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TWO-POINT PRIORS AND MINIMAX ESTIMATION
OF A BOUNDED PARAMETER UNDER CONVEX LOSS

Abstract. The problem of minimax estimation of a parameter θ when θ
is restricted to a finite interval [θ0, θ0 +m] is studied. The case of a convex
loss function is considered. Sufficient conditions for existence of a minimax
estimator which is a Bayes estimator with respect to a prior concentrated
in two points θ0 and θ0 +m are obtained. An example is presented.

1. Introduction. The problem of minimax estimation of a bounded real
parameter θ has been considered in many particular models. The square loss
function and normal mean were considered by Casella and Strawderman [3],
the case of the Linex loss function and normal mean was treated by Bischoff,
Fieger and Wulfert [2], the Linex loss and Poisson model by Wan, Zou and
Lee [10], the scale invariant squared loss and Poisson model by Johnstone
and MacGibbon [8]. The binomial model was considered in Marchand and
MacGibbon [9].

There are also many papers which consider general distributions, namely:
DasGupta [4] (square loss function and multiparameter families), Eichen-
auer-Hermann and Fieger [6] (scale parameter family), Eichenauer-Hermann
and Ickstadt [7] (Lp-loss and location parameter family), Bischoff [1] (Lp-
loss and scale parameter family), van Eeden and Zidek [5] (bounded scale
parameter and scale-invariant squared error loss). In several of the above
mentioned papers the minimax estimator obtained is a Bayes estimator with
respect to a prior concentrated in two points.

We show that suitable two-point priors on the endpoints of a sufficiently
small interval parameter space are least favourable and that the correspond-
ing Bayes estimators are minimax for many convex losses under general
conditions on density functions. The Linex loss, square loss, scale invariant
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squared loss are special cases, and many location parameter families and
scale parameter families satisfy our conditions for densities. Our result is a
generalization of some results obtained for particular loss functions (see [8],
[9]) and it is a generalization of DasGupta’s result [4] to the case of an asym-
metric loss and one-parameter families. We use the convexity technique. A
similar method has been used to find minimax estimators for various special
distributions by many authors. See references [2], [5] and [10] for examples.

Let X denote a sample space and X the observed random variable. Let
{Pθ : θ ∈ Θ = [θ0, θ0 + m]}, where θ0 and θ0 + m are fixed real numbers,
m > 0, be a family of probability measures of X with densities f(·, θ) with
respect to a fixed measure µ on the space X . Let L(θ, a) be a loss if an
estimate a is chosen when in fact θ is the true value of the parameter. Let
δ : X → Θ be an estimator, and

R(θ, δ) =
�

X
L(θ, δ(x))f(x, θ)µ(dx)

the risk function.
We will use the following general result (see van Eeden and Zidek [5]).

Theorem 1. Suppose

(1) δB is a Bayes rule with respect to a prior distribution Π such that
Π{θ0}+Π{θ0 +m} = 1;

(2) R(θ0, δB) = R(θ0 +m, δB);
(3) the function θ 7→ R(θ, δB) is convex on Θ.

Then δB is a minimax rule and Π is a least favourable distribution. If δB is
the unique Bayes rule, then δB is the unique minimax rule.

We now list our assumptions about the loss function:

L1. L(θ, a) = h(c(θ)(θ − a)).
L2. The function h : R→ [0,∞) is of class C3.
L3. h(0) = 0.
L4. h′(x) < 0 iff x < 0; h′(x) > 0 iff x > 0; h′′(x) > 0 for all x.
L5. The function c : [θ0,∞)→ (0,∞) is of class C2.

Our assumptions about the density function f(x, θ) are:

F1. f(x, θ0) + f(x, θ0 +m) 6= 0 for all x ∈ X .
F2. Pθ{x : f(x, θ0)f(x, θ0 +m) > 0} > 0 for θ = θ0 and θ = θ0 +m.
F3. The derivatives ∂

∂θf(x, θ) and ∂2

∂θ2 f(x, θ) exist for every θ ∈ [θ0, θ0+m]
and almost all x ∈ X .

F4. There exist µ-integrable functions gi(x), i = 0, 1, 2, such that

|f(x, θ)| ≤ g0(x),

∣∣∣∣
∂

∂θ
f(x, θ)

∣∣∣∣ ≤ g1(x),

∣∣∣∣
∂2

∂θ2 f(x, θ)

∣∣∣∣ ≤ g2(x)

for all θ ∈ [θ0, θ0 +m] and almost all x ∈ X .
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Let
A = {x : f(x, θ0)f(x, θ0 +m) > 0},
A0 = {x : f(x, θ0) = 0 ∧ f(x, θ0 +m) > 0},
A1 = {x : f(x, θ0) > 0 ∧ f(x, θ0 +m) = 0}.

Let c0 and cm denote c(θ0) and c(θ0 + m), respectively. We will suppress
θ wherever possible and write c instead of c(θ), c′ instead of dc(θ)/dθ, c′′

instead of d2c(θ)/dθ2.
Let Πβ, β ∈ [0, 1], be a prior such that

Πβ(θ0) = β, Πβ(θ0 +m) = 1− β.
Let δβ,m be the Bayes estimator if the prior isΠβ. Note that δβ,m(x) = θ0+m
if f(x, θ0) = 0, and δβ,m(x) = θ0 if f(x, θ0 + m) = 0, when β ∈ (0, 1). If
β = 0 and f(x, θ0 + m) = 0 then we put δ0,m(x) = θ0, and if β = 1
and f(x, θ0) = 0 then we put δ1,m(x) = θ0 + m. The existence of δβ,m

for x satisfying f(x, θ0)f(x, θ0 + m) 6= 0 follows from the properties of the
function h. The estimator δβ,m is a solution of the equation

%β,m(δ) = 0,

where

%β,m(δ) = −c0h
′(c0(θ0−δ))βf(x, θ0)−cmh′(cm(θ0+m−δ))(1−β)f(x, θ0+m)

is an increasing function of δ and

%β,m(θ0) = −cmh′(cmm)(1− β)f(x, θ0 +m) < 0,

%β,m(θ0 +m) = −c0h
′(−c0m)βf(x, θ0) > 0.

From now on we suppress x wherever possible and write δ instead of δ(x).

2. Main result

Theorem 2. There exists M0 > 0 such that for every m ∈ (0,M0) there
exists β∗ ∈ [0, 1] such that the Bayes estimator δβ

∗,m for a prior Πβ∗ is the
minimax estimator of θ under the loss function L(θ, a) = h(c(θ)(θ − a)).
The value β∗ satisfies the equation

R(θ0, δ
β∗,m) = R(θ0 +m, δβ

∗,m).

The two-point prior Πβ∗ is least favourable.

We have divided the proof into a sequence of lemmas.

Lemma 1. For all x ∈ X the estimator δβ,m satisfies:

(i) if f(x, θ0)f(x, θ0 +m) 6= 0 then δ0,m(x) = θ0 +m and δ1,m = θ0;
(ii) δβ,m is a differentiable function of β ∈ (0, 1);
(iii) δβ,m is a strictly decreasing function of β for every m > 0 and x

such that f(x, θ0)f(x, θ0 +m) 6= 0.
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Proof. If β = 0 then Πβ(θ0 + m) = 1, if β = 1 then Πβ(θ0) = 1, which
proves (i). The estimator δβ,m satisfies

c0h
′(c0(θ0−δβ,m))βf(x, θ0)+cmh′(cm(θ0+m−δβ,m))(1−β)f(x, θ0+m) = 0.

Differentiating in β we obtain

∂

∂β
δβ,m(x) =

c0h
′(c0(θ0−δβ,m))f(x,θ0)−cmh′(cm(θ0 +m−δβ,m))f(x,θ0 +m)

c2
0h
′′(c0(θ0−δβ,m))βf(x,θ0)+c2

mh
′′(cm(θ0 +m−δβ,m))(1−β)f(x,θ0 +m)

.

The denominator is greater than 0 for all β ∈ (0, 1), x and m > 0. If
f(x, θ0)f(x, θ0 +m) 6= 0 then for β ∈ (0, 1),

δβ,m ∈ (θ0, θ0 +m), h′(θ0 − δβ,m) < 0, h′(θ0 +m− δβ,m) > 0,

which proves (iii).

Lemma 2. The risk function R(θ, δβ,m) is a continuous function of β
and
R(θ0, δ

0,m) = h(−c0m)Pθ0(A), R(θ0 +m, δ0,m) = 0

R(θ0, δ
1,m) = 0, R(θ0 +m, δ1,m) = h(cmm)Pθ0+m(A).

Proof. We have

R(θ, δβ,m) =
�

A

h(c(θ − δβ,m))f(x, θ)µ(dx)

+ h(c(θ − θ0 −m))Pθ(A0) + h(c(θ − θ0))Pθ(A1)

and δβ,m is a continuous function of β and

∀x θ0 ≤ δβ,m(x) ≤ θ0 +m.

Thus from the Lebesgue dominated convergence theorem we obtain the con-
tinuity of R.

For β = 0 we obtain

R(θ, δ0,m) = h(c(θ − θ0 −m))(Pθ(A) + Pθ(A0)) + h(c(θ − θ0))Pθ(A1).

For β = 1 we obtain

R(θ, δ1,m) = h(c(θ − θ0))(Pθ(A) + Pθ(A1)) + h(c(θ − θ0 −m))Pθ(A0).

Lemma 3. For every m > 0 there exists a unique β∗(m) ∈ (0, 1) such
that

R(θ0, δm) = R(θ0 +m, δm), where δm = δβ
∗(m),m.

Proof. Let Fm(β) = R(θ0, δ
β,m) − R(θ0 + m, δβ,m). Then Fm is a con-

tinuous function of β and Fm(0) = h(−c0m)Pθ0(A) > 0 and Fm(1) =
−h(cmm)Pθ0+m(A) < 0.
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Both R(θ0, δ
β,m) and −R(θ0 + m, δβ,m) are decreasing functions of β.

To show this for R(θ0, δ
β,m) (the proof for R(θ0 + m, δβ,m) is similar) take

β2 > β1 and β1, β2 ∈ (0, 1). From Lemma 1 and property L4 for x satisfying
f(x, θ0)f(x, θ0 +m) 6= 0 we have

h(c0(θ0 − δβ2,m)) < h(c0(θ0 − δβ1,m)).
Now assumption F2 gives

R(θ0, δ
β2,m) < R(θ0, δ

β1,m).
Hence Fm is decreasing as a sum of decreasing functions, and thus β∗(m) is
unique.

Let δm(x) = δβ
∗(m),m(x) for m > 0, and δ0(x) = θ0.

Lemma 4. The function δm is continuous in m for m ≥ 0.

Proof (van Eeden and Zidek [5]). It is enough to show that β∗ : [0,∞]→
[0, 1] is continuous (see Lemma 1). Lemma 3 implies that β∗ is a unique
solution of the equation

Fm(β) = R(θ0, δ
β,m)−R(θ0 +m, δβ,m) = 0.

The function F for fixed β is continuous in m, because δβ,m(x) is continuous
in m and δβ,m(x) is uniformly bounded as a function of x in a neighbourhood
of m0 for every m0 > 0.

Take ε > 0. Let β1 and β2 be numbers such that
0 ≤ β1 < β∗(m) < β2 ≤ 1, |β1 − β2| < ε.

Then
Fm(β1) > Fm(β∗(m)) = 0 > Fm(β2)

and there exists B > 0 such that
∀0 < b < B |Fm+b(β1)− Fm(β1)| < 1

2Fm(β1),
∀0 < b < B, |Fm+b(β2)− Fm(β2)| < 1

2 |Fm(β2)|.
Hence

Fm+b(β2) < 0 < Fm+b(β1),

thus β1 < β∗(m+ b) < β2 and
|β∗(m)− β∗(m+ b)| < ε.

Lemma 5. For every m≥0 and θ≥θ0 the second derivative ∂2

∂θ2R(θ, δm)
exists and is a continuous function of m uniformly in θ ∈ [θ0, θ0 + M ] for
each M > 0.

Proof. We have
∂

∂θ
R(θ, δm) =

�

X
[c′(θ − δm) + c]h′(c(θ − δm))f(x, θ)µ(dx)

+
�

X
h(c(θ − δm))

∂

∂θ
f(x, θ)µ(dx),
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∂2

∂θ2R(θ, δm) =
�

X
h′′(c(θ − δm))[c′(θ − δm) + c]2f(x, θ)µ(dx)

+
�

X
[c′′(θ − δm) + 2c′]h′(c(θ − δm))f(x, θ)µ(dx)

+ 2
�

X
h′(c(θ − δm))[c′(θ − δm) + c]

∂

∂θ
f(x, θ)µ(dx)

+
�

X
h(c(θ − δm))

∂2

∂θ2 f(x, θ)µ(dx).

The existence of the derivatives follows from the Lebesgue theorem and
assumptions F3, F4 and L2, L5. The continuity of ∂2

∂θ2R(θ, δm) follows
from assumptions F3 and F4 and the continuity of δm.

It remains to prove that the continuity is uniform with respect to θ. We
need to show that

∀ε,m,M > 0 ∃η > 0 H(m1,m, θ) =

∣∣∣∣
∂2

∂θ2R(θ, δm1)− ∂2

∂θ2R(θ, δm)

∣∣∣∣ < ε

if |m−m1| < η and θ ∈ [θ0, θ0 +M ]. We have

H(m1,m, θ)
≤ (θc′ + c)2

�

X
|h′′(c(θ − δm1))− h′′(c(θ − δm))|g0(x)µ(dx)

+ 2|c′(θc′ + c)|
�

X
|h′′(c(θ − δm1))δm1 − h′′(c(θ − δm))δm|g0(x)µ(dx)

+ c′2
�

X
|h′′(c(θ − δm1))δ2

m1
− h′′(c(θ − δm))δ2

m|g0(x)µ(dx)

+ 2|c′|
�

X
|h′(c(θ − δm1))δm1 − h′(c(θ − δm))δm|g1(x)µ(dx)

+ 2|θc′ + c|
�

X
|h′(c(θ − δm1))− h′(c(θ − δm))|g1(x)µ(dx)

+
�

X
|h(c(θ − δm1))− h(c(θ − δm))|g2(x)µ(dx)

+ |c′′|
�

X
|h′(c(θ − δm1))δm1 − h′(c(θ − δm))δm|g0(x)µ(dx)

+ |θc′′ + 2c′|
�

X
|h′(c(θ − δm1))− h′(c(θ − δm))|g0(x)µ(dx),

and

|h′′(c(θ − δm1))− h′′(c(θ − δm))| ≤ sup
z∈[−S,S]

|h′′′(z)| |δm1 − δm|C,

|h′(c(θ − δm1))− h′(c(θ − δm))| ≤ sup
z∈[−S,S]

|h′′(z)| |δm1 − δm|C,

|h(c(θ − δm1))− h(c(θ − δm))| ≤ sup
z∈[−S,S]

|h′(z)| |δm1 − δm|C,
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where S = supθ∈[θ0,θ0+M ] c(θ)M , C = supθ∈[θ0,θ0+M ] c(θ), h satisfies L2,
c satisfies L5, θ ∈ [θ0, θ0 + M ], δm is continuous and bounded for θ ∈
[θ0, θ0 +M ] and g0, g1, g2 are integrable.

Lemma 6. There exists M0 such that for every m ∈ (0,M0),

∂2

∂θ2R(θ, δm) > 0 for every θ ∈ [θ0, θ0 +m].

Proof. We have

∂2

∂θ2R(θ, δm)

∣∣∣∣
m=0

= h′′(0)c2(θ0) > 0,

and thus the assertion follows from Lemma 5.

Now using Lemmas 3 and 6 and Theorem 1 we obtain the assertion of
Theorem 2.

3. Example. Let X1, . . . ,Xn be i.i.d. random variables with the uni-
form distribution U(0, θ), where θ ∈ [a, b] is unknown, a, b are known and
b > a > 0. Let m = b− a. We estimate θ under the LINEX loss function

L(θ, d) = exp(c(θ − d))− c(θ − d)− 1,

where c > 0 is fixed. Set X = (X1, . . . ,Xn). If X = x then the Bayes
estimate δβ,m(x) of θ for a prior that puts mass β and 1 − β at a and b
respectively, is given by

δβ,m(x) =





1
c

ln
ecaβbn + ecb(1− β)an

βbn + (1− β)an
if 0 < xn:n < a,

b if xn:n ∈ [a, b),

where Xn:n = max(X1, . . . ,Xn).
The risk of the estimator δβ,m is equal to

R(θ, δβ,m) =
(
ecθ

B

A
− cθ − ln

B

A
− 1
)
an

θn
+ (ecθ−cb − cθ + cb− 1)

(
1− an

θn

)
,

where

B = βbn + (1− β)an,(3.1)

A = ecaβbn + ecb(1− β)an.(3.2)

We would like to find the value of M such that R(·, δβ,m) is a convex function
of θ ∈ [a, a+m] if m < M and β ∈ (0, 1). We have

∂

∂θ
R(θ, δβ,m) =

−nan
θn+1

(
ecθ

B

A
− ln

B

A
− ecθ−cb − cb

)

+
can

θn
ecθ

B

A
+
θn − an
θn

cecθ−cb − c,
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∂2

∂θ2R(θ, δβ,m) =
anecθ

θn+2

(
B

A
− e−cb

)
(n(n+ 1)− 2cnθ + c2θ2) + c2ecθ−cb

− n(n+ 1)an

θn+2

(
ln
B

A
+ cb

)
.

For every θ ≥ a and b > a > 0 the following inequalities hold:

c2θ2 − 2cnθ + n2 + n = (cθ − n)2 + n ≥ n, B

A
≥ e−cb.

To prove convexity of R(·, δβ,m) if θ ≥ a it suffices to show that

naneca
(
B

A
− e−cb

)
− n(n+ 1)an

(
ln
B

A
+ cb

)
+ c2an+2eca−cb > 0.

Substituting (3.1) and (3.2) and dividing both sides by an we obtain

g(β,m) > 0,

where

g(β,m) =
n[βbn + (1− β)an]
βbn + ecm(1− β)an

− ne−cm + c2a2e−cm

− n(n+ 1) ln
[βbn + (1− β)an]ecm

βbn + ecm(1− β)an

and m = b− a > 0. We have
∂

∂β
g(β,m) =

nbnan(ecm − 1)
[βbn + ecm(1− β)an]2

− n(n+ 1)bnan(ecm − 1)
[βbn + (1− β)an][βbn + ecm(1− β)an]

=
−nbnan(ecm − 1)[nβbn + (1− β)an((n+ 1)ecm − 1)]

[βbn + (1− β)an][βbn + ecm(1− β)an]2
< 0,

hence g is a decreasing function of β ∈ (0, 1). Therefore g(β,m) > 0 for
β ∈ (0, 1) iff

g(1,m) = n− n(n+ 1)cm+ (c2a2 − n)e−cm > 0.

The function g(1,m) is a decreasing function of m > 0 and g(1, 0) > 0 and
limm→∞ g(1,m) = −∞.

Hence, for a given a > 0, if m ∈ (0,M), where M is a solution of the
equation

n− n(n+ 1)cM + (c2a2 − n)e−cM = 0,

then R(θ, δβ,m) is a convex function of θ ∈ [a, a + m] for every β ∈ (0, 1).
It follows that the Bayes estimator δβ,m for β satisfying R(a, δβ,m) =
R(a+m, δβ,m) is a minimax estimator.

Table 1 presents the values of M for some n, a and c.
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Table 1. Values of M for some n, a and c

n = 1 n = 5 n = 10

c c c

a 0.2 1 3 0.2 1 3 0.2 1 3

0.5 0.049 0.190 0.262 0.002 0.010 0.027 0.0005 0.003 0.007

1 0.192 0.500 0.481 0.008 0.038 0.090 0.002 0.010 0.028

2 0.660 1.033 0.761 0.032 0.138 0.229 0.008 0.038 0.090

5 2.500 2.048 1.197 0.192 0.551 0.540 0.049 0.202 0.297

10 5.168 2.990 1.559 0.688 1.160 0.845 0.192 0.559 0.549
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