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WEAK SOLUTIONS TO THE INITIAL BOUNDARY VALUE
PROBLEM FOR A SEMILINEAR WAVE EQUATION WITH

DAMPING AND SOURCE TERMS

Abstract. We show local existence of solutions to the initial boundary
value problem corresponding to a semilinear wave equation with interior
damping and source terms. The difficulty in dealing with these two compet-
itive forces comes from the fact that the source term is not a locally Lipschitz
function from H1(Ω) into L2(Ω) as typically assumed in the literature. The
strategy behind the proof is based on the physics of the problem, so it does
not use the damping present in the equation. The arguments are natural
and adaptable to other settings/other PDEs.

1. Introduction. Consider the boundary value problem

(SW)


utt −∆u+ f(x, t, u) + g(x, t, ut) = 0 a.e. (x, t) ∈ Ω × [0,∞);
u(x, t) = 0 a.e. (x, t) ∈ ∂Ω × [0,∞);
(u, ut)|t=0 = (u0, u1) a.e. x ∈ Ω,

whereΩ is a connected bounded domain with C2 boundary. In [13] we proved
local existence of solutions to the Cauchy problem (Ω = Rn) under a set of
assumptions Af , Ag concerning the nonlinearities f and g that we will list
below. In this work we are interested in solving the problem on a bounded
domain, issue which is of great interest in control theory ([9, 10]). This paper
complements the work in [13] as we will prove that the techniques of [13]
apply to bounded domains as well; however, some nontrivial arguments have
to be used in order to deal with the boundary conditions.

1.1. Assumptions. Here we present the list of assumptions that govern
our result. Note that (A0)–(A8) concern the source and the damping terms,
while (A9) is a geometric assumption on the boundary.
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(A0) f is measurable in x, differentiable in t a.e., differentiable in u a.e.,
and there exists a continuous function k such that for a.e. x, t,

|fu(x, t, u)| ≤ k(r) for a.e. |u| ≤ r.
(A1) Growth conditions on the source term f :

(i) f(x, t, 0) = 0;
(ii) |f(x, t, u)| ≤ m1|u|p +m2|u|q for some 1 < q < p < 2∗− 1 and

m1,m2 > 0, where 2∗ = 2n/(n− 2).

(A2) |ft(x, t, u)| ≤ K for some K > 0.
(A2)∗ f does not depend on t and F (x, u) =

	u
0 f(x, v) dv ≥ 0.

(A3) g= g(x, t, v) is measurable in t, differentiable in x, and continuous
in v.

(A4) For every x, t the function v 7→ g(x, t, v) is increasing and g(x, t, 0)
= 0.

(A5) vg(x, t, v) ≥ C1|v|m+1 and |g(x, t, v)| ≤ C2|v|m for some m ≥ 0.
(A6) |∇xg(x, t, v)| ≤ C|v|.
(A7) |gt(x, t, v)| ≤ C|v|.
(A8) Either (a) 1 < p < 2∗/2, m > 0, (b) p + p/m < 2∗, m > 0, or

(c) 1 < p < 2∗ − 1, where p is given by (A1), and g is either linear
in v or does not depend on v. Note that the range of exponents
(p,m) given by (A8)(c) is strictly included in the set (1, 2∗−1)×
{0, 1}.

(A9) Ω is convex such that Ω ∩ B(z, r) are open, bounded, connected
domains with Lipschitz boundary for any z ∈ Ω, r > 0 (regular
domains in the sense of Sobolev’s embedding theorem).

The constants C, C1, C2 denote nonnegative numbers which may change
from line to line.

The above assumptions are generalizations of those satisfied by the much
studied differential equation

utt −∆u± u|u|p−1 ± u|u|q−1 + a(x, t)ut|ut|m−1 = 0,

where 1 < q < p < 2∗ − 1, m ≥ 0, and a(x, t) ≥ 0. The “−” sign in
the above equation corresponds to a situation when energy is introduced
into the system, whereas the “+” sign gives us a model whose energy is
dissipating. Special cases of this equation arise in quantum field theory (e.g.,
the Klein–Gordon equation) and in mechanical applications (the dynamics
of a membrane in presence of friction when energy is introduced in the
system).

1.2. Relationship to previous literature. The interaction between the
damping and the source terms has been extensively studied, and pertinent
results and conjectures abound in the literature. Thus, it is well-known that
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the source term f(x, t, u) alone can drive the solution to blow up in finite
time if it corresponds to accretion of energy [7, 8, 12, 15]. In contrast, the
damping term g(x, t, ut) leads to global existence of weak solutions. The
decisive factor in establishing long time behavior of solutions under the in-
teraction of these two effects appears to be the power of the nonlinearity: a
higher power of damping would yield long time existence, while a dominant
source term will cause the solutions to go to infinity in finite time. This
relationship has been studied on both bounded and unbounded domains
[2, 3, 4, 6, 9, 11, 13, 16, 19].

The largest set of exponents p andm for which local existence of solutions
was proven for Rn was found in [13] to be given by (A8). This result extended
the set of exponents found by J. Serrin, G. Todorova and E. Vitillaro in [16]
while using a natural approach with finite energy spaces which are adapted
to the equation. For bounded domains we prove that the local existence holds
for the same range of exponents as for the entire space, thus generalizing
the results of [6, 11] where the source term is locally Lipschitz from H1

into L2. When the mapping f is locally Lipschitz (in other words, f has
subcritical exponent p ≤ 3 for n = 3), local existence of solutions can be
proved through monotone semigroup theory (see the Appendix of [4]); for
global existence the source term has to additionally satisfy a coercivity-
type condition involving the first eigenvalue of the Laplacian. Under these
Lipschitz assumptions for the interior source terms the authors of [3, 9, 4]
study existence of solutions and stability issues, where nonlinear source and
damping terms act on the boundary of the domain. This setup is different
from ours since problems with nonlinear damping on the boundary in general
do not satisfy the Lopatinski condition.

We would like to point out that in contrast with the existing literature
([2, 6, 16]), our arguments do not make use of the smoothing effect of the
damping . This allows us to handle exponents p that go all the way up to
2∗−1 in the case of linear damping and in the case of no damping. Several
works mention that the damping is essential in dealing with source terms;
our results, however, prove the contrary. For local existence of solutions,
at least for subcritical exponents for the source term, the extra regularity
given by the damping is not needed. This fact strongly suggests that one
should be able to extend the allowable range of exponents to the full box
1 < p < 2∗−1, m ≥ 0, as one naturally expects from the Sobolev embedding
theorem. In other words, we conjecture that the exponents p and m do not
have to satisfy the restriction

(R) p+ p/m < 2∗ for 2∗/2 < p < 2∗ − 1.

The methods used in the study of nonlinear wave equations are usually
suited to either bounded or unbounded domains and very few methods are



358 P. Radu

p

m6

-

Fig. 1. The range of exponents p and m in n = 3 where the thick lines mark only the case
of linear damping and no damping, so they do not cover nonlinear terms g(x, t, v) whose
growth exponent is m = 0 or m = 1

applicable in both setups. We show here that our arguments are some of
these fortunate situations. The proof relies on two main ingredients: the po-
tential well method due to Sattinger ([12, 14]) and a “patching” argument
which was originally used by Crandall and Tartar (see [17, 18]) to show
global existence of arbitrarily large solutions for the Broadwell model. In
both problems ([13] and [17]) the boundary conditions were absent since
the PDEs were considered on the entire space, but we show here that the
methods work in the presence of boundary conditions with appropriate mod-
ifications. We will often make reference to various results and arguments of
[13] without including the proof due to space limitations.

Another fact that distinguishes this paper from other works is that the
existence of solutions is proved by passing to the limit for a sequence of ap-
proximating solutions where only the source term is approximated with Lip-
schitz functions, and not the damping term. This allows us to stay within
the natural framework of Lebesgue spaces. Note that the usual approach
of approximating the damping term with Lipschitz functions is not feasi-
ble in Lebesgue spaces (in [16] this obstacle was overcome through a re-
course to Orlicz spaces). This is due to the incompatibility between the
Lipschitz assumptions and the polynomial growth conditions vg(x, t, v) ≥
(1/C)|v|m, |g(x, t, v)| ≤ C|v|m−1 for some m ≥ 1, and g(x, t, 0) = 0, which
makes it impossible to work in a Lebesgue space (see [16] for more details).

In conclusion, we summarize the main contributions of this article:

• We provide an extension of the allowed range of exponents p and m
through a stronger and more substantial use of the monotonicity of g.
Prior to this work local existence results for wave equations with in-
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terior source and damping terms on bounded domains were proved
only for the range of exponents described by (A8)(a) which corre-
sponds to the case of f Lipschitz from H1 into L2. Our results extend
the prior range in two directions, by allowing (A8)(b) (p+ p/m < 2∗)
and (A8)(c) (p∗/2 ≤ p < 2∗ − 1 for linear or no damping).
• In the presence of absorption terms (when f satisfies (A2)∗) and damp-

ing terms whose range of exponents satisfies (A8) we prove global ex-
istence of solutions.
• These results hold for finite energy initial data, not necessarily with

compact support as is assumed in other works (e.g. [16, 19]).
• Our work has the advantage of allowing some dependence on t in the

function f .
• The results apply to wave equations with variable coefficients, as

pointed out in Remark 1 of [13].
• This work together with [13] illustrates the great applicability of these

methods since they work for problems which are set on bounded and
unbounded domains.

2. Main result. We are concerned in this paper with existence of weak
solutions, whose definition we present below.

Definition 2.1. Let ΩT := Ω × (0, T ), where Ω ⊂ Rn is an open
connected set with smooth boundary ∂Ω. Suppose the functions f and g
satisfy assumptions (A1) and (A5), and that u0 ∈ H1

0 (Ω) ∩ Lp+1(Ω) and
u1 ∈ L2(Ω) ∩ Lm+1(Ω).

A weak solution on ΩT of the boundary value problem

(SW)


utt −∆u+ f(x, t, u) + g(x, t, ut) = 0 in ΩT ;
(u, ut)|t=0 = (u0, u1);
u = 0 on ∂Ω × (0, T ),

is any function u satisfying

u ∈ C(0, T ;H1
0 (Ω)) ∩ Lp+1(ΩT ), ut ∈ L2(ΩT ) ∩ Lm+1(ΩT ),

and �

ΩT

(u(x, s)φtt(x, s) +∇u(x, s) · ∇φ(x, s) + f(x, s, u)φ(x, s)

+g(x, s, ut)φ(x, s)) dx ds =
�

Ω

(u1(x)φ(x, 0)− u0(x)φt(x, 0)) dx

for every φ ∈ C∞c (Ω × (−∞, T )).

In the following, | · |q is the norm in Lq(Ω). If the domain over which the
norm is considered is not clear from the context, then we use | · |q,Ω.
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Below we present our main result and also the main steps of the proof.
The steps which are identical with those on the entire Rn (as presented
in [13]) are only sketched so that we can focus instead on the patching
argument where we have to deal with boundary conditions.

Theorem 2.2 (Main Theorem). Let (u0, u1) ∈ H1
0 (Ω) ∩ Lp+1(Ω) ×

L2(Ω) ∩ Lm+1(Ω) and consider the Cauchy problem

(SW)


utt −∆u+ f(x, t, u) + g(x, t, ut) = 0 a.e. in Ω × [0,∞);
u(x, t) = 0 a.e. (x, t) ∈ ∂Ω × [0,∞);
(u, ut)|t=0 = (u0, u1) a.e. x ∈ Ω,

where f and g satisfy (A0)–(A8). Additionally , assume that G(x, 0, u1) ∈
L1(Ω), where G(x, t, v) =

	v
0 g(x, t, u) du. Then there exists a time 0 < T < 1

such that (SW) admits a weak solution on [0, T ] in the sense of Defini-
tion 2.1. In addition, if (A2)∗ is satisfied , then the solution is global , so
T can be taken arbitrary. The solution is also continuous in time in the
topology of the finite energy space, i.e.

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).

Remark. The restriction T < 1 is arbitrary, the time of existence is
naturally limited by the physics of the problem, since one expects blow-up
of solutions whenever the source term dominates the damping.

Proof. In order to facilitate the exposition we present a brief outline
of the proof. As mentioned in the introduction, we will approximate the
problem with problems that have Lipschitz source terms. We will then use
a compactness and monotonicity argument in order to pass to the limit in
the sequence of approximating solutions. This approach will actually give
us existence of “small” solutions, which we will “patch” to obtain a solution
on the entire domain Ω.

Step 1. We begin by considering the problem with a globally Lipschitz
source term in the u argument and arbitrary damping. It is known that for
the boundary value problem with f Lipschitz in the third argument and g
taken as general as possible under the assumptions Ag, we have the following
theorem on global existence, uniqueness and regularity of strong solutions
for (SW) (see [1] or [13]).

Theorem 2.3 (Existence and uniqueness of solutions for dissipative wave
equations with Lipschitz source terms). Let Ω ⊂ Rn be a bounded domain
with smooth boundary ∂Ω, and suppose the functions f(x, t, u) and g(x, t, v)
satisfy assumptions (A0), (A2), (A3)–(A7), and f is globally Lipschitz in the
last argument with Lipschitz constant L, i.e.

|f(x, t, u)− f(x, t, v)| ≤ L|u− v|
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for every u, v ∈ R. Let u0, u1 ∈ H1
0 (Ω) × L2(Ω) with G(x, 0, u1) ∈ L1(Ω),

where G is defined by the formula

G(x, t, v) =
v�

0

g(x, t, y) dy.

Then (SW) admits a unique solution u on the time interval [0, T ] such that

u ∈ C(0, T ;H1
0 (Ω)) ∩ Lp+1(ΩT ), ut ∈ L2(ΩT ) ∩ Lm+1(ΩT ).

The solutions to the wave equation with Lipschitz source terms and
polynomial-like damping have finite speed of propagation. In [13] two state-
ments are proven, one on the growth of the support of solutions, and the
second which regards uniqueness of solutions which start from the same ini-
tial data. Due to the presence of the nonlinearities f and g, these properties
are not equivalent, even though the proofs are very similar. The statement
concerning the size of the support was proven prior to [13] only for source
terms of “good” sign (when their contribution to the energy was a nonneg-
ative quantity). The complete statement of the theorem follows below with
the only modification that the balls are permitted to intersect the boundary.
The proof remains the same as in [13] but we include it here for the sake of
completeness.

Theorem 2.4 (Finite speed of propagation). Consider the problem (SW)
under the hypothesis of Theorem 2.3 (i.e. we additionally require that the
source terms are globally Lipschitz ). Then

(1) if the initial data u0, u1 are compactly supported inside the domain
B(x0, R) ∩Ω, then u(x, t) = 0 outside B(x0, R+ t) ∩Ω;

(2) if (u0, u1), (v0, v1) are two pairs of initial data with compact support ,
with the corresponding solutions u(x, t), v(x, t), and

(u0(x), u1(x)) = (v0(x), v1(x)) for x ∈ B(x0, R) ∩Ω,
then u(x, t) = v(x, t) in B(x0, R− t) ∩Ω for any t < R.

Proof. (1) The proof extends an argument used for the linear wave equa-
tion by L. Tartar [18].

Assume for now that f(x, t, u) = 0 for |x − x0| ≥ R + t. Since the
equation is invariant under translations, without loss of generality we can
take x0 = 0. First we approximate the initial data uniformly by smooth
functions (u0η, u1η) with compact support inside B(Rη), with Rη ↗ R as
η → 0. By Theorem 2.3, for any T > 0, the solution of

(SWη)


uηtt −∆uη + f(x, t, uη) + g(x, t, uηt) = 0 in Ω × (0, T );

(uη, uηt)|t=0 = (u0η, u1η);

uη = 0 on ∂Ω × (0, T ),
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exists on [0, T ] and it has the additional regularity

u ∈ C1([0, T ];L2(Ω)) with utt, ∆u ∈ L2(0, T ;L2(Ω)).

Consider a function φη with φη(r) = 0 on (−∞, Rη], φη(r) > 0 on
(Rη,∞), such that φ′η(r) ≥ 0 on R. Since uηt ∈ L∞(0, T ;H1

0 (B(Rη))), we
are allowed to multiply (SWη) by uηt(t, x)φη(|x| − t), for any 0 < t < T .
The quantity

Iη(t) :=
�

Ω

(|uηt(x, t)|2 + |∇uη(x, t)|2)φη(|x| − t) dx

is well defined and assume for now that dIη/dt ≤ 0. Then Iη(0) = 0, since

Iη(0) =
�

B(Rη)∩Ω

(|u1η(x)|2 + |∇u0η(x)|2)φη(|x|) dx

+
�

Ω\B(Rη)

(|u1η(x)|2 + |∇u0η(x)|2)φη(|x|) dx.

The first integral is 0 since φη(|x|) = 0 for |x| < Rη. The initial data has
support inside the ball |x| < Rη, so the second integral is also zero.

The assumption that the mapping t 7→ Iη(t) is decreasing leads us to
Iη(t) ≤ Iη(0) = 0, which means that uη(x, t) = 0 if |x| − t > Rη. We pass to
the limit in η (see Theorem 2.2 in [13] on the convergence of approximations
of solutions) to obtain u(x, t) = 0 for |x| − t > R, and this is what we set
out to prove in part (1).

It then suffices to prove that dIη/dt ≤ 0. For the regularized initial
data we have uη ∈ L∞(0, T ;H1

0 (B(Rη))), uηt ∈ L∞(0, T ;H1
0 (B(Rη))), uηtt ∈

L1(0, T ;L2(B(Rη))), which enables us to compute (we drop the subscript η
in the remainder of the proof)

dI

dt
(t)

=
�

Ω

2φ(|x|−t)
(
ututt+

n∑
i=1

uxiutxi

)
(x, t) dx−

�

Ω

φ′(|x|−t)(u2
t +|∇u|2)(x, t) dx

=
�

Ω

2φ(|x| − t)(ututt)(x, t) dx−
�

Ω

n∑
i=1

((2φ(|x| − t)uxi)xiut)(x, t) dx

−
�

Ω

φ′(|x| − t)(u2
t + |∇u|2)(x, t) dx

=
�

Ω

2φ(|x|− t)((utt−∆u)ut)(x, t) dx−
�

Ω

n∑
i=1

2φ′(|x|− t) xi
r

(uxiut)(x, t) dx

−
�

Ω

φ′(|x| − t)(u2
t + |∇u|2)(x, t) dx.
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By (SW),
utt −∆u = −f(x, t, u)− g(x, t, ut),

hence the assumptions on the support of φ and f , together with the fact
that g is nondecreasing, make the first term on the right hand side of the
above (multiline) equality negative. We factor out φ′(|x| − t) in the other
two terms, and since φ′(r) ≥ 0 for every r, it is enough to show that

(2.1) u2
t + |∇u|2 + 2

n∑
i=1

xi
|x|

uxiut ≥ 0,

which is obtained by summing the inequalities(
xi
|x|

ut + uxi

)2

≥ 0

for all i = 1, . . . , n.
It remains to show that the function f vanishes for |x| ≥ R+ t. A fixed

point argument will establish this fact now. Consider the iterative equation:
uk+1
tt −∆uk+1 + f(x, t, uk) + g(x, t, uk+1

t ) = 0,

(uk+1, uk+1
t )|t=0 = (u0, u1)m

uk+1 = 0 on ∂Ω × (0, T ),

for every k ∈ N, with (u0, u0
t ) = (u0, u1). The existence of a unique weak

solution is guaranteed by Theorem 2.3. An induction argument, together
with the first part of the proof, will show that uk(x, t) = 0 for |x| > R + t
and all k ∈ N. It is then enough to show that uk(x, t) → u(x, t) a.e. as
k →∞. Since f is Lipschitz we find that f(x, t, uk(x, t)), which is zero for
|x| ≥ R + t, converges a.e. to f(x, t, u(x, t)), hence f vanishes outside the
cone |x| < R+ t. The sequence of difference functions

vk(x, t) := uk(x, t)− u(x, t)

satisfies 
vk+1
tt −∆vk+1 + f(x, t, vk + u)− f(x, t, u)

+ g(x, t, vk+1
t + ut)− g(x, t, ut) = 0;

(vk+1, vk+1
t )|t=0 = (0, 0);

vk+1 = 0 on ∂Ω × (0, T ).

Upon multiplication by vk+1
t and integration over (0, t) × Ω, we use the

monotonicity of g to derive the following inequality:�

Ω

[(vk+1
t (x, t))2 + |∇vk+1(x, t)|2] dx

≤
t�

0

�

Ω

2|f(x, t, vk + u)− f(x, t, u)| |vk+1
t (x, s)| dx ds,
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which by the Lipschitz assumption on f is

≤
t�

0

2L|vk(s)|2|vk+1
t (s)|2 ds ≤ L

t�

0

[|vk(s)|22 + |vk+1
t (s)|22] ds.

We now need a bound for
	t
0 |v

k(s)|22 ds, which we obtain by writing

|vk(t)|22 = 2
t�

0

�

Ω

vk(x, s)vkt (x, s) dx ds

≤
t�

0

�

Ω

[(vk(x, s))2 + (vkt (x, s))2] dx ds.

Gronwall’s inequality for the function |vk(s)|22 will give us for any t < T the
bound

|vk(t)|22 ≤ eT
t�

0

|vkt (s)|22 ds.

At this point, to simplify the writing let

φk(t) :=
t�

0

[|vkt (s)|22 + |∇vk(t)|22] ds.

By summarizing the estimates above, we see that φk+1 satisfies the inequal-
ity

φk+1
t (t) ≤ Lφk+1(t) + Cφk(t),

which after integration becomes

φk+1(t) ≤ C
t�

0

eL(t−s)φk(s) ds ≤ CeLT
t�

0

φk(s) ds.

A simple induction argument shows that

φk+1(t) ≤ K Ck+1eLT (k+1)tk+1

(k + 1)!
,

where K is a bound on |φ1(t)| for all t in [0, T ]. Thus we proved the con-
vergence of uk(x, t) for a.e. (x, t), so u(x, t) = 0 outside the domain of
dependence, i.e. for x ∈ Ω with |x| ≥ R + t. Recall that this is actually
proven for the sequence of approximate solutions uη. By Theorem 2.2 in
[13] we have the convergence uη(t)→ u(t) ∈ H1

0 (Ω), hence uη(t)→ u(t) a.e.
This concludes the proof of part (1).

(2) We follow here a similar argument to that in part (1). Initially, we
work under the assumption that

(2.2) f(x, t, u(x, t)) = f(x, t, v(x, t))
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for |x| < R− t (again, take x0 = 0). The difference u− v satisfies
(u− v)tt −∆(u− v) + f(x, t, u)− f(x, t, v) + g(x, t, ut)− g(x, t, vt) = 0;
((u− v), (u− v)t)|t=0 = (0, 0);
u− v = 0 on ∂Ω × (0, T ).

Consider a function ψ, strictly positive on (−∞, R), such that ψ(r) = 0 on
[R,∞) and ψ′(r) ≤ 0 everywhere. Define

J(t) :=
�

Rn
((ut(x, t)− vt(x, t))2 + |∇(u(x, t)− v(x, t))|2)ψ(|x| − t) dx.

If we show that dJ/dt ≤ 0, then as before, this will imply that u(x, t) =
v(x, t) on the support of ψ(|x|+ t), i.e. if |x| < R− t. The proof follows the
same lines as in part (1).

The energy identity allows us to obtain bounds for solutions by using a
natural approach based on the physics of the problem (a complete proof can
be found in [13]).

Proposition 2.5 (The energy identity). If u is a weak solution of
(SW), then under the assumptions of Theorem 2.3 we have the following
equality :

(2.3) E(t) +
�

Ω

F (x, t, u(x, t)) dx−
t�

0

�

Ω

ft(x, s, u(x, s)) dx ds

+
t�

0

�

Ω

g(x, s, ut(x, s))ut(x, s) dx ds = E(0),

where E(t) := 1
2 |ut(t)|

2
2 + 1

2 |∇u(t)|22.

At this point we employ the well known Sattinger potential well method
to obtain bounds for |∇u(t)|2 if the initial data satisfy the smallness as-
sumption

(2.4) |∇u0|2 < α,
1
2
|u1|22 +

1
2
|∇u0|22 +

�

Ω

F (x, 0, u0(x)) dx+K|Ω| < Φ(α),

where |Ω| is the Lebesgue measure of Ω, K is the constant from (A2), and Φ
is the potential well function with α being its global maximum point. More
precisely,

(2.5) Φ(x) =
x2

2
−Axp −Bxq, x ≥ 0,

where A and B are given by

A = m1C
p(R+ 1)n(2∗−p)/2∗ ,

B = m2C
q(R+ 1)n(2∗−q)/2∗ .
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and α is the only positive root of the equation pAαp−2 + qBαq−2 = 1 (see
(3.2) in [13] for more details). As a consequence of Sattinger’s potential well
argument we obtain

(2.6) |∇u(t)|2 ≤ α

for all t > 0 if the smallness assumptions (2.4) are satisfied. If (A2)∗ is satis-
fied then the positivity of F (u) =

	u
0 f(v) dv immediately gives us the desired

bounds and we also have global in time estimates for the gradient of the so-
lution. It is important to remark that once the Lipschitz approximations fε
of f are used in the above problem, these bounds remain independent of ε
so one can use a compactness argument in order to pass to the limit.

Step 2. At this stage we show how one can construct small solutions
which will be later “patched” to obtain a solution on the entire domain.
Consider initial data (u0, u1) such that u0 ∈ H2(Ω), u1 ∈ H1(Ω), and
G(x, 0, u1) ∈ L1(Ω) (recall that G(x, t, v) =

	v
0 g(x, t, y) dy). The higher dif-

ferentiability assumptions on the initial data are removed with a standard
approximation argument, exactly as in [13]. For now, we keep the Lipschitz
assumptions for f .

For each point x0 ∈ Ω we will find a domain ωx0 around it such that
the smallness assumptions are satisfied on ωx0 . We will distinguish between
(a) interior points that are far away from the boundary and (b) points which
are close to the boundary.

(a) First fix x0 ∈ Ω far away from the boundary (this will be made more
precise below). As in [13] we find a domain ωx0 small enough, and construct
new initial data (ux0

0 , u
x0
1 ) such that (ux0

0 , u
x0
1 ) satisfy (2.4) inside ωx0 . More

precisely, ωx0 = B(x0, %) where the radius % < 1 is chosen independent of
x0 and small enough such that

(2.7)

% <

(
Φ(α)
4Kωn

)1/n

, |∇u0|2,B(x0,%) <α/2, |∇u0|22,B(x0,%)
≤Φ(α)/8,

2(C∗ωn)1/n(|∇u0|2,B(x0,%) + |u0|2,B(x0,%)) ≤ min{α/2,
√
Φ(α)/8},

4(C∗)2 ω2∗−2/2∗
n |u0|22,B(x0,%)

≤ Φ(α)/8,
1
2
|u1|22,B(x0,%)

≤ Φ(α)/4,

m1(C∗)p(|∇u0|2,B(x0,%) + |u0|2,B(x0,%)(2/%+ 1))p ≤ Φ(α)/8,

m2(C∗)q(|∇u0|2,B(x0,%) + |u0|2,B(x0,%)(2/%+ 1))q ≤ Φ(α)/8,

where ωn is the volume of the unit ball in Rn and C∗ is the constant from
the Sobolev inequality. It can be easily shown that the above inequalities
are satisfied by % < (Φ(α)/4Kωn)1/n such that
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(2.8) |∇u0|2,B(x0,%) < min
{
α

2
,
√
Φ(α)/8,

α

4(C∗ωn)1/n
,

1
2C∗

(
Φ(α)
8m1

)1/p

,
1

2C∗

(
Φ(α)
8m2

)1/q}
,

(2.9) |u0|2,B(x0,%) < min
{

α

4(C∗ωn)1/n
,

1
ωnC∗

√
Φ(α)

32ω(2∗−2)2∗
n

,

1
8C∗

(
Φ(α)
8m1

)1/p

,
1

8C∗

(
Φ(α)
8m2

)1/q}
,

and

(2.10) |u1|22,B(x0,%)
≤
√
Φ(α)/8.

The fact that % can be chosen independently of x0 is motivated by the
equi-integrability of the functions u0,∇u0, u1. More precisely, for each of
these functions we apply the following result of classical analysis:

If f ∈ L1(A), with A a measurable set, then for every given ε > 0, there
exists a δ > 0 such that

	
E |f(x)| dx < ε for every measurable set E ⊂ A of

measure less than δ (see [5]).
Note that δ in the above result does not depend on E, hence % does not

vary with x0.
In order to apply the results of Step 1 we need to know that u0 has zero

trace on ∂ωx0 , so we multiply it by a smooth cut-off function θ such that

θ(x) =
{

1, |x− x0| ≤ %/2,
0, |x− x0| ≥ %,

and

(2.11) |θ|∞,B(x0,%) ≤ 1, |∇θ|∞,B(x0,%) ≤ 2/%.

On ωx0 we define
ux0

0 = θu0, ux0
1 = u1,

and let ux0 be the solution generated by (ux0
0 , u

x0
1 ). In order to show that

the smallness conditions are satisfied we start with the following estimate:

|∇ux0
0 |2,B(x0,%) ≤ |θ|∞,B(x0,%)|∇u0|2,B(x0,%) + |∇θ|∞,B(x0,%)|u0|2,B(x0,%).

By (2.11), (2.7), Hölder’s inequality, and Sobolev’s inequality we conclude
that

|∇ux0
0 |2,B(x0,%) < α/2 + |B(x0, %)|1/n 2

%
|u0|2∗,B(x0,%)

≤ α/2 + 2(C∗ωn)1/n(|∇u0|2,B(x0,%) + |u0|2,B(x0,%))
(2.7)

≤ α/2 + α/2 = α.
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so the first part of (2.4) is satisfied. For the second part, first note that by
(2.7) we have

1
2
|ux0

1 |
2
2,B(x0,%)

< Φ(α)/4,

since u1 = ux0
1 on B(x0, %). Also with a similar argument we have

(2.12) |∇ux0
0 |

2
2,B(x0,%)

≤ |θ|2∞,B(x0,%)
|∇u0|22,B(x0,%)

+|∇θ|2∞,B(x0,%)
|u0|22,B(x0,%)

< Φ(α)/8 + 4(C∗ωn)2/n(|∇u0|2,B(x0,%) + |u0|2,B(x0,%))
2

(2.7)

≤ Φ(α)/4.

For the third term in the second inequality of (2.4), we use assumption
(A1)(a), the Sobolev embedding theorem and the restrictions on % in (2.7)
to obtain�

B(x0,%)

F (x, 0, ux0
0 (x)) dx ≤

�

B(x0,%)

(m1|ux0
0 (x)|p +m2|ux0

0 (x)|q) dx

≤ m1(C∗)p(|∇ux0
0 |B(x0,%) + |ux0

0 |B(x0,%))
p

+m2(C∗)q(|∇ux0
0 |B(x0,%) + |ux0

0 |B(x0,%))
q

≤ m1(C∗)p(|∇u0|B(x0,%) + |u0|B(x0,%)(2/%+ 1))p

+m2(C∗)q(|∇u0|B(x0,%) + |u0|B(x0,%)(2/%+ 1))q

< Φ(α)/8 + Φ(α)/8 = Φ(α)/4.

We also know that K|B(x0, %)| < Φ(α)/4, so by summing the above inequal-
ities we see that (ux0

0 , u
x0
1 ) satisfies the second inequality of (2.4), i.e.

(2.13)
1
2
|ux0

1 |
2
2,B(x0,%)

+
1
2
|∇ux0

0 |
2
B(x0,%)

+
�

B(x0,%)

F (x, 0, ux0
0 (x)) dx+K|B(x0, %)| < Φ(α).

In order to eliminate the higher regularity restrictions on the initial data
we approximate u0 ∈ H1(Rn), u1 ∈ L2(Rn) by smooth functions and pass
to the limit in (2.13) to obtain the conclusions of this step for finite energy
initial data.

Since we showed that the pair (ux0
0 , u

x0
1 ) satisfies (2.4) we apply the

results of Step 1 to obtain

(2.14) |∇ux0(t)|2 < α, t > 0.

(b) Assume now that x0 ∈ Ω is such that dist(x0, ∂Ω) < %, where %
satisfies (2.7). Let

ωx0 = B(x0, %) ∩Ω.
Note that ∂ωx0 = γ0∪γ1, where γ0 ⊂ ∂Ω and γ1 ⊂ Ω. We need to construct
ux0

0 ∈ H1
0 (ωx0); to this end we use again the cut-off function θ introduced

in part (a). Note that we already have ux0
0 |γ0 = 0 so multiplication by θ
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will ensure that the trace on γ1 is also zero. The smallness assumptions are
satisfied on ωx0 (the proof is identical with the proof in part (a)).

A key observation here is that the geometrical assumption (A9) we im-
posed on ∂Ω implies that ωx0 is a nice domain with Lipschitz boundary on
which the embedding inequalities (Sobolev and Rellich–Kondrashov) and
the Green identities hold (the integration by parts formula is needed to
establish the energy identity).

In both cases (a) and (b) we have ux0
0 (x) = u0(x) and ux0

1 (x) = u1(x),
for all x ∈ B(x0, %/2) ∩Ω.

Step 3. At this point we construct Lipschitz approximations fε for f
such that fε satisfy the assumptions (A0) with a new function kε instead of
k, and (A1), (A2) with constants m1,m2, p, q, 1 +K (see [13] for details). It
is easy to see that the coefficients A,B from (2.5), corresponding to fε, as
well as the root α, and the radius % chosen above, will not depend on ε. By
solving the problem with initial data (ux0

0 , u
x0
1 ) on ωx0 we obtain a solution

ux0 which satisfies the estimate

(2.15) |∇ux0
ε (t)|2,ωx0 < α

for all t > 0. The maximum time of existence will be restricted through the
patching argument by %/2 so all the estimates to follow will be considered
for 0 ≤ t ≤ %/2.

The energy identity (2.3), (A2), and the fact that g is increasing imply
that

|ux0
εt (t)|22,ωx0 + |∇ux0

ε (t)|22,ωx0 +
�

ωx0

Fε(x, t, ux0
ε (x, t)) dx ≤ 2K|ωx0 |+ E(0),

so, with the growth condition (A1)(a) on F ε, Sobolev’s inequality and (2.15)
we obtain the bound

(2.16) |ux0
εt (t)|22,ωx0 + |∇ux0

ε (t)|22,ωx0
≤ 2K|ωx0 |+ E(0) +

�

ωx0

(m1|ux0
ε (x, s)|p +m2|ux0

ε (x, s)|q) dx

≤ 2K|ωx0 |+ E(0)+C(%,m1)|∇ux0
ε (t)|p2,ωx0 +C(%,m2)|∇ux0

ε (t)|q2,ωx0 <C

if 0 ≤ t ≤ %/2. By integrating (2.16) over time up to %/2, we deduce from
Alaoglu’s theorem the existence of a subsequence, denoted also by ux0

ε , for
which we have the convergences:

(2.17)
ux0
ε → ux0 weak∗ in L∞(0, %/2;H1

0 (ωx0)),

ux0
εt → ux0

t weak∗ in L∞(0, %/2;L2(ωx0)).

Also, by Aubin’s theorem and the Rellich–Kondrashov compact embedding
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theorem we have the convergence

ux0
ε → ux0 strongly in L2((0, %/2)× ωx0),

so for a subsequence we have

(2.18) ux0
ε (x, t)→ ux0(x, t) a.e. (x, t) ∈ ωx0 × (0, %/2).

It is shown in [13] that this implies

(2.19) fε(x, t, ux0
ε (x, t))→ f(x, t, ux0(x, t)) a.e. (x, t) ∈ ωx0 × (0, %/2),

so we finally have (after using the subcritical growth of f)

(2.20) fε(x, t, ux0
ε (x, t))→ f(x, t, ux0(x, t)) in L1(ωx0 × (0, %/2)),

hence also in the sense of distributions.
A monotonicity argument will be applied in order to pass to the limit

in the nonlinear dissipative term g(x, t, ux0
εt ). From (A4), the energy identity

and the bounds on Fε obtained above, we have

(2.21) |ux0
εt (t)|22,ωx0 + |∇ux0

ε (t)|22,ωx0 +
t�

0

�

ωx0

|ux0
εt (x, s)|m+1 dx ds

≤ |ux0
εt (t)|22,ωx0 + |∇ux0

ε (t)|22,ωx0 +
t�

0

�

ωx0

g(x, s, ux0
εt (x, s))ux0

εt (x, s) dx ds ≤ C.

Therefore, we can again extract a subsequence ux0
ε such that

(2.22)
ux0
εt ⇀ ux0

t in Lm+1((0, %/2)× ωx0),

g(x, t, ux0
εt ) ⇀ ξ in L(m+1)′((0, %/2)× ωx0).

Passing to the limit in ε we obtain (we drop the x0 superscript for u in what
follows)

(2.23) utt −∆u+ f(x, t, u) + ξ = 0 in the sense of distributions.

We need to verify that ξ = g(x, t, ut).
Let uε, uη be two terms in the sequence (uε)ε>0. We subtract the equa-

tions satisfied by uε, uη to obtain

(2.24)
�

ωx0

(|uεt(x, t)− uηt(x, t)|2 + |∇uε(x, t)−∇uη(x, t)|2) dx

+
t�

0

�

ωx0

(g(x, s, uεt(x, s))− g(x, s, uηt(x, s)))(uεt(x, s)− uηt(x, s)) dx ds

= −
t�

0

�

ωx0

(fε(x, s, uε(x, s))− fη(x, s, uη(x, s)))(uεt(x, s)− uηt(x, s)) dx ds.
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The standard process through which we obtained the above equality (mul-
tiplication by uεt − uηt, integration by parts etc.) is motivated exactly as
in obtaining the energy identity for equations with Lipschitz source terms
with nonlinear damping (Proposition 2.5).

In the spirit of the monotonicity argument found in [9, p. 518] (although
we are here in a different setup with approximations on the source terms,
not on the damping) we obtain

(2.25) lim
η,ε→0

t�

0

�

ωx0

(g(x, s, uεt)− g(x, s, uηt))(uεt − uηt) dx ds = 0.

This equality is obtained by passing to the limit as η, ε → 0 in (2.24).
The convergence to zero of the term on the RHS of (2.24) is shown below.
After using the positivity of all the terms on the LHS the conclusion of
(2.25) follows. We will now repeat the argument used in [13] to show the
convergence to zero of the difference of source terms, i.e.

(2.26) lim
η,ε→0

t�

0

�

ωx0

(fε(x, s, uε)− fη(x, s, uη))(uεt − uηt) dx ds = 0.

First we multiply out the quantities in the integrand and show conver-
gence for each of them. We start with the study of the “non-mixed” product
fε(uε)uεt (identical analysis for fη(uη)uηt). We have the equality

t�

0

�

ωx0

fε(x, s, uε(x, s))utε(x, s) dx ds

=
�

ωx0

Fε(x, s, uε(x, s)) dx
∣∣∣s=t
s=0
−
t�

0

�

ωx0

Fεt(x, s, uε(x, s)) dx ds,

where we notice that we can pass to the limit in the first term of the RHS
by (2.16) combined with the subcritical growth for F . For the second term,
by (A2), we have |Fεt(uε)| ≤ K|uε|, and since uε is bounded in L1 (as a con-
sequence of the Sobolev embedding theorem), by the Lebesgue dominated
convergence we get fε(x, t, uε)→ f(x, t, u) in L1((0, t)×B(x0, %

∗)).
The analysis of the “mixed” terms (fε(uε)uηt and fη(uη)uεt) will, how-

ever, impose some restrictions on the exponents p and m. We first analyze
fε(uε)uηt which converges a.e. to f(u)uηt as ε → 0 by (2.19). By Egorov’s
theorem for every δ > 0 there exists a set A ⊂ (0, t)×ωx0 with |A| < δ such
that fε(uε)uηt → f(u)uηt uniformly (hence, in L1) on (0, t)× ωx0\A.

We write

(2.27)
t�

0

�

ωx0

fε(uε)uηt dx ds =
�

(0,t)×ωx0\A

fε(uε)uηt dx ds+
�

A

fε(uε)uηt dx ds.
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Due to the uniform convergence fε(uε)uηt → f(u)uηt (as ε→ 0) on (0, t)×
ωx0\A, we have

(2.28) lim
ε→0

�

(0,t)×ωx0\A

fε(uε)uηt dx ds =
�

(0,t)×ωx0\A

f(u)uηt dx ds.

In order to analyze the integral on A in (2.27) we apply Hölder’s inequality
with conjugate exponents α, β, and γ:

(2.29)
�

A

|fε(uε)uηt| dx ds ≤ C
( �

A

|uε|αp dx ds
)1/α( �

A

|uηt|β dx ds
)1/β
|A|1/γ .

Our goal is to bound the first two factors on the RHS above, and to this
end we have two options for choosing α, β, and γ. First we take

α =
2∗

p
, β = 2, γ =

2 · 2∗

2∗ − 2p
,

and by the Sobolev embedding theorem and by (2.15) we have the desired
bounds in (2.29) if γ > 0. The positivity of γ amounts to p < 2∗/2, which is
condition (a) in (A8). The second choice is

α =
m+ 1

m− (m+ 1)ν
, β = m+ 1, γ =

1
ν
,

for some 0 < ν < 1. We need to require that αp ≤ 2∗ and by letting
ν → 0 (ν 6= 0), we get the restriction p+ p/m < 2∗ (condition (b) in (A8)).

Now we go back in (2.27) and take limδ→0 limε→0 on both sides. First, in
(2.28) take limδ→0 and notice that we can bound the integrand as in (2.29),
and since (0, t)× ωx0 × (0, %/2)\A→ (0, t)× ωx0 × (0, %/2) as δ → 0, by the
Lebesgue dominated convergence theorem we have

lim
δ→0

lim
ε→0

�

(0,t)×ωx0\A

fε(uε)uηt dx ds =
�

(0,t)×ωx0

f(u)uηt dx ds.

From (2.29) we have

lim
δ→0

lim
ε→0

�

A

|fε(uε)uηt| dx ds ≤ lim
δ→0

C|A|1/γ lim
ε→0

M = 0,

where M is a bound for the first two factors on the RHS of (2.29). Thus we
obtain

lim
ε→0

t�

0

�

ωx0

fε(uε)uηt dx ds =
t�

0

�

ωx0

f(u)uηt dx ds.

We let η → 0 and by using (2.20) and (2.17) we find that the limit of this
mixed term is

	t
0

	
ωx0

f(u)ut dx ds. The analysis of the second mixed term is
similar and so we omit it. Thus we conclude that (2.26) holds, hence (2.25)
is valid. Note that (2.24)–(2.26) also give us the continuity with respect to
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time,
u ∈ C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)).

We continue the monotonicity argument by multiplying out the quanti-
ties in (2.25). By using (2.17) and (2.22) we have

lim
ε→0

t�

0

�

ωx0

(g(x, s, uεt)uεt − ξ(x, s)uεt − g(x, s, uεt)ut) dx ds

+ lim
η→0

t�

0

�

ωx0

g(x, s, uηt)uηtdx ds = 0.

After using again (2.17) and (2.22) and changing η to ε in the last term
above we get

(2.30) 2 lim
ε→0

t�

0

�

ωx0

g(x, s, uεt)uεt dx ds = 2
t�

0

�

ωx0

ξ(x, s)ut dx ds.

By the monotonicity of g we have

(2.31)
t�

0

�

ωx0

(g(x, s, uεt(x, s))−g(x, s, φ(x, s)))(uεt(x, s)−φ(x, s)) dx ds ≥ 0

for every φ ∈ Lm+1((0, t) × ωx0). In order to close the argument we use
(2.30) to obtain

(2.32) lim
ε→0

t�

0

�

ωx0

(g(x, s, uεt(x, s))− g(x, s, φ(x, s)))(uεt − φ(x, s)) dx ds

≤
t�

0

�

ωx0

(ξ(x, s)− g(x, s, φ(x, s)))(ut(x, s)− φ(x, s)) dx ds,

By combining (2.31) and (2.30) we obtain
t�

0

�

ωx0

(ξ(x, s)− g(x, s, φ(x, s)))(ut(x, s)− φ(x, s)) dx ds ≥ 0

for all t < %/2, so by passing to limit as t → %/2, it holds also for t = %/2.
We choose φ appropriately (φ± := ut ± λv for λ > 0) and take v arbitrary
in C∞c (ωx0). Let λ → 0 for both choices, φ+ and φ−, to obtain the desired
equality ξ = g(ut).

If m = 0 and g does not depend on ut, or m = 1 and g is linear in ut, then
one does not need the monotonicity argument in order to obtain g(ut) = ξ,
only (2.17)2 and (2.22)1. Since there is no other restriction imposed on p,
these values for p and m cover case (c) in (A8).

At this stage we have global existence of the small solutions ux0 on the
domains ωx0 . Through the patching argument described in Step 4 we will
construct an arbitrarily large solution u on the entire domain Ω.
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Step 4. In this last step will put together the previous arguments to
construct the solution u from arbitrarily large initial data (u0, u1) consid-
ered on the domain Ω. The order in which we assemble all the pieces is
very important, so for a better understanding of this intricate procedure we
identify the following substeps:

Step 4.1. Cut the initial data in small pieces on bounded domains ωx0

and for each piece obtain global existence of solutions for the approximate
problems with Lipschitz source terms fε.

Step 4.2. For each bounded domain, obtain bounds for |∇ux0
ε (t)|2 and

pass to the limit in the approximate solutions; hence, we obtain existence
for the problem with a general source term.

Step 4.3. Up to some time T < 1, “patch all solutions” obtained in Step
4.2 to obtain a solution for the problem with a general source term with
initial data on Ω.

Step 4.4. Show that the solution defined in Step 4.3 is well defined and
it is the solution generated by the initial data (u0, u1).

Below is a detailed discussion of the above construction.

Step 4.1. Let d > 0. Consider a lattice of points xk, k ∈ N, in Ω situated
at distance d from each other, such that in every ball of radius d we find
at least one xk. With % that satisfies (2.7) (where % depends only on the
norms of the initial data), construct the balls of radius % centered at xk.
The procedure outlined in Step 2 for truncating the initial data around x0

to obtain a “small piece” denoted by (ux0
0 , u

x0
1 ), will now be used to construct

around each xk the truncations (uxk0 , uxk1 ) which will satisfy the smallness
assumptions

|∇uxk0 |ωxk < α,

1
2
|uxk1 |

2
ωxk

+
1
2
|∇uxk0 |

2
ωxk

+
�

ωxk

F (x, 0, uxk0 (x)) dx+K|ωxk | < Φ(α).

On each ball ωxk we apply Theorem 2.3 to obtain global existence of so-
lutions uxkε for the problem (SW) with initial data (uxk0 , uxk1 ) and with the
Lipschitz approximations fε for the source term.

Step 4.2. At this point, the arguments of Step 3 for passing to the limit
as ε→ 0 in the sequence of approximate problems are applied, where x0 is
successively replaced by different xk’s. First, we apply Sattinger’s argument
to estimate |∇uxkε |2 on ωxk for each k. (Note that we need the smallness
assumptions of Step 4.1.) The convergence uxkε → uxk holds on every domain
ωxk×(0, %/2), so we obtain a global (in time) solution to the boundary value
problem (SW) for ωxk , for every k.
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Step 4.3. The solutions uxk found in Step 4.2 will now be “patched”
together to obtain our general solution. First, for k ∈ N let

Ck := {(y, s) ∈ R3 × [0,∞) : |y − xk| ≤ %/2− s}
be the backward cone with vertex at (xk, %/2). For d small enough (i.e. for
0 < d < %/2) any two neighboring cones Ck and Cj will intersect. On every
intersection set

Ik,j := Ck ∩ Cj
the maximum of the time coordinate is (%− d)/2 (see Figure 3 below).

For t < %/2 we define the piecewise function

(2.33) u(x, t) := uxk(x, t) if (x, t) ∈ Ck.
This solution is defined only up to time (% − d)/2, since this is the height
of the intersection set of two cones with their vertices situated at distance
d from each other. By letting d → 0 we can obtain a solution well de-
fined up to time %/2. Thus, we have defined u up to time %/2, which
is the height of all cones Ck. Every pair (x, t) ∈ Rn × (0, %/2) belongs
to at least one Ck, so in order to show that the function from (2.33) is
well defined, we need to check that it is single-valued on the intersec-
tion of two cones. Also, we need to show that it is the solution gener-
ated by the initial data (u0, u1). Both proofs will be done in the next
step.

Step 4.4. To prove the desired properties, we will go back and look at
the solutions uxk as limits of the approximate solutions uxkε .

Consider first balls which do not intersect the boundary.
For each k ∈ N we have (uxk0 , uxk1 ) = (u0, u1) for all x ∈ ωxk = {y ∈ Rn :

|y−xk| < %/2} (see the construction of the truncations (uxk0 , uxk1 ) in Step 2).
Therefore, uxkε (defined in Step 4.1) is an approximation of the solution gen-
erated by the initial data (u0, u1) on Ck (from the uniqueness property
given by Theorem 2.4(2)). We let ε → 0 (use the argument from Step 3)
to show that the solution u on each Ck is generated by the initial data
(u0, u1).

To show that u defined by (2.33) is a proper function, we use the same
result of uniqueness given by the finite speed of propagation. First note that
for n ≥ 3 the intersection Ik,j is not a cone, but it is contained in the cone
Ck,j with vertex at ((xk + xj)/2, (%− d)/2) of height (%− d)/2. In this cone
we use the uniqueness asserted by the finite speed of propagation as follows.
First note that the cone Ck,j contains the set Ik,j , but Ck,j ⊂ Ck ∪ Cj . In
Ck we have the solution uxkε , while in Cj the solution is given by u

xj
ε (see

construction in 4.1); hence, in Ck,j we have two solutions and we need to
show they are equal. Since uxkε and u

xj
ε start from the same initial data

((uxk0 , uxk1 ) = (u0, u1) = (uxj0 , u
xj
1 ) on ωxk ∩ Bj), they are equal on Ck,j
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Fig. 2. The intersection of the cones Ck and Cj

by Theorem 2.4(2). We let ε → 0 to obtain ux0
k = ux0

j in Ck,j , and since
Ik,j ⊂ Ck,j we have ux0

k = ux0
j on Ik,j . Therefore, u is a single-valued (proper)

function.
Two issues arise when we treat the case of balls that intersect the bound-

ary. The first is the geometry of the intersection sets, so that we can apply
the uniqueness from Theorem 2.4(2). The second is to show that the Dirich-
let boundary conditions are still satisfied.

Assume B(xj , %) and B(xk, %) intersect ∂Ω and let ωxj := B(xj , %) ∩ Ω
and ωxk := B(xk, %)∩Ω. On ωxkand ωxj we have again two solutions which
by the same finite speed of propagation argument can be shown to coincide
on the intersection. In the picture below the line x = 0 represents ∂Ω. We
see that on intersecting the boundary ∂Ω with the cones Ck and Cj we can
still show that on the intersection Ik,j we have a unique solution.
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Fig. 3. The intersection of the domains Ck ∩Ω and Cj ∩Ω

The above method of using cut-off functions and “patching” solutions
based on uniqueness will also work when we additionally assume (A2)∗. Since
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we can choose the height of the cones as large as we wish, the solutions exist
globally in time under the positivity hypothesis for F .

The boundary conditions are satisfied since uxk = 0 on each ∂ωxk ∩ ∂Ω.
Since the solution u is obtained by patching all the solutions uxk we obtain
u = 0 on ∂Ω.

Acknowledgements and errata to [13]. The author would like to
warmly thank the referee for pointing out an error in the original draft of
the manuscript and for making other suggestions which helped improve the
paper. The error (which unfortunately also appeared in [13]) regards the
range of exponents (p,m) which does not include the full set (1, 2∗ − 1)×
{0, 1}, as previously thought. In the case (p,m) ∈ (1, 2∗ − 1) × {0, 1} we
can only allow g linear in the velocity argument (subcase of m = 1), or g
independent of the velocity (subcase of m = 0). The correct assumptions
and arguments for dealing with this case are outlined in this paper.
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