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AN APPROXIMATE SOLUTION OF SOME VOLTERRA
INTEGRAL EQUATION WITH A SMOOTH KERNEL

Abstract. The behaviour near the origin of nontrivial solutions to inte-
gral Volterra equations with a power nonlinearity is studied. Estimates of
nontrivial solutions are given and some numerical examples are considered.

1. Introduction. We consider a nonlinear Volterra integral equation of
the type

(1) u(x) =
x�

0

k(x− s)g(u(s)) ds, x ∈ [0, δ], δ > 0,

where the kernel k is nonnegative and the nonlinearity g is concave and
increasing with g(0) = 0. This type of equation appears in many applica-
tions, like nonlinear diffusion problems, studies of the shape of the pendant
liquid drop or shock wave propagation. The equation (1) always has the
trivial solution u ≡ 0, but more interesting are nontrivial ones, which are
continuous functions u such that u(0) = 0 and u(x) > 0 for x > 0. Some
results on the existence of such nontrivial solutions can be found e.g. in
[4, 6, 7]. As proven in [1], if a nontrivial solution exists then it is unique.

Since in modelling phenomena mentioned above the function g(u) be-
haves like up, p ∈ (0, 1), as u→ 0+ (see [7]), in this paper we study estimates
of nontrivial solutions to the equation

(2) u(x) =
x�

0

k(x− s)[u(s)]p ds, x ∈ [0, δ], p ∈ (0, 1).

We give a priori estimates of such solutions near the origin and determine
the interval of their validity. Since in the case k(x) = xλ−1 (λ > 0) some
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estimates were already considered in [3], we concentrate on kernels which
are very smooth near the origin, like k(x) = x−λ−1 exp(−1/xλ) (λ > 1). In
such cases, the construction of a priori estimates is difficult and in effect,
numerical handling of such equations is cumbersome.

2. Definitions and auxiliary lemmas. We consider equation (2) as-
suming that

(3) k : [0,+∞)→ [0,+∞) is a nondecreasing, continuous function such
that k(0) = 0 and k(x) > 0 for x > 0.

Let

K(x) =
x�

0

k(s) ds for 0 ≤ x < +∞.

Then the function K is strictly increasing. Let

Kinf = lim
x→+∞

K(x).

Without loss of generality we assume further that

Kinf ≥ 1.

The inverse function K−1(z) is defined for 0 ≤ z < Kinf . Throughout the
paper, we fix parameters p, q such that 0 < p < q < 1 and denote by
ε ∈ (0, 1) a small generic constant which is allowed to change its value from
paragraph to paragraph.

One of the known necessary and sufficient conditions for the existence of
a nontrivial solution to (2) is given in the following theorem [5]:

Theorem 1. Equation (2) has a nontrivial solution if and only if

(4) I(x) <∞

for all sufficiently small x > 0, where

(5) I(x) =
x�

0

K−1(s)
ds

s(− ln s)
.

From now on we consider only kernels k satisfying conditions (3) and (4).
Then we note that we have I(x) < +∞ for 0 ≤ x < 1 and I(1) = +∞, and
moreover

(6)
(
− ln

ln b
ln a

)
K−1(a) ≤

b�

a

K−1 ds

s(− ln s)
≤
(
− ln

ln b
ln a

)
K−1(b),

whenever 0 < a < b < 1.
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We define

S(x) =
∞∑
n=0

K−1(x(1−q)(q/p)n
), 0 ≤ x < 1,(7)

S(x) =
∞∑
n=0

K−1((1− ε)x(1−p)(1/p)n
), 0 ≤ x < 1.(8)

Lemma 2. The functions S and S have the following properties:

(i) S(x) ≤ S(x) for 0 ≤ x < 1;
(ii) limx→1− S(x) = +∞;

(iii) if 0 ≤ x < 1 and β = 1/ln(q/p), then

(9) β I(x1−q) ≤ S(x) ≤ β I(x(1−q)(p/q));

(iv) if 0 ≤ x < 1 and α = 1/ln(1/p), then

(10) α(1− ε)I(x1−p) ≤ S(x) ≤ αI(x(1−p)p).

Proof. (i) The proof follows from the monotonicity of the function K−1

and the inequality (1− q)qn ≤ 1− p valid for any n ∈ N.
(ii) Since

S(x) ≥
N∑
n=0

K−1((1− ε)x(1−p)(1/p)n
),

we obtain
lim
x→1−

S(x) ≥ (N + 1)K−1(1− ε)

for any natural N , proving the assertion.
(iii) First we prove the left-hand inequality of (9). Let Ψ(x) = xq/p for

0 ≤ x < 1, and let

x0 = x1−q, xn+1 = Ψ(xn), n = 0, 1, 2, . . . .

Then the sequence xn is decreasing and convergent to zero. Putting a = xi+1

and b = xi in (6) we get
xi�

xi+1

K−1(s)
ds

s(− ln s)
≤
(
− ln

p

q

)
K−1(xi) = ln(q/p)K−1(x(1−q)(q/p)i

),

for i = 0, 1, 2, . . . . Adding the above inequalities from i = 0 to n we get

x1−q�

xn+1

K−1(s)
ds

s(− ln s)
≤ ln(q/p)

n∑
i=0

K−1(x(1−q)(q/p)i
).
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Now, letting n→∞, we obtain

S(x) =
∞∑
n=0

K−1(x(1−q)(q/p)n
) ≥ β

x1−q�

0

K−1(s)
ds

s(− ln s)
= βI(x1−q),

where β = 1/ln(q/p).
To prove the right-hand inequality of (9) we use the left inequality of (6)

with a = xi+1 and b = xi. Thus
xi�

xi+1

K−1(s)
ds

s(− ln s)
≥ ln(q/p)K−1(xi+1) = ln(q/p)K−1(x(1−q)(q/p)i+1

)

for i = 0, 1, 2, . . . . In much the same way as above we obtain

(11) I(x1−q) =
x1−q�

0

K−1(s)
ds

s(− ln s)
≥ ln(q/p)

∞∑
n=1

K−1(x(1−q)(q/p)n
).

Moreover, taking a = x1−q and b = x(1−q)(p/q) in (6) we have

(12) K−1(x1−q) ≤ β
x(1−q)(p/q)�

x1−q

K−1(s)
ds

s(− ln s)
.

Combining (11) and (12) we get

S(x) ≤ βI(x1−q) +K−1(x1−q) ≤ βI(x(1−q)(p/q)).

(iv) Let Φ(x) = x1/p for 0 ≤ x < 1, and let

x0 = x1−p, xn+1 = Φ(xn), n = 0, 1, 2, . . . .

Then the sequence xn is strictly decreasing and convergent to zero. Putting
a = xi+1 and b = xi in (6) we have

xi�

xi+1

K−1(s)
ds

s(− ln s)
≤ ln(1/p)K−1(xi)

for i = 0, 1, 2, . . . . Adding the above inequalities from i = 0 to n and then
letting n→∞ we obtain

I(x1−p) ≤ ln(1/p)
∞∑
n=0

K−1(xn).

Since k is nondecreasing, K is convex and K−1 is concave with K−1(0) = 0.
Hence

(13) K−1((1− ε)x) ≥ (1− ε)K−1(x),

which allows us to write

S(x) ≥ (1− ε)
∞∑
n=0

K−1(xn) ≥ α(1− ε)I(x1−p),
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where α = 1/ln(1/p). On the other hand, using (6) with a = xi+1 and b = xi
again we have

xi�

xi+1

K−1(s)
ds

s(− ln s)
≥ ln(1/p)K−1(xi+1)

for i = 0, 1, 2, . . . . Summing up these inequalities we get

I(x1−p) ≥ ln(1/p)
∞∑
n=1

K−1(xn).

Since K−1 is nondecreasing we have K−1((1− ε)x) ≤ K−1(x). Hence

S(x) ≤
∞∑
n=0

K−1(xn) ≤ αI(x1−p) +K−1(x1−p).

Now, using (6) with a = x1−p and b = x(1−p)p we estimate K−1(x1−p) to
obtain the right-hand inequality of (10). Thus the proof is complete.

Since S and S are strictly increasing functions on [0, 1), they have inverse
functions.

Remark 3. Let S−1 and S−1 denote the inverse functions to S and S
respectively. Then

(i) S−1(z) is defined for 0 ≤ z < +∞ and limz→+∞ S
−1(z) = 1;

(ii) S−1(z) is defined for 0 ≤ z < +∞ and limz→+∞ S
−1(z) = 1.

3. Estimates of the nontrivial solution. For any continuous function
w : R+ → R+ we define the operator

Tw(x) =
x�

0

k(x− s)[w(s)]p ds.

The integral operator T has the following monotonicity property:

Remark 4. If 0 ≤ w1(x) ≤ w2(x) for x ∈ R+, then Tw1(x) ≤ Tw2(x)
for x ∈ R+.

Remark 5. If w(x) is a strictly increasing function then integration by
parts and the substitution z = w(s) give

Tw(x) =
x�

0

K(x− s) d[wp(s)] =
w(x)�

0

K(x− w−1(z)) dzp.

Before the formulation of the main theorem we present some auxiliary
lemmas.

Lemma 6. Let w(x) = S−1(x). Then Tw(x) ≥ w(x) for 0 ≤ x < +∞.
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Proof. Since S−1 is strictly increasing and limx→+∞ S
−1(x) = 1, we have

w(x) ∈ [0, 1) for x ≥ 0. Moreover,

Tw(x) =
w(x)�

0

K(x− w−1(s))d(sp) ≥
wq/p(x)�

0

K(x− w−1(s)) d(sp)

≥ K(x− w−1(wq/p(x)))[w(x)]q

for x ≥ 0. Since

w−1(wq/p(x)) = S(w(x))−K−1(w1−q(x)) = x−K−1(w1−q(x)),

we get
Tw(x) ≥ K(K−1(w1−q(x)))[w(x)]q = w(x)

for x ≥ 0.
Now we prove the following lemma:

Lemma 7. Let w(x) = S−1(x). Then Tw(x) ≤ w(x) for 0 ≤ x ≤
K−1(ε).

Proof. First we note that w is strictly increasing and in view of Remark 3,
w(x) ∈ [0, 1) for x ≥ 0. Moreover, we obtain

Tw(x) =
w(x)�

0

K(x− w−1(s)) d(sp)

=
w1/p(x)�

0

K(x− w−1(s)) d(sp) +
w(x)�

w1/p(x)

K(x− w−1(s)) d(sp)

≤ K(x)w(x) +K(x− w−1(w1/p(x)))[w(x)]p

for x ≥ 0. Since

w−1(w1/p(x)) = S(w(x))−K−1((1−ε)w1−p(x)) = x−K−1((1−ε)w1−p(x)),

we finally get

Tw(x) ≤ K(x)w(x) +K(K−1((1− ε)w1−p(x)))[w(x)]p

= K(x)w(x) + (1− ε)w(x) ≤ w(x)

for 0 ≤ x ≤ K−1(ε).
The main theorem of this section is the following existence result for

equation (2). It can be proved in the same manner as Lemma 2.3 in [1].

Theorem 8. There exists a nontrivial solution u of equation (2). It is
a strictly increasing function which satisfies the inequalities

(14) S−1(x) ≤ u(x) for 0 ≤ x < +∞,
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and

(15) u(x) ≤ S−1(x) for 0 ≤ x ≤ K−1(ε).

Further, we will rather use the estimates for u−1(x) which follow from
(14) and (15):

(16) S(x) ≤ u−1(x) ≤ S(x) for 0 ≤ x < δ∗,

where

δ∗ = min{1, δε},(17)
δε = sup{x : u−1(x) ≤ K−1(ε)}.(18)

Remark 9. Since the value of δε is difficult to determine we will use its
approximation. For simplification, it will be denoted in the same way. Using
Lemma 2, for such an approximation one can take any positive solution of
the inequality

βI(δ(1−q)(p/q)ε ) ≤ K−1(ε).

For any N ∈ N we decompose S and S as

S(x) = SN (x) +RN (x), S(x) = SN (x) +RN (x),

for x ∈ [0, δ∗), where

(19) SN (x)=
N∑
i=0

K−1(x(1−q)(q/p)i
), SN (x)=

N∑
i=0

K−1((1−ε)x(1−p)(1/p)i
),

and RN (x) and RN (x) are the corresponding rests.

Lemma 10. We have

(20) β(I0(x)− IN+1(x)) ≤ SN (x) ≤ β(I−1(x)− IN (x))

and

(21) SN (x) ≥ α(1− ε)(I0(x)− IN+1(x))

for x ∈ [0, δ∗), where

(22) I i(x) = I(x(1−q)(q/p)i
), Ii(x) = I(x(1−p)(1/p)i

),

and α = 1/ln(1/p), β = 1/ln(q/p).

Before giving the proof of this lemma we make the following remark.

Remark 11. In the notation of Lemma 10, inequalities (9) and (10) can
be rewritten in the form

(23) βI0(x) ≤ S(x) ≤ βI−1(x),
(24) α(1− ε)I0(x) ≤ S(x) ≤ αI−1(x),

for any x ∈ [0, δ∗). Moreover, we notice that

(25) RN (x) = S(x(q/p)N+1
), RN (x) = S(x(1/p)N+1

).
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Proof of Lemma 10. First we prove (20). Let x ∈ [0, δ∗) and xn =
x(1−q)(q/p)n

, n ∈ N. We note that

(26) SN (x) =
N∑
n=0

K−1(xn).

Now, we estimate K−1(xn) using (6), which gives

(27) β

xn�

xn+1

K−1(s)
ds

s(− ln s)
≤ K−1(xn) ≤ β

xn−1�

xn

K−1(s)
ds

s(− ln s)

for all n ∈ N. Since

(28)
xn�

xn+1

K−1(s)
ds

s(− ln s)
= I(xn)− I(xn+1) = In(x)− In+1(x)

for all n ∈ N, the inequalities in (20) follow easily from (26)–(28).
To prove (21), let y ∈ [0, δ∗) and yn = y(1−p)(1/p)n

, n ∈ N, and notice
that

(29) SN (x) =
N∑
n=0

K−1((1− ε)yn).

We estimate K−1((1− ε)yn) using (13) and the inequality (6), which gives

(30) K−1((1− ε)yn) ≥ (1− ε)K−1(yn) ≥ α(1− ε)
yn�

yn+1

K−1(s)
ds

s(− ln s)
.

Since

(31)
yn�

yn+1

K−1(s)
ds

s(− ln s)
= In(y)− In+1(y)

for all n ∈ N, the inequality (21) follows from (29)–(31).

4. Estimates of the relative errors. In this part we present estimates
of the relative errors of the approximations of u−1 given by SN and SN .
Assume additionally that the function K satisfies the following condition:

(32) 1/lnK(x) is a concave function on the interval (0, δ∗) (δ∗ > 0).

Remark 12. The condition (32) is satisfied by smooth functions being
of our particular interest, for example K(x) = exp(−1/xλ), λ ≥ 1, for
0 < x < δ∗, and K(x) = exp(− exp(1/xλ)), λ > 0, for 0 < x < min{1/e, δ∗}.

Lemma 13. If the function K satisfies condition (32) and γ > 0, then

(33) K−1(xγ) ≤ max{1, 1/γ}K−1(x) for x ∈ [0, δ∗).
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Proof. Let γ ≥ 1. Since xγ ≤ x for 0 < x < 1, and K is strictly
increasing, we have K−1(xγ) ≤ K−1(x) and (33) is satisfied.

Let γ ∈ (0, 1) and F (x) = 1/lnK(x). Then F is nonincreasing. Let
z1 = K−1(xγ) and z2 = K−1(x). It follows from (32) that

1
lnK(γz1)

≥ γ 1
lnK(z1)

=
1

lnx
=

1
lnK(z2)

.

Since F is nonincreasing, we obtain

K−1(xγ) ≤ 1
γ
K−1(x),

and (33) holds near zero.
The following corollary follows from Lemma 13 immediately:

Corollary 14. If the function K satisfies condition (32) and γ ∈ (0, 1),
then

(34) I(xγ) ≤ 1
γ
I(x) for x ∈ (0, δ∗).

Let us consider the relative errors of the approximations SN and SN of
the function u−1 on (0, δ∗), where δ∗ is given by (17):

(35) EN (x) =
|u−1(x)− SN (x)|

u−1(x)
, EN (x) =

|u−1(x)− SN (x)|
u−1(x)

,

for N ∈ N and x ∈ (0, δ∗).

Theorem 15. The following pointwise estimates hold :

(36) EN (x) ≤ eN (x)

= max
{

βIN (x)
α(1− ε)I0(x)

,
βq(1− p)

α(1− ε)p(1− q)
+

(2− ε)IN (x)
(1− ε)I0(x)

− 1
}
,

and

(37) EN (x) ≤ eN (x) =
βq(1− p)

α(1− ε)p(1− q)
+

βIN (x)
α(1− ε)I0(x)

+
IN (x)
I0(x)

− 1,

for N ∈ N, α = 1/ln(1/p), β = 1/ln(q/p) and x ∈ (0, δ∗).

Proof. First we prove (36). Using (16) we have

(38) S(x) = SN (x) +RN (x) ≤ u−1(x) ≤ SN (x) +RN (x) = S(x)

for x ∈ [0, δ∗). Thus

EN (x) ≤ max
{
RN (x)
S(x)

,
|S(x)− SN (x)|

S(x)

}
for x ∈ (0, δ∗).

With the help of Remark 11 one can show that

(39)
RN (x)
S(x)

=
S(x(q/p)N+1

)
S(x)

≤ βI−1(x(q/p)N+1
)

α(1− ε)I0(x)
=

βIN (x)
α(1− ε)I0(x)

.
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On the other hand, we have

|S(x)− SN (x)|
S(x)

≤ SN (x)− SN (x) +RN (x)
S(x)

in the vicinity of zero. From Lemma 10 and Remark 11 we get

SN (x)− SN (x)
S(x)

≤ β

α(1− ε)
I−1(x)
I0(x)

+
IN+1(x)
I0(x)

− 1(40)

≤ β

α(1− ε)
I(x(1−q)(p/q))
I(x1−p)

+
IN (x)
I0(x)

− 1.

Let γ = p(1−q)
q(1−p) . Then we note that γ ∈ (0, 1) for any p, q ∈ (0, 1) such that

0 < p < q < 1. Using Corollary 14 we obtain

(41) I(x(1−q)(p/q)) ≤ 1
γ
I(x1−p)

near zero. Moreover,

(42)
RN (x)
S(x)

=
S(x(1/p)N+1

)
S(x)

≤ I−1(x(1/p)N+1
)

(1− ε)I0(x)
=

IN (x)
(1− ε)I0(x)

for any x ∈ (0, δ∗). Combining inequalities (40)–(42) we obtain

(43)
|S(x)− SN (x)|

S(x)
≤ βq(1− p)
α(1− ε)p(1− q)

+
(2− ε)IN (x)
(1− ε)I0(x)

− 1.

Finally, inequality (36) follows from (39) and (43).
Now, observe that by (38) we get

EN (x) ≤ SN (x)− SN (x) +RN (x)
S(x)

for x ∈ (0, δ∗).

Therefore (37) can be proved similarly to (36).

5. Numerical examples. To illustrate the theoretical results of the
previous section, we give two numerical examples that present approxima-
tions of u−1 given by SN and SN . All computations are made on the interval
(0, δ∗], where δ∗ is given by (17). In both examples we takeN = 200, p = 1/3,
q = 1/2 and ε = 10−3.

Example 5.1. We consider equation (2) with k(x) = K ′(x), where
K(x) = exp(−1/xλ), λ > 0. In this case K−1(x) = 1/(ln(1/x))1/λ. Then
the integral in (5) takes the form

I(x) =
x�

0

ds

(ln(1/s))1/λs(− ln s)
=

λ

(ln(1/x))1/λ
,
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x

Fig. 1. Estimates of u−1 given by SN (solid line) and SN (dashed line) with N = 200,
λ = 3/2, p = 1/3, q = 1/2 and δ∗ = 9.12 · 10−65

so it is convergent for 0 < x < 1. This implies that equation (2) has non-
trivial solutions for λ > 0. If we take, for example λ = 3/2, then using
Remark 9 we find δ∗ = 9.12 · 10−65. Then we calculate the approximations
of u−1 (Fig. 1), given by

SN (x) =
N∑
i=0

1
((1− q)(q/p)i ln(1/x))1/λ

,

SN (x) =
N∑
i=0

1
(− ln(1− ε) + (1− p)(1/p)i ln(1/x))1/λ

.

Since the integral I(x) is given explicitly, we easily note that eN (x) and
eN (x) do not depend on x and are given by

eN =
βq(1− p)

α(1− ε)p(1− q)
+

2− ε
1− ε

pN/λ − 1,

eN =
βq(1− p)

α(1− ε)p(1− q)
+

β(1− p)pN

α(1− ε)(1− q)qN
+ pN/λ − 1.

Example 5.2. We consider equation (2) with k(x) = K ′(x), where
K(x) = exp(− exp(1/xλ)), λ > 0. Then K−1(x) = 1/(ln ln(1/x))1/λ and
for 0 < λ < 1 the integral I(x) in (5) has the form

I(x) =
x�

0

ds

(ln ln(1/s))1/λs(− ln s)
=

λ

1− λ
(ln ln(1/x))(λ−1)/λ,

for 0 < x < 1/e. Thus it is convergent and consequently (2) has a nontrivial
solution. For λ ≥ 1 it can be shown similarly that I(x) is divergent and (2)
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Fig. 2. Estimates of u−1 given by SN (solid line) and SN (dashed line) with N = 200,
λ = 1/5, p = 1/3, q = 1/2 and δ∗ = 1.53 · 10−9

has no nontrivial solution. Taking λ = 1/5 we calculate δ∗ = 1.53·10−9.Then
the approximations (Fig. 2) are given for x ∈ (0, δ∗] with

SN (x) =
N∑
i=0

1
(ln ln(1/x) + ln(1− q) + i ln(q/p))1/λ

,

SN (x) =
N∑
i=0

1
(ln ln(Ai/x) + ln(1− p) + i ln(1/p))1/λ

,

where Ai = (1− ε)pi/(p−1). Hence we get

eN (x) =
βq(1− p)

α(1− ε)p(1− q)
+

2− ε
1− ε

ηN (x)− 1,

eN (x) =
βq(1− p)

α(1− ε)p(1− q)
+
βηN (x)
α(1− ε)

+ ηN (x)− 1,

where

ηN (x) =
(

ln(1− p) + ln ln(1/x)
ln(1− q) +N ln(q/p) + ln ln(1/x)

)(1−λ)/λ

,

ηN (x) =
(

ln(1− p) + ln ln(1/x)
ln(1− p) +N ln(1/p) + ln ln(1/x)

)(1−λ)/λ

.
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Since the decreasing functions ηN (x), ηN (x) tend to 1 as x → 0+, we note
that in this case we have uniform estimates of the relative errors given by

eN =
βq(1− p)

α(1− ε)p(1− q)
+

2− ε
1− ε

− 1,

eN =
βq(1− p)

α(1− ε)p(1− q)
+

β

α(1− ε)
.
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