σ−α−l

1 + tµ

t�

0

(t− s)α−p−1

Γ (α− p)
sl ds =

Mrt
σ

1 + tµ

1�

0

(1− w)α−p−1

Γ (α− p)
wl dw → 0

uniformly in W as t→ 0. It follows that

(20)
tp+σ−α−l

1 + tµ
|cDp

0+
(Tx)(t)| → 0 uniformly in W as t→ 0.

From (19) and (20), we see that TW is equi-convergent as t→ 0+.
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For t→ t+k , we have

tσ−α−l

(1 + t)(1 + tµ)

×
∣∣∣∣(Tx)(t)−

( k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds+ x0

)∣∣∣∣
≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

≤Mr
tσ

(1 + t)(1 + tµ)

1�

tk/t

(1− w)α−1

Γ (α)
wl dw

and

tp+σ−α−l

1 + tµ

∣∣∣∣cDt+k
(Tx)(t)−

t�

tk

(t− s)α−p−1

Γ (α− p)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

∣∣∣∣
≤Mr

tσ

1 + tµ

1�

tk/t

(1− w)α−p−1

Γ (α− p)
wl dw.

Hence we have shown that TW is equi-convergent as t→ t+k (k = 1, 2, . . . ).

Step 5. We prove that both tσ−α−l

(1+t)(1+tµ)T (Ω) and tp+σ−α−l

1+tµ
cDp

0+
T (Ω) are

equi-convergent as t→∞.

We get

tσ−α−l

(1 + t)(1 + tµ)

×
∣∣∣∣(Tx)(t)−

(
x0 +

∞∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)f(s, x(s), cDp

t+k
x(s)) ds

)∣∣∣∣
≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

+
tσ−α−l

(1 + t)(1 + tµ)

∞∑
j=k+1

tj�

tj−1

(tj − s)α−1

Γ (α)
|q(s)f(s, x(s), cDp

t+k
x(s))| ds

≤Mr
tσ

(1 + t)(1 + tµ)

1�

tk/t

(1− w)α−1

Γ (α)
wl dw

+Mr
tσ−α−l

(1 + t)(1 + tµ)

∞∑
j=k+1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw
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≤MrMσ,µ
1

1 + t

B(α, l + 1)

Γ (α)
+Mr

1

λµ−σ+1
0

∞∑
j=k+1

1

jµ−σ+1

B(α, l + 1)

Γ (α)
→ 0

uniformly in W as t→∞ (k →∞). Furthermore, we have

tp+σ−α−l

1 + tµ
|cDp

t+k
(Tx)(t)| ≤ tp+σ−α−l

1 + tµ
tα+l−p

1�

tk/t

(1− w)α−p−1

Γ (α)
Mrw

l dw

≤ tσ

1 + tµ

1�

0

(1− w)α−p−1

Γ (α)
Mrw

l dw → 0

uniformly in W as t→∞. Hence TW is equi-convergent as t→∞.
From the above discussion, we see that T is completely continuous.

We now present the main assumptions:

(G) Suppose that δi = δ1i + δ2i > 0 (i = 1, . . . ,m) and δ1 ≤ · · · ≤ δm,
and f is a Carathéodory function such that there exist Ai ≥ 0
(i = 1, . . . ,m) and a continuous bounded function r : (0, 1) → R
such that∣∣∣∣f(t, (1 + t)(1 + tµ)

tσ−α−l
u1,

1 + tµ

tp+σ−α−l
u2

)
− r(t)

∣∣∣∣ ≤ m∑
i=1

Ai|u1|δ1i |u2|δ2i

for all t ∈ (0,∞) and u1, u2 ∈ R.

Let

Ψ(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)r(s) ds

+

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)r(s) ds+ x0, t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

N1 =

(
Mσ,µ

B(α, l + 1)

Γ (α)
+

1

λµ−σ+1
0

B(α, l + 1)

Γ (α)

∞∑
j=1

1

jµ−σ+1

) m∑
i=1

Ai‖Ψ‖δi−δm ,

N2 = Mσ,µ
B(α− p, l + 1)

Γ (α− p)

m∑
i=1

Ai,

N0 = max{N1, N2}.
Theorem 3.1. Suppose that (G) holds. Then IVP (1) has a solution

x ∈ X if

(21)

δm < 1, or δm = 1 with N0 < 1, or

δm > 1 with
‖Ψ‖1−δm(δm − 1)δm−1

δδmm
≥ N0.
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Proof. Let the Banach space X and its norm ‖ · ‖ be defined as in Sec-
tion 2. Let T : X → X be defined by (9). Since by (G), f is a Carathéodory
function, by Lemma 2.2 we seek solutions of (1) by looking for fixed points
of T in X, and T is well defined and completely continuous.

It is easy to show that Ψ ∈ X. Let r > 0 and define

Ωr = {x ∈ X : ‖x− Ψ‖ ≤ r}.
For x ∈ Ωr, we have ‖x− Ψ‖ ≤ r. Then

‖x‖ = max

{
sup

t∈(0,∞)

tσ−α−l

(1 + t)(1 + tµ)
|x(t)|,

sup
k=0,1,2,...

sup
t∈(tk,tk+1]

tp+σ−α−l

1 + tµ
|cDp

t+k
x(t)|

}
≤ ‖x− Ψ‖+ ‖Ψ‖ ≤ r + ‖Ψ‖.

Using (G), we find

tσ−α−l

(1 + t)(1 + tµ)
|(Tx)(t)− Ψ(t)|

≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
|q(s)| |f(s, x(s), cDp

0+
x(s))− r(s)| ds

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
|q(s)| |f(s, x(s), cDp

0+
x(s))− r(s)| ds

≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
sl

×
[ m∑
i=1

Ai

∣∣∣∣ tσ−α−l

(1 + t)(1 + tµ)
x(s)

∣∣∣∣δ1i∣∣∣∣ tp+σ−α−l1 + tµ
cDp

0+
x(s)

∣∣∣∣δ2i] ds
+

tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
sl

×
[ m∑
i=1

Ai

∣∣∣∣ tσ−α−l

(1 + t)(1 + tµ)
x(s)

∣∣∣∣δ1i∣∣∣∣ tp+σ−α−l1 + tµ
cDp

0+
x(s)

∣∣∣∣δ2i] ds
≤ tσ−α−l

(1 + t)(1 + tµ)

t�

tk

(t− s)α−1

Γ (α)
sl ds

m∑
i=1

Ai‖x‖δi

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
sl ds

m∑
i=1

Ai‖x‖δi
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≤ tσ

(1 + t)(1 + tµ)

1�

tk/t

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

+
tσ−α−l

(1 + t)(1 + tµ)

k∑
j=1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

≤Mσ,µ

1�

0

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

+
tσ−α−l

tµ+1

k∑
j=1

tα+lj

1�

tj−1/tj

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

≤Mσ,µ

1�

0

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

+
k∑
j=1

1

tµ−σ+1
j

1�

0

(1− w)α−1

Γ (α)
wl dw

m∑
i=1

Ai‖x‖δi

≤Mσ,µ
B(α, l + 1)

Γ (α)

m∑
i=1

Ai‖x‖δi +

∞∑
j=1

1

jµ−σ+1λµ−σ+1
0

B(α, l + 1)

Γ (α)

m∑
i=1

Ai‖x‖δi

=

(
Mσ,µ

B(α, l + 1)

Γ (α)
+

1

λµ−σ+1
0

B(α, l + 1)

Γ (α)

∞∑
j=1

1

jµ−σ+1

) m∑
i=1

Ai

≤ N1[r + ‖Ψ‖]δm .

Furthermore, we have

tp+σ−α−l

1 + tµ
|cDp

t+k
(Tx)(t)− cDp

t+k
Ψ(t)|

≤ tp+σ−α−l

1 + tµ

t�

tk

(t− s)α−p−1

Γ (α− p)
|q(s)| |f(s, x(s), cDp

t+k
x(s))− C| ds

≤ tp+σ−α−l

1 + tµ

t�

tk

(t− s)α−p−1

Γ (α− p)
sl

×
[ m∑
i=1

Ai

∣∣∣∣ tσ−α−l

(1 + t)(1 + tµ)
x(s)

∣∣∣∣δ1i∣∣∣∣ tp+σ−α−l1 + tµ
cDp

t+k
x(s)

∣∣∣∣δ2i] ds
≤ tp+σ−α−l

1 + tµ

t�

0

(t− s)α−p−1

Γ (α− p)
sl

m∑
i=1

Ai‖x‖δi ds
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≤Mσ,µ
B(α− p, l + 1)

Γ (α− p)

m∑
i=1

Ai‖x‖δi ≤Mσ,µ
B(α− p, l + 1)

Γ (α− p)

m∑
i=1

Ai‖x‖δi

≤Mσ,µ
B(α− p, l + 1)

Γ (α− p)

m∑
i=1

Ai[r + ‖Ψ‖]δi ≤ [r + ‖Ψ‖]δmN2.

It follows that

‖Tx− Ψ‖ ≤ [r + ‖Ψ‖]δmN0.

(i) If δm < 1, we can choose r0 > 0 so large that [r0 + ‖Ψ‖]δmN0 < r0.
Let Ωr0 = {x ∈ Y : ‖x− Ψ‖ < r0}. It is easy to see that TΩr0 ⊂ Ωr0 . Then
the Schauder fixed-point theorem implies that T has a fixed point x ∈ Ωr0 ,
which is a bounded solution of (1).

(ii) If δm = 1, we choose

r0 ≥
‖Ψ‖N0

1−N0
.

Let Ωr0 = {x ∈ Y : ‖x− Ψ‖ < r0}. It is easy to see that TΩr0 ⊂ Ωr0 . Then
the Schauder fixed-point theorem implies that T has a fixed point x ∈ Ωr0 ,
which is a bounded solution of (1).

(iii) If δm > 1, we choose r = r0 = ‖Ψ‖/(δm − 1). By assumption,

r0
(r0 + ‖Ψ‖)δm

=
‖Ψ‖1−δm(δm − 1)δm−1

δδmm
≥ N0.

Let Ωr0 = {x ∈ Y : ‖x− Ψ‖ < r0}. It is easy to see that TΩr0 ⊂ Ωr0 . Then
the Schauder fixed-point theorem implies that F has a fixed point x ∈ Ωr0 ,
which is a solution of (1).

Theorem 3.2 Suppose that (G) holds with δm = 1, and N0 < 1. Then
(1) has a unique solution x.

Proof. By (G) and Theorem 3.1, (1) has at least one solution. If it has
two different solutions x1 and x2, then ‖x1 − x2‖ > 0, Tx1 = x1 and
Tx2 = x2. So the methods used in the proof of Theorem 3.1 imply that

tσ−α−l

(1 + t)(1 + tµ
|(Tx1)(t)− (Tx2)(t)| ≤ N1‖x1 − x2‖

and
tp+σ−α−l

1 + tµ
|cDp

0+
(Tx1)(t)− cDp

0+
(Tx2)(t)| ≤ N2‖x1 − x2‖.

It follows that

‖Tx1 − Tx2‖ ≤ N0‖x1 − x2‖.
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We get

0 < ‖x1 − x2‖ = ‖Tx1 − Tx2‖ ≤ N0‖x1 − x2‖ < ‖x1 − x2‖,

a contradiction.

4. Application. In this section, we apply the main theorem to solve
the fractional order logistic model (3).

Theorem 4.1. Suppose that λ0 = infk=0,1,2,...[tk+1 − tk] > 0, r is con-
tinuous and bounded and there exists l > −α such that |q(t)| ≤ tl for all
t ∈ (0,∞) and there exist σ > α+ l and µ > σ such that

(22)

(1 + t)(1 + tµ)

tσ−α−l
|a(t)| ≤ a0, t ∈ (0,∞),(

(1 + t)(1 + tµ)

tσ−α−l

)δ
|b(t)| ≤ b0, t ∈ (0,∞),

(1 + t)(1 + tµ)

tσ−α−l

(
1 + tµ

tp+σ−α−l

)µ
|c(t)| ≤ c0, t ∈ (0,∞).

Then (3) has a solution if

(23)
‖Ψ‖1−max{δ,1+µ}(max{δ, 1 + µ} − 1)max{δ,1+µ}−1

max{δ, 1 + µ}max{δ,1+µ} ≥ N0,

where

Ψ(t) =

t�

tk

(t− s)α−1

Γ (α)
q(s)r(s) ds

+

k∑
j=1

tj�

tj−1

(tj − s)α−1

Γ (α)
q(s)r(s) ds+ x0, t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

N1 =

(
Mσ,µ

B(α, l + 1)

Γ (α)
+

1

λµ−σ+1
0

B(α, l + 1)

Γ (α)

∞∑
j=1

1

jµ−σ+1

)
× (a0‖Ψ‖1−max{δ,1+µ} + b0‖Ψ‖δ−max{δ,1+µ} + c0‖Ψ‖1+µ−max{δ,1+µ}),

N2 = Mσ,µ
B(α− p, l + 1)

Γ (α− p)
(a0 + b0 + c0),

N0 = max{N1, N2}.

Proof. Let f(t, u, v) = r(t) + a(t)u− b(t)uδ + c(t)vµ. Then∣∣∣∣f(t, (1 + t)(1 + tµ)

tσ−α−l
u,

1 + tµ

tp+σ−α−l

)
− r(t)

∣∣∣∣
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=
(1 + t)(1 + tµ)

tσ−α−l
a(t)|u|+ b(t)

(
(1 + t)(1 + tµ)

tσ−α−l

)δ
|u|δ

+ c(t)
(1 + t)(1 + tµ)

tσ−α−l

(
1 + tµ

tp+σ−α−l

)µ
uvµ

≤ a0|u|+ b0|u|δ + c0|u| |v|µ.

It is easy to see that f is a Carathéodory function. Choose δ11 = 1, δ21 = 0,
δ12 = δ, δ22 = 0 and δ13 = 1, δ23 = µ. Then δ1 = 1, δ2 = δ, δ3 = 1 + µ with
max{δ1, δ2, δ3} = max{δ, 1 + µ} > 1.

Corresponding to Theorem 3.1, we choose A1 = a0, A2 = b0, A3 = c0.
Then (G) holds. By Theorem 3.1, (3) has a solution.
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