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OPTIMAL SOLUTIONS FOR A MODEL
OF TUMOR ANTI-ANGIOGENESIS WITH A PENALTY

ON THE COST OF TREATMENT

Abstract. The scheduling of angiogenic inhibitors to control a vascular-
ized tumor is analyzed as an optimal control problem for a mathematical
model that was developed and biologically validated by Hahnfeldt et al.
[Cancer Res. 59 (1999)]. Two formulations of the problem are considered.
In the first one the primary tumor volume is minimized for a given amount
of angiogenic inhibitors to be administered, while a balance between tumor
reduction and the total amount of angiogenic inhibitors given is minimized
in the second formulation. The optimal solutions to both problems are pre-
sented and compared.

1. Introduction. Tumor anti-angiogenesis is a cancer treatment ap-
proach that targets the vasculature of a growing tumor. A solid tumor, after
going through a state of avascular growth, at the size of about 2 mm in
diameter, starts the process of angiogenesis [12] to recruit surrounding, ma-
ture, host blood vessels needed for its supply of nutrients. The lining of
these newly developing blood vessels consists of endothelial cells and the tu-
mor produces vascular endothelial growth factor (VEGF) to stimulate their
growth [20] as well as inhibitors to suppress it [13]. Anti-angiogenic treat-
ments rely on these mechanisms by bringing in external angiogenic inhibitors
(e.g., endostatin) that target endothelial cells and block their growth. This
indirectly effects the tumor which, ideally, deprived of necessary nutrition,
regresses. Since, contrary to traditional chemotherapy, this treatment does
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not target the quickly duplicating and genetically unstable cancer cells, but
attacks genetically stable normal cells instead, it was observed that no re-
sistance to the anti-angiogenic agents developed in experimental cancer [4].
For this reason tumor anti-angiogenesis has been called a therapy “resistant
to resistance” that provides a new hope for the treatment of tumor type
cancers [18].

Naturally, tumor anti-angiogenesis became an active area of research in
the last ten years not only in medicine [10, 17, 16, 19], but also in other
disciplines including mathematical biology, [1, 9, 11, 14, 30], and several
models describing the dynamics of angiogenesis have been formulated. Some
of these attempt to fully reflect the complexity of the biological processes,
e.g., [2, 3], and allow for large scale simulations, but are not amenable to
mathematical analysis since theoretical techniques from such fields as dy-
namical systems or optimal control theory can only effectively be used on
low dimensional systems. Hahnfeldt, Panigrahy, Folkman and Hlatky [17], a
group of researchers then at Harvard Medical School, in 1999 developed and
biologically validated such a two-dimensional model of ordinary differential
equations for the interactions between the tumor volume, p, and the carrying
capacity of the vasculature, q. The latter is defined as the maximum tumor
volume sustainable by the vascular network. Since it is largely determined by
the volume of endothelial cells, we also refer to this as the endothelial sup-
port of the tumor for short. This model, and the underlying spatial analysis
carried out in that research, has seen various modifications, for example, by
d’Onofrio and Gandolfi [9] at the European Institute of Oncology in Milan,
or by Ergun, Camphausen and Wein [11] at the Cancer Research Institute
at NIH, and still is an area of active research [1, 8, 14, 23, 25, 32, 34].

In this paper, we consider two related formulations of tumor anti-angio-
genesis as optimal control problems for the original model by Hahnfeldt et
al. [17]. In the first formulation, mathematically already analyzed in [26], the
primary tumor volume is minimized with a given amount of anti-angiogenic
agents to be administered as constraint. It has been shown in [26] that op-
timal controls are concatenations of at most five pieces of the form 0asa0
where 0 denotes an interval when no inhibitors are administered, a denotes
an interval when inhibitors are given at an a priori determined maximum
dose a, and s represents an interval where the optimal control is singu-
lar and follows an explicitly computed time varying feedback control that
takes values strictly between 0 and the maximum value a. (Depending on
the specific initial condition, not all of these pieces need to be present.)
Based on this characterization, the numerical computation of optimal con-
trols and trajectories is easily accomplished and a complete synthesis of
optimal controls and trajectories for all initial conditions was given in [26].
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In this formulation, since the total amount of angiogenic inhibitors is taken
as a constraint, it is intuitively clear, and easily verified analytically, that
optimal controls will use up all available agents. Consequently, even if there
is only a marginal reduction in tumor size to be gained, if inhibitors are still
available, they will be used regardless of cost or potential side effects. Given
the fact that inhibitors are very expensive biological agents, this need not
be a cost effective strategy. Therefore, in this paper we modify the above
problem formulation to better balance the total amount of inhibitors given
with the benefit to be gained in tumor reduction. Rather than specifying the
total amount of inhibitors a priori, we incorporate this amount as a penalty
term in the objective and then minimize a weighted average between the
inhibitors given and the minimum tumor volume. Clearly, other kind of ob-
jectives can be considered as well, and they all may lead to both qualitatively
and quantitatively different results. Our formulation naturally connects with
the problem already solved in [26] and preserves the qualitative structure
of solutions in the form 0asa0, but solutions differ in their quantitative as-
pects. Also, a bifurcation analysis of the structure of optimal trajectories
depending on the weight given to the angiogenic inhibitors in the objective
is easily accomplished and will be illustrated with numerical results. Our
results here complement those in [23, 24] obtained for a simplified version
of the underlying model considered in this paper.

2. Anti-angiogenic therapy: maximizing tumor reduction. We
briefly review the underlying mathematical model that was developed and
biologically validated by Hahnfeldt, Panigrahy, Folkman and Hlatky in [17].
State variables are the primary tumor volume, p, and the carrying capacity
of the vasculature, q. Tumor growth is modelled by a Gompertzian growth
function with carrying capacity q, i.e.,

(1) ṗ = −ξp ln(p/q)

where ξ denotes a tumor growth parameter. The dynamics for the endothe-
lial support is of the form

(2) q̇ = bp− (µ+ dp2/3)q −Guq

where bp models the stimulation of endothelial cells by the tumor and the
term dp2/3q models endogenous inhibition of the tumor. The exponent 2/3
arises since these inhibitors are released through the tumor surface and thus
the tumor’s volume needs to be scaled to its surface area (the primary tumor
is modelled as a sphere in [17]). The product p2/3q then describes the inter-
actions of inhibitors with the volume of endothelial cells. The coefficients b
and d are growth constants. The terms µq and Guq describe, respectively,
loss to the carrying capacity through natural causes (death of endothelial
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cells etc.), and loss due to extra outside inhibition. The variable u represents
the control in the system and corresponds to the angiogenic dose rate while
G is a constant that represents the anti-angiogenic killing parameter. Gener-
ally µ is small and often this term is negligible compared to the other factors
and thus in the literature sometimes µ is set to 0 in this equation. The fol-
lowing result from [9] guarantees the existence and positivity of solutions
for all times and arbitrary controls u.

Proposition 1 ([9]). For any non-negative, locally bounded , Lebesgue
measurable function u and arbitrary positive initial conditions p0 and q0 the
solution (p, q) to equations (1) and (2) with initial conditions p0 and q0 exists
for all times t ≥ 0 and both p and q remain positive.

It is shown in [9] that the uncontrolled model (u = 0) has a unique, glob-
ally asymptotically stable equilibrium point given by p̄ = q̄ = ((b− µ)/d)3/2

which for realistic values of the parameters naturally is not biologically vi-
able. Adding a control term u = a, for large enough a, Ga > b − µ, this
globally asymptotically stable node ceases to exist and all trajectories for
the corresponding system converge to the origin in infinite time. This, in
principle, would be the desired situation since, at least theoretically, it al-
lows for eradication of the tumor using a constant dose u = a for all time.
But clearly this is not a feasible strategy because of limits on the total
amount of inhibitors and potential side effects. The problem of how to ad-
minister a given amount of inhibitors to achieve the “best possible” effect
thus arises naturally.

One possible formulation, considered first in [11] and then taken up by
us in [25, 26, 27], is to solve the following optimal control problem: for
a free terminal time T , minimize the value p(T ) subject to the dynamics
(1) and (2) over all Lebesgue measurable functions u : [0, T ] → [0, a] that
satisfy a constraint on the total amount of anti-angiogenic inhibitors to be
administered,

(3)
T�

0

u(t) dt ≤ A.

The upper limit a in the definition of the control set U = [0, a] is a previously
determined maximum dose at which inhibitors can be given. Note that the
time T in this formulation does not correspond to a therapy period, but
instead is the time when the maximum tumor reduction achievable with
the given overall amount A of inhibitors is being realized. Alternatively, the
same scheduling problem could be considered over an a priori prescribed
therapy horizon Tth so that the final time Tth is fixed. But this leads to a
slightly different optimal control problem, pursued by A. Swierniak et al.
(e.g., [32, 34]). Mathematically, it is more convenient to adjoin the constraint
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(3) as a third variable and define the problem in R3. Hence we consider the
following optimal control problem:

(P1) For a free terminal time T , minimize the value
(4) J1(u) = p(T )

subject to the dynamics

ṗ = −ξp ln(p/q), p(0) = p0,(5)

q̇ = bp− (µ+ dp2/3)q −Guq, q(0) = q0,(6)
ẏ = u, y(0) = 0,(7)

over all piecewise continuous functions u : [0, T ]→ [0, a] for which the
corresponding trajectory satisfies y(T ) ≤ A.

For the simulations shown in this paper we use the following parameter
values that are taken from [17]: The variables p and q are volumes measured
in mm3; ξ = 0.192

ln 10 = 0.084 per day (adjusted to the natural logarithm),
b = 5.85 per day, d = 0.00873 per mm2 per day, G = 0.15 kg per mg of dose
per day, and for illustrative purposes we chose a small positive value for µ,
µ = 0.02 per day. Finally, we have chosen a = 75 and A = 300 for the limits
on the control. These values are merely used for numerical illustrations; the
mathematical results presented here are valid in general under the reasonable
assumption that Ga > b−µ > 0, i.e., that the parameters related to outside
inhibition are able to overcome the net effect of “birth” minus “death” of
the endothelial support.

The optimal controls for the problem considered in Section 3 are based
on the solutions of this problem and therefore, based on earlier results [17],
we first summarize the general structure of optimal trajectories and then
proceed to a precise description of the optimal controls. However, in order
to exclude discussions about the structure of optimal controls in regions
where the model does not represent the underlying biological problem, we
restrict our discussions to the biologically realistic domain

(8) D = {(p, q) : 0 < p ≤ p̄, 0 < q ≤ q̄}.
Theorem 1 ([26]). For any initial condition (p0, q0) ∈ D, optimal con-

trols are at most concatenations of the form 0asa0 where 0 denotes an inter-
val along which the optimal control is given by the constant control u = 0,
that is, no inhibitors are given, a represents an interval along which the
optimal control is given by the constant control u = a at full dose, and s
denotes an interval along which the optimal control follows a time-varying
feedback control (to be specified below), the so-called singular control. This
control is only optimal while the system follows a particular curve S in the
(p, q)-space, the optimal singular arc. However , depending on the initial
condition (p0, q0), not all of these intervals need to be present in a specific



300 U. Ledzewicz et al.

solution. For the biologically most relevant initial conditions typically opti-
mal controls have the form bs0 where b denotes an interval along which the
optimal control is given by either a or 0 depending on the initial condition.

Despite their name, which is related to some classical control literature
from the sixties (e.g., [7]), singular controls are to be expected in a synthesis
of optimal controls for a problem of the type (P1) for nonlinear models [5].
The singular control and the geometry of the corresponding trajectory S are
the most important part of the design of optimal protocols and the formulas
given below (whose derivations can be found in [25, 26]) are essential in the
construction of a synthesis of optimal controls and trajectories.

Proposition 2 ([26]). The singular curve S lies in the sector {(p, q) :
x∗1q < p < x∗2q} where x∗1 and x∗2 are the unique zeroes of the equation

(9) ϕ(x) =
b

d
x(lnx− 1) +

µ

d
= 0

and satisfy 0 ≤ x∗1 < 1 < x∗2 ≤ e. In the variables (p, x) with x = p/q, the
singular curve S can be parameterized in the form

(10) p2 + ϕ(x)3 = 0 for x∗1 < x < x∗2.

The singular control keeps the system on the singular curve and is given as
a feedback function of x in the form

(11) usin(x) =
1
G

[(
1
3
ξ + bx

)
lnx+

2
3
ξ

(
1− µ

bx

)]
.

There exists exactly one connected arc on the singular curve S along which
the singular control is admissible, i.e., satisfies the bounds 0 ≤ usin(x) ≤ a.
This arc is defined over an interval [x∗l , x

∗
u] where x∗l and x∗u are the unique

solutions to the equations usin(x∗l ) = 0 and usin(x∗u) = a and these values
satisfy x∗1 < x∗l < 1 < x∗u < x∗2.

The two graphs given in Fig. 1 illustrate the proposition for the parame-
ter values from [17] specified earlier. Fig. 1(a) shows the plot for the singular
control defined by (11) also indicating the values x∗l and x∗u where the con-
trol saturates at usin(x) = 0 and usin(x) = a. Fig. 1(b) shows the singular
curve S given by formula (10). Saturation of the singular control at x∗l and
x∗u restricts the admissible part of this petal-like curve to the portion lying
between the lines p = x∗l q and p = x∗uq. This portion is marked with a solid
line in Fig. 1(b). The qualitative structures shown in Fig. 1 are generally
valid for arbitrary parameter values, both for the control and the singular
curve. But naturally, with decreasing values for the upper control limit a
the admissible portion shrinks.

The admissible singular arc becomes the centerpiece of the synthesis of
optimal solutions given in Fig. 2. The important curves for the synthesis
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Fig. 1. (a) Singular control and (b) admissible singular arc
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Fig. 2. Synthesis of optimal controlled trajectories

are the admissible portions of the singular curve (solid blue curve), portions
of trajectories corresponding to the constant controls u = 0 (dashed-dot
green curves) and u = a (solid green curves), and the line p = q (dotted
black line) where the trajectories achieve the maximum tumor reduction.
These diagrams represent the optimal trajectories as a whole and each of
the different curves gives a different optimal trajectory depending on the
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actual initial condition. The thick curves in the graphs mark one specific
such trajectory. For this case the initial value p0 for the tumor volume and
q0 for the endothelial support are high and require to immediately start
the treatment. The optimal trajectory therefore initially follows the curve
corresponding to the control u = a. Note that, although inhibitors are given
at full dose along this curve, this shows very little effect on the number of the
cancer cells in a sense of decrease. The reason is that during this interval the
inhibitors drive down the vascular support and in this way prevent further
growth of the tumor that otherwise, enabled by its ample vascular support,
would occur. Once the trajectory corresponding to the full dose hits the
singular arc S, according to our analysis it is then no longer optimal to give
full dose and the optimal controls here switch to the singular control and
the optimal trajectory follows the singular arc. Only at this point does a
significant tumor reduction commence. Ignoring some special cases that are
due to saturation of the singular control along this arc and are described in
[26], the optimal control will now follow the singular arc until all inhibitors
are exhausted according to the condition that y(T ) = A. When the inhibitors
have been exhausted, therapy is over. But, due to after-effects, the tumor is
still shrinking as long as p(t) > q(t). Hence the maximum tumor reduction
is only realized along a trajectory for the control u = 0 as this trajectory
crosses the diagonal p = q. The corresponding time T is then the limit of
the horizon considered in the problem formulation (P1).
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Fig. 3. (P1)-optimal control (left) and corresponding optimal trajectory (right)

Fig. 3 gives the optimal control and its corresponding trajectory for
the initial conditions (p0, q0) = (15,000 mm3; 15,000 mm3). In this case the
control starts with full dose u = a = 75 for t1 = 0.04 days and then follows
the singular arc until t2 = 8.91 days when all inhibitors become exhausted.
The maximum tumor reduction is realized at time T = 9.09 days with the
value pmin = 10,254 mm3.
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3. Anti-angiogenic therapy: minimizing tumor volume with a
cost on treatment. The objective chosen in problem (P1) a priori puts a
cost (that can be viewed in terms of a price, but also as limiting potential
side effects) on the usage of angiogenic inhibitors in terms of the isoperi-
metric constraint (3). Naturally, in this case optimal solutions exhaust all
available inhibitors regardless of incremental benefits. We now consider a
modification of this model where we balance the amount of inhibitors used
with a reduction in tumor size over time.

(P2) For a free terminal time T , minimize

(12) J2(u) = p(T ) + κ

T�

0

u(t) dt

over all Lebesgue measurable functions u : [0, T ]→ [0, a] subject to

ṗ = −ξp ln(p/q), p(0) = p0,(13)

q̇ = bp− (µ+ dp2/3)q −Guq, q(0) = q0.(14)

In the objective, as in model (P1), the term
	T
0 u(t) dt represents the

total amount of anti-angiogenic treatment administered. But here this term
is viewed as a measure for the cost of the treatment or related to side
effects. In this formulation, we thus attempt to balance the effectiveness of
the treatment with cost and side-effects through the positive weight κ at
this integral.

We show that the qualitative structure of solutions does not change, i.e.,
optimal controls for problem (P2) still follow the regimen 0asa0 and thus
optimal controls again can very effectively and fast be computed numerically.
The differences to problem (P1) lie in the conditions for termination of
anti-angiogenic treatment. First-order necessary conditions for optimality of
a control u are given by the Pontryagin Maximum Principle [29, 7]. It is
easily seen that the problem is normal and thus these conditions can be
formulated as follows: if u∗ is an optimal control defined over the interval
[0, T ] with corresponding trajectory (p∗, q∗), then there exists an absolutely
continuous co-vector, λ : [0, T ]→ (R2)∗ (which we write as row-vector) that
satisfies the adjoint equations with transversality condition

λ̇1 = ξλ1

(
ln
(
p∗(t)
q∗(t)

)
+ 1
)

+ λ2

(
2
3
d
q∗(t)

p
1/3
∗ (t)

− b
)
, λ1(T ) = 1,(15)

λ̇2 = −ξλ1
p∗(t)
q∗(t)

+ λ2(µ+ dp
2/3
∗ (t) +Gu), λ2(T ) = 0,(16)

such that along (λ(t), p∗(t), q∗(t)) the optimal control u∗ minimizes the
Hamiltonian
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(17) H = κu− λ1ξp ln(p/q) + λ2(bp− (µ+ dp2/3)q −Guq)
over the control set [0, a] with the minimum value given by 0. We call a
pair ((p, q), u) consisting of an admissible control u with corresponding tra-
jectory (p, q) for which there exists a multiplier λ such that the conditions
of the Maximum Principle are satisfied an extremal (pair), and the triple
((p, q), u, λ) is an extremal lift (to the cotangent bundle).

The conditions of the Maximum Principle show the close connection
with the problem formulation (P1). The coefficient κ replaces the constant
multiplier λ3 in (P1) and thus all essential properties that follow from these
conditions remain preserved. A difference lies in the fact that κ is constant
for all trajectories whereas the value of the multiplier λ3 generally varies
from trajectory to trajectory for problem (P1). This needs to be considered if
a synthesis, a solution for all initial conditions, is the aim. The two problems
are closely connected, but not the same.

The minimization condition on the Hamiltonian H is equivalent to min-
imizing the linear function (κ − λ2(t)Gq∗(t))v over v ∈ [0, a]. Thus, if we
define the so-called switching function Φ as

(18) Φ(t) = κ− λ2(t)Gq∗(t),

then optimal controls satisfy

(19) u∗(t) =
{

0 if Φ(t) > 0,
a if Φ(t) < 0.

A priori the control is not determined by the minimum condition at times
when Φ(t) = 0. However, if Φ(t) ≡ 0 on an open interval, then also all
derivatives of Φ(t) must vanish and this may determine the control. These
are the so-called singular controls mentioned above. Generally, if singular
controls can be excluded from the potential candidates for optimality, like
it is the case, for example, for some models for cancer chemotherapy (e.g.,
[21, 22, 35, 33]), then it is reasonable to expect that optimal controls will
be bang-bang, that is, switch between the extreme points u = 0 and u = a
of the control set. For this case optimization based sufficient conditions for
local optimality exist (e.g., [28, 21]). However, for the problem considered
here, singular controls indeed are optimal and directly applicable sufficient
conditions for optimality are scarce and limited in scope (e.g., [15, 31]).
Moreover, optimal controls first need to be synthesized from these candidates
through an analysis of the switching function and this is the hard part of
the analysis. This led to the concatenation sequence 0asa0 for problem (P1).
Then, as in the calculus of variations, the construction of a field of extremals,
a regular synthesis in the sense of Boltyanskii [6], verified the optimality of
the solution. We also draw on these constructions for our claims of optimality
for problem (P2).
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The analysis of the singular arc is analogous to the one for the 3-dimen-
sional system (P1): If the control u is singular on an open interval I, then
Φ(t) ≡ 0 and thus also the derivative of the switching function vanishes, i.e.,

0 ≡ Φ̇(t) = −λ̇2(t)Gq∗(t)− λ2(t)Gq̇∗(t),

and this simplifies to

0 = [ξλ1(t)− bλ2(t)]Gp∗(t).

Since p∗(t) is positive it follows that ξλ1(t) = bλ2(t). Furthermore, the
Hamiltonian vanishes identically and thus Φ(t) ≡ 0 also implies that

λ1(t)ξp(t) ln
(
p(t)
q(t)

)
− λ2(t)(bp(t)− (µ+ dp(t)2/3)q(t)) = 0

and therefore

λ2(t)
(
bp(t)

[
ln
(
p(t)
q(t)

)
− 1
]

+ (µ+ dp(t)2/3)q(t)
)

= 0.

From Φ(t) ≡ 0 we get λ2(t)Gq∗(t) = κ > 0, which implies that λ2(t) is
positive along a singular arc. Thus the singular arc is given by the locus of
all points (p, q) that satisfy

(20) µ+ dp2/3 ≡ −b p
q

(
ln
(
p

q

)
− 1
)
.

In the variables p and x = p/q this is exactly (10),

(21) p2 = −
(
bx(lnx− 1) + µ

d

)3

.

The explicit formula (11) can be verified by differentiating Φ̇(t) ≡ 0 once
more, and then solving for the control that explicitly appears in this deriva-
tive. However, the relation (21) will need to be used to simplify to the
specified form.

This short computation is included to highlight for one case how the
calculations and subsequent analysis are strongly related and in many in-
stances identical with the computations done in [26] for problem (P1). As
already mentioned, the reason is that the extra multiplier λ3 in formula-
tion (P1) associated with the constraint on y is constant and in essence the
two problems (P1) and (P2) become compatible if we set λ3 = κ. Hence the
computations and subsequent analysis all carry over to problem formulation
(P2). In particular, the singular curve and its admissible portion are given
as in Proposition 2 and the concatenation structure of optimal controls is
identical for both problems. This allows one to set up a direct minimization
scheme to compute the optimal control for specified initial conditions.
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4. A numerical minimization scheme. The quantitative differences
between problems (P1) and (P2) lie in how long optimal solutions stay on
the singular arc. In formulation (P1) optimal controls typically follow the
singular arc until all inhibitors have been exhausted. There are some excep-
tions if the singular control saturates at its upper value a that are described
in [26], but in this paper we only consider the most typical situation. Because
of after-effects in the dynamics, optimal controls end with a segment with
u = 0 and the maximum tumor reduction is achieved at the time T when
the trajectory crosses the diagonal, p(T ) = q(T ). For problem (P2) optimal
trajectories leave the singular arc at some optimal time τ∗ determined by
the balance of tumor reduction and increase in the objective. While it is
not possible to determine the optimal time τ∗ analytically, it is not difficult
to compute it numerically by introducing a 1-dimensional parameter τ that
measures for how long the trajectory follows the optimal protocol for prob-
lem (P1). Depending on whether the point (p(τ), q(τ)) lies above or below
the diagonal, either another segment for u = 0 needs to be inserted until
the diagonal p = q is reached, or τ is the terminal time T . We then simply
need to minimize the resulting parameterized objective.

We now formalize this procedure. For simplicity of presentation we re-
strict to one specific concatenation structure. The modifications for the other
cases will be clear. We consider initial conditions (p0, q0) for which the op-
timal control u∗ for formulation (P1) has the most typical form as0 . That
is, the control starts with an initial segment when inhibitors are given at
maximum dose a until the corresponding trajectory reaches the singular arc
at time σ1. Then the control becomes singular and the trajectory follows
the singular arc until all inhibitors become exhausted at time σ2 and the
optimal control ends with a segment where no inhibitors are given until the
diagonal p = q is reached at time T̄ ,

(22) u∗(t) =


a for 0 ≤ t ≤ σ1,
usin for σ1 < t ≤ σ2,
0 for σ2 < t ≤ T̄ .

Given such an initial condition (p0, q0), let

γ̄ = (p̄, q̄) : [0, T̄ ]→ R2
+

denote the corresponding (P1)-optimal trajectory. The (P2)-value of this
(P1)-optimal strategy is given by

J2(u∗) = p̄(T̄ ) + κA.

Assuming that the tumor reduction achieved is smaller than the penalty on
the inhibitors, p0 − p̄(T̄ ) < κA, it follows that u∗ is no longer optimal for
problem (P2), simply because the trivial strategy of doing nothing already
gives a better value for the objective. (We can always guarantee that p0 −
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p̄(T̄ ) < κA by choosing A large enough, but the concatenation sequence
may then change to asa0 if the singular control saturates.)

We now construct a 1-parameter family F of input-trajectory pairs
(pτ (·), qτ (·)) as follows: Initially follow the (P1)-optimal trajectory γ̄ for
time τ , 0 ≤ τ ≤ σ2. If p(τ) ≤ q(τ), then no additional tumor reduction is
possible along u = 0 since p would increase. Hence in this case we simply
set T (τ) = τ . If p(τ) > q(τ), then the tumor volume will still decrease along
u = 0 and as before we then switch the control to u = 0 at time τ and
follow the corresponding trajectory until the diagonal p = q is reached at
time T = T (τ),

(23) uτ (t) =
{
u∗(t) for 0 ≤ t ≤ τ ,
0 for τ < t ≤ T (τ),

The value of the corresponding objective is then given by

I(τ) = pτ (T (τ)) + κ

τ�

0

u∗(t) dt.

Since the qualitative structure of (P2)-optimal controls is the same as for
problem (P1), it follows that the (P2)-optimal trajectory is a member of this
family. In fact, by construction all members are extremals. If p0 ≤ q0, then
for τ = 0 this family formally contains the strategy of doing nothing and we
simply get the initial tumor volume as value, I(0) = p0. For τ = σ2 we obtain
the (P1)-optimal trajectory, I(σ2) = p̄(T̄ ) + κA. It is easily seen that the
function I : [0, σ2] → R, τ 7→ I(τ), is continuous and thus has a minimum
over the compact interval [0, σ2]. If the minimum occurs at τ∗ < σ2, then
the corresponding parameter defines the (P2)-optimal solution. If τ∗ = σ2,
then the original problem (P1) needs to be considered with a higher total
limit A on the inhibitors to find the (P2)-optimal solution. In fact, to begin
with, one may simply compute the solution γ̄ for problem (P1) so that σ2

is the saturation time for the singular control. (For larger times σ2 then the
structure of optimal controls changes to asa0 and the construction of the
family F would need to be modified.)

We illustrate the procedure with numerical results for the initial condi-
tion p0 = q0 = 15,000 mm3. Recall that for this initial condition we have
σ1 = 0.04 days, σ2 = 8.91 days and T̄ = 9.09 days so that the (P1)-optimal
control u∗ is given by

(24) u∗(t) =


a for 0 ≤ t ≤ 0.04,
usin for 0.04 < t ≤ 8.91,
0 for 8.91 < t ≤ 9.09.

Fig. 4 shows the graphs of the objective I for various values of the weight
κ in the penalty term. Since for this initial condition the (P1)-optimal control
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Fig. 4. Graphs of the function I for κ = 21.5 (a, top left), κ = 20 (b, top right), κ = 15
(c, bottom left), κ = 10 (d, bottom right)

starts with u = a, the penalty term is dominant for large values of κ and
in these cases the function I will be increasing, as shown for the case κ =
21.5 in Fig. 4(a). This simply means that for this problem formulation and
such a high weight, it would be “optimal” in the sense of minimizing the
objective to do nothing, i.e., the best parameter value is given by the left
end point τ = 0. This will be correct for all κ > κ∗1 where the coefficient
κ∗1 is defined as the smallest value for which the optimal solution is still
attained at the parameter τ∗1 = 0. As κ decreases below κ∗1, the structure of
the (P2)-optimal control becomes a0 and does not yet include a piece on the
singular arc. Since the dynamics for u = a is very fast—the (P1)-optimal
control is at full dose only for time 0.04 days—for this initial condition this
structure is only optimal over a tiny interval (κ∗2, κ

∗
1) in κ, (κ∗2, κ

∗
1) contained

in (20.75, 21). The coefficient κ∗2 is determined by the condition that the
associated optimal parameter τ∗2 is given by the time σ1 when the (P1)-
optimal control becomes singular, τ∗2 = σ1 = 0.04 days. Thus in this case
the (P2)-optimal trajectory follows the u = a trajectory until it hits the
singular arc S and then immediately bounces off with control u = 0. As κ
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decreases below κ∗2, the minimum is achieved for a parameter τ > τ∗2 and
thus the structure of the (P2)-optimal control is now as0 as for problem
(P1), but the optimal control follows the singular arc only until time τ . For
example, the graph of I for κ = 20 is shown in Fig. 4(b) and the minimum
of I is attained for τ = 1.37; the (P2)-optimal control is given by

(25) u(t) =


a for 0 ≤ t ≤ 0.04,
usin for 0.04 < t ≤ 1.37,
0 for 1.37 < t ≤ T (1.37),

including a small portion of the singular arc. This control and its correspond-
ing trajectory are shown in Fig. 5. As κ decreases further the parameter value
for which the minimum is attained moves to the right and the interval along
which the (P2)-optimal control is singular becomes longer. For example, for
κ = 15 the control is now singular until time τ = 5.56 as shown in Fig. 6.
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Fig. 5. (P2)-optimal control (left) and corresponding trajectory (right) for κ = 20
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Fig. 6. (P2)-optimal control (left) and corresponding trajectory (right) for κ = 15
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Eventually, as κ decreases further, for some value κ∗3, the parameter
value τ where the function I attains its minimum becomes equal to the
time τ∗3 = σ2 = 8.91 days when the singular control has used up exactly
the amount A given as constraint in problem (P1). In this case the (P1)
and (P2)-optimal controls are identical. For κ < κ∗3 the function I is strictly
decreasing on the interval [0, σ] as shown in Fig. 4(d) for κ = 10. In this case
the (P2)-optimal control uses more inhibitors than were allowed in model
formulation (P1) and in order to solve problem (P2) we need to increase the
limit A in problem formulation (P1). For example, if we take A = 600 here,
then for κ = 10 the upper limit σ2 increases to σ2 = 14.68 days and now
the minimum is attained for τ = 11.17 inside the interval [0, σ2]; see Fig. 7.
Also, for these values the singular control still does not saturate and thus
the structure as0 is retained for the (P2)-optimal solution.
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Fig. 7. Graph of the function I for κ = 10 with A = 600

5. Conclusion. We described the solutions for two related optimal con-
trol problems for tumor anti-angiogenesis. Central to both solutions is an
optimal singular arc S, but the solutions differ in how long it is optimal
to follow this curve. If the total amount of angiogenic inhibitors is imposed
as a constraint (problem (P1)), then naturally all available drugs will be
exhausted and therapy is ended as this limit is reached along S. If the ob-
jective tries to achieve a balance between the amount of inhibitors given and
their cost or side effects (problem (P2)), there exists a unique time when
the benefits in tumor reduction from giving additional inhibitors are offset
by negative side effects or cost as measured by the integral of the control.
Based on the knowledge of the synthesis of (P1)-optimal controls and tra-
jectories constructed in [26], the (P2)-optimal controls and trajectories can
then easily be computed through a 1-dimensional numerical minimization
procedure.
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