APPLICATION OF MAZUR–ORLICZ’S THEOREM IN AMISE CALCULATION

Abstract. An approximation error and an asymptotic formula are given for shift invariant operators of polynomial order q. Density estimators based on shift invariant operators are introduced and AMISE is calculated.

1. Asymptotic formulas. We assume that $F, G : \mathbb{R}^d \to \mathbb{R}$ are functions such that there are constants $C > 0$ and $0 < q < 1$ such that for all $x \in \mathbb{R}^d$,

$$|F(x)| < C q^{|x|} \quad \& \quad |G(x)| < C q^{|x|},$$

where $|x|^2 = x \cdot x$ and $x \cdot x$ is the scalar product in \mathbb{R}^d. Consider the operator given by

$$Qf(x) = \int_{\mathbb{R}^d} K(x,y)f(y)dy,$$

where

$$K(x,y) = \sum_{\alpha \in \mathbb{Z}^d} F(y - \alpha)G(x - \alpha).$$

For $h > 0$, define

$$Q_h = \sigma_h \circ Q \circ \sigma_{1/h},$$

where

$$\sigma_h f(x) = f(x/h).$$

We call the operators with kernel of type (3) shift invariant. Examples of such operators are:

- spline operators: the Ciesielski–Durrmeyer operator (see [C]), a quasi-projection (see [Dz1]), an orthogonal projection (see [BD2], [BHR]),

\textbf{Key words and phrases:} shift invariant operators, asymptotic formula, density estimators, central limit, AMISE, asymptotic mean integral square error.
an orthogonal projection based on multiresolution approximation [M],
operators based on shift invariant spaces (see [JZ] and [BDR]; in particular
shift invariant spaces constructed by a function which satisfies the Strang–
Fix conditions, see [SF]).

Let W^r_p be a Sobolev space (for details see [M]). Let C^r_0 be the space of
r-differentiable functions with compact support. Set
\[
|f|_{r,p} = \sum_{|\beta|=r} \|D^\beta f\|_p, \quad \|f\|_p = \left(\int_{\mathbb{R}^d} |f|^p \right)^{1/p},
\]
\[
D^\beta f = \frac{\partial^{|\beta|} f}{\partial x_1^{\beta_1} \cdots \partial x_d^{\beta_d}}, \quad \beta = (\beta_1, \ldots, \beta_d), \quad |\beta| = \beta_1 + \ldots + \beta_d.
\]
Assume the operator Q reproduces all polynomials of degree less than r, i.e.
$Q(P) = P$ provided $\text{deg } P < r$. We then say that Q has polynomial order r.
The following theorem is a generalization of [BHR, Proposition 4, p. 63].

Theorem 1.1. Let $1 \leq p < \infty$. Assume that Q has polynomial order r. Then there is a constant $C(p) > 0$ such that for all $f \in W^r_p(\mathbb{R}^d)$,
\[
\|Q_h f - f\|_p \leq C(p) h^r |f|_{r,p}, \tag{5}
\]

Proof. Since the operators Q_h are bounded from L^p to L^p it is sufficient
to prove (5) for $f \in C^r_0$. Let $f \in C^r_0$. Let P_x be the Taylor polynomial of f of
degree $r-1$ at x. Note that $f(x) = P_x(x)$ and $Q_h f(x) - f(x) = Q_h (f - P_x)(x)$. Now Lemma 1.1 below yields (5) for $1 \leq p < \infty$. \blacksquare

An easy computation shows the assertion for $p = \infty$ (see proof of [Dz4, Theorem 9.7]).

In statistics we need an asymptotic formula for the error in shift invariant
operators. Such a formula was proved in [BD3], [BD4] for an interpolation
operator and an orthogonal projection. Those proofs are based on a general-
ization of Mazur–Orlicz’s theorem (see [BD3]). This theorem goes back to
L. Fejér. Recall that a function g defined on \mathbb{R}^d is called \mathbb{Z}^d-periodic if for
all $x \in \mathbb{R}^d$,
\[
g(x) = g(x + \alpha) \quad \text{for all } \alpha \in \mathbb{Z}^d. \tag{6}
\]

Theorem 1.2 (Mazur–Orlicz [MO]). If for $j = 1, \ldots, m$, g_j are mea-
surable, bounded, \mathbb{Z}^d-periodic functions and f_j are measurable functions with
\[
\int_{\mathbb{R}^d} |f_j(x)|^p \, dx < \infty
\]
for some $1 \leq p < \infty$, then
\[
\int_{\mathbb{R}^d} \left| \sum_{j=1}^m f_j(x) g_j(x/h) \right|^p \, dx \to \int_{[0,1]^d} \int_{\mathbb{R}^d} \left| \sum_{j=1}^m f_j(t) g_j(x) \right|^p \, dt \, dx \quad \text{as } h \to 0. \tag{7}
\]
Earlier results concerning the asymptotic formula can be found in [C], [Dz1] for spline operators, and in [DU], [BD2] for an orthogonal projection in L^2. See also [DLP]. Let $\beta(x) = x_1^{\beta_1} \ldots x_d^{\beta_d}$. We present a new and simpler proof of the asymptotic formula for the error in shift invariant operators.

Theorem 1.3. Assume that Q has maximal polynomial order q. Let $1 \leq p < \infty$ and $f \in W_p^q(\mathbb{R}^d)$. Then

$$\lim_{h \to 0^+} \left\| \frac{Q_h f - f}{h} \right\|^p_p = \int_{\mathbb{R}^d} \left(\int_{[0,1]^d} \left| \sum_{|\beta| = q} \frac{1}{\beta!} D^\beta f(t)(Q(\beta)(x) - x^\beta) \right|^p \, dx \right) \, dt. \tag{8}$$

Proof. It is sufficient to prove (8) for the dense subset C_0^{q+1} of $W_p^q(\mathbb{R}^d)$ since

$$\left\| \frac{Q_h f - f}{h} \right\|^p_p \leq C|f|_{q,p}.$$

Fix $f \in C_0^{q+1}$. Let P_x be the Taylor polynomial of degree q of f at x. By the triangle inequality (we take $F(x) = Q_h(P_x)(x) \neq P_x(x)$)

$$\left\| \frac{Q_h f - f}{h} \right\|^p_p \leq \left\| \frac{Q_h(f - P_x)}{h} \right\|^p_p + \left\| \frac{Q_h P_x - P_x}{h} \right\|^p_p$$

and

$$\left\| \frac{Q_h P_x - P_x}{h} \right\|^p_p \leq \left\| \frac{Q_h f - f}{h} \right\|^p_p + \left\| \frac{Q_h(f - P_x)}{h} \right\|^p_p.$$

If we prove that there is C such that for all $f \in C_0^{q+1}$,

$$\|Q_h(f - P_x)\|_p \leq C h^{q+1} |f|_{q+1,p}, \tag{9}$$

then the proof of (8) is completed by showing that

$$\lim_{h \to 0^+} \left\| \frac{Q_h P_x - P_x}{h} \right\|^p_p = \int_{\mathbb{R}^d} \left(\int_{[0,1]^d} \left| \sum_{|\beta| = q} \frac{1}{\beta!} D^\beta f(t)(Q(\beta)(x) - x^\beta) \right|^p \, dx \right) \, dt. \tag{10}$$

The technical proof of (9) is postponed to Lemma 1.1. Let

$$P_x = T_x + R_x,$$

where T_x is homogeneous of degree q and $\deg R_x < q$. Since $Q(R_x) = R_x$ we have

$$\frac{Q_h(P_x)(t) - P_x(t)}{h} = \frac{Q_h(T_x)(t) - T_x(t)}{h} = Q(T_x)(t/h) - T_x(t/h)$$

$$= \sum_{|\beta| = q} \frac{1}{\beta!} D^\beta f(x)(Q(\beta)(t/h) - (t/h)^{\beta}). \tag{11}$$
Consequently, from (11) we get
\[
\left\| \frac{Q_h P - P}{h^\theta} \right\|_p^p = \int_{\mathbb{R}^d} \left| \sum_{|\beta| = \theta} \frac{1}{\beta!} D^\beta f(x)(Q(\beta)(x/h) - (x/h)^\beta) \right|_p^p \, dx.
\]

An easy calculation shows (cf. [Dz3, Lemma 3.3]) that the functions
\[
Q(\beta)(x) - x^\beta = (-1)^{|\beta|} \sum_{\alpha \in \mathbb{Z}^d} \int (x - y)^\beta F(y - \alpha) \, dy G(x - \alpha)
\]
are \(\mathbb{Z}^d\)-periodic. Now the Mazur–Orlicz Theorem (7) implies (10).

Lemma 1.1. Let \(1 \leq p < \infty\). Let \(P_x\) be the Taylor polynomial of degree \(k - 1\) of a function \(f\). There is \(C\) such that for all \(f \in C^k_0\),
\[
(12) \quad \|Q_h(f - P)\|_p \leq C h^k |f|_{k,p}.
\]

Proof. By Taylor’s formula,
\[
\left\| Q_h(f - P) \right\|_p \leq \int_{\mathbb{R}^d} \left| \sum_{\alpha \in \mathbb{Z}^d} \sum_{\beta, |\beta| = k} \frac{1}{\beta!} D^\beta f(x + s(hy - x))(1 - s)^{k-1} ds
\]
\[
\times |h y - x|^\beta F(y - \alpha) \, dy G(x/h - \alpha) \right|_p^p \, dx.
\]

To prove (12), using assumption (1), it is sufficient to estimate
\[
J_\beta = \int_{\mathbb{R}^d} \left| \sum_{\alpha \in \mathbb{Z}^d} \sum_{\beta, |\beta| = k} D^\beta f(x + s(hy - x)) ds
\]
\[
\times |h y - x|^\beta |q|^{y-\alpha} dy q^{|x/h-\alpha|} \right|_p^p \, dx.
\]

We apply Jensen’s inequality three times:
\[
\left(\int_0^1 g(s) \, ds \right)^p \leq \int_0^1 |g(x)|^p dx,
\]
\[
\left(\sum_{\alpha \in \mathbb{Z}^d} |a_\alpha| |q|^{x-\alpha} \right)^p \leq C_1 \sum_{\alpha \in \mathbb{Z}^d} |a_\alpha| |q|^{x-\alpha},
\]
where \(C_1\) is independent of \(x\), i.e. \(C_1 = \max_x (\sum_{\alpha \in \mathbb{Z}^d} q^{x-\alpha})^{p-1}\),
\[
\left(\int_{\mathbb{R}^d} |g(y)| |q|^{y-\alpha} \, dy \right)^p \leq C_2 \int_{\mathbb{R}^d} |g(y)| |q|^{y-\alpha} \, dy,
\]
where \(C_2\) is independent of \(\alpha\). Consequently,
\[
J_\beta \leq C \sum_{\alpha \in \mathbb{Z}^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left| D^\beta f(x + s(hy - x)) \right|^p ds
\]
\[
\times |h y - x|^\beta |q|^{y-\alpha} \, dy q^{|x/h-\alpha|} \, dx.
\]
Letting \(x/h - \alpha = u \) yields

\[
J_\beta \leq \left(\sum_{\alpha \in \mathbb{Z}^d} \int \int_0^1 \left| D^\beta f(hu + h\alpha + s(hy - hu - h\alpha)) \right|^p \, ds \times |hy - hu - h\alpha|^p \right) q^{y-\alpha} \, dy q^{|u|} \, du
\]

and by obvious changes of variables

\[
J_\beta \leq \left(\sum_{\alpha \in \mathbb{Z}^d} \int \int_0^1 \left| D^\beta f(hu + h\alpha + sh(z - u)) \right|^p \, ds \times h^{pk} |z - u|^p q^{|z|} \, dz q^{|u|} \, du
\]

\[
= Ch^{d+pk} \sum_{\alpha \in \mathbb{Z}^d} \int \int_0^1 \left| D^\beta f(hu + h\alpha + shv) \right|^p \, ds |v|^p q^{u+v} \, dv q^{|u|} \, du.
\]

Let us split the integrals:

\[
J_\beta \leq Ch^{d+pk} \sum_{n=1}^{\infty} \sum_{\alpha \in \mathbb{Z}^d} \int_0^1 \int_0^1 \left| D^\beta f(hu + h\alpha + shv) \right|^p \, ds |v|^p q^{u+v} \, dv q^{n-1} \, du
\]

\[
\leq Ch^{d+pk} \sum_{n=1}^{\infty} \sum_{\alpha \in \mathbb{Z}^d} \int_0^1 \int_0^1 |D^\beta f(hu + h\alpha + shv)|^p \, ds |v|^p q^{u+v} \, dv q^{n-1} \, du
\]

Note that if \(|v + u| < j\) and \(|u| < n\) then

\(|v| < |v + u| + |u| < j + n\).

Thus

\[
J_\beta \leq Ch^{d+pk} \sum_{n=1}^{\infty} q^{n-1} \sum_{\alpha \in \mathbb{Z}^d} \int_0^1 \int_0^1 |D^\beta f(hu + h\alpha + shv)|^p \, ds |v|^p q^{u+v} \, dv q^{n-1} \, du.
\]

Changing the order of the integrations we get

\[
J_\beta \leq Ch^{d+pk} \sum_{n=1}^{\infty} q^{n-1} \sum_{j=1}^{\infty} q^{j-1} \\
\times \int_0^1 \int_0^1 \int_0^1 |D^\beta f(hu + h\alpha + shv)|^p \, du \, ds |v|^p q^{u+v} \, dv.
\]
Note that if $|v| < j + n$ then
\[
 h^d \sum_{\alpha \in \mathbb{Z}^d} \int_{|u| < n} |D^\beta f(hu + h\alpha + shv)|^p \, du
\]
\[
 \leq \sum_{\alpha \in \mathbb{Z}^d} \int_{|x - h\alpha| < h(2n + j)} |D^\beta f(x)|^p \, dx
\]
and moreover
\[
 \int_{|v| < j + n} |v|^{pk} \, dv = C(j + n)^{pk + d}.
\]
Consequently,
\[
 J_\beta \leq C \sum_{n=1}^{\infty} q^{n-1} h^{pk} \sum_{j=1}^{\infty} q^{j-1} (4n + 2j)^d (j + n)^{pk + d} \int_{\mathbb{R}^d} |D^\beta f(x)|^p \, dx
\]
\[
 \leq Ch^{pk} \int_{\mathbb{R}^d} |D^\beta f|^p.
\]
This finishes the proof of the lemma. ■

Let X_1, \ldots, X_n be a random sample from a distribution with density $f \in W_2^\beta$. We define a density estimator based on the kernel K by
\[
 f_{h,n}(x) = \frac{1}{n} \sum_{j=1}^{n} K_h(x, X_j),
\]
where
\[
 K_h(x, y) = (1/h)^d K(x/h, y/h).
\]
Note that
\[
 Ef_{h,n} = Q_h f.
\]
As usual we consider the estimation error given by
\[
 \text{MISE}(f, h) = E \left[\int_{\mathbb{R}^d} [f_{h,n} - f]^2 \right].
\]
It is known that
\[
 \text{MISE}(f, h) = E \left[\int_{\mathbb{R}^d} [f_{h,n} - Q_h f]^2 \right] + \int_{\mathbb{R}^d} [Q_h f - f]^2.
\]
The asymptotic formula for the second factor in (16) is given in (8). We prove that

Theorem 1.4. Assume that Q has maximal polynomial order $q > 0$. If $nh^d \to \infty$, $h \to 0$ then
\[
 \lim_{nh^d \to \infty} nh^d E \left[\int_{\mathbb{R}^d} [f_{h,n} - Q_h f]^2 \right] = \int_{\mathbb{R}^d} \left[\int_{[0,1]^d} K^2(x, y) \, dy \right] dx,
\]
where
\begin{equation}
(18) \quad \int_{\mathbb{R}^d} \left[\int_{[0,1]^d} K^2(x, y) \, dy \right] \, dx = \sum_{\alpha \in \mathbb{Z}^d} \eta(\alpha) \xi(\alpha)
\end{equation}
and
\[\eta = G \ast \tilde{G}, \quad \xi = F \ast \tilde{F}, \quad \tilde{G}(x) = G(-x), \quad \tilde{F}(x) = F(-x). \]

Proof. Note that
\[
\begin{align*}
E \left[\int_{\mathbb{R}^d} [f_{h,n} - Ef_{h,n}]^2 \right] &= \frac{1}{n^2} \sum_{j=1}^n \int_{\mathbb{R}^d} E[K_h(x, X_j) - EK_h(x, X_j)]^2 \, dx \\
&= \frac{1}{n^2} \sum_{j=1}^n \left(E[K_h^2(x, X_j)] - [EK_h(x, X_j)]^2 \right) \, dx.
\end{align*}
\]

If \(h \to 0 \) then by (5),
\[
\int_{\mathbb{R}^d} [EK_h(x, X_j)]^2 \, dx = \int_{\mathbb{R}^d} (Q_h f)^2 \to \int_{\mathbb{R}^d} f^2.
\]

On the other hand
\[
\int_{\mathbb{R}^d} EK_h^2(x, X_j) \, dx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K_h^2(x, y) f(y) \, dy \, dx.
\]

From Fubini’s theorem
\[
\int_{\mathbb{R}^d} EK_h^2(x, X_j) \, dx = \frac{1}{h^d} \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} K^2(u, y/h) \, du \right] f(y) \, dy.
\]

Note that for all \(\alpha \in \mathbb{Z}^d \),
\begin{equation}
(19) \quad \int_{\mathbb{R}^d} K^2(x, y + \alpha) \, dx = \int_{\mathbb{R}^d} K^2(x, y) \, dx.
\end{equation}

From Mazur–Orlicz’s theorem we get
\[
\lim_{h \to 0} \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} K^2(u, y/h) \, du \right] f(y) \, dy = \int_{[0,1]^d} \left[\int_{\mathbb{R}^d} K^2(u, y) \, du \right] dy \int_{\mathbb{R}^d} f(y) \, dy.
\]

We thus get (17). A simple calculation leads to (18). \(\blacksquare \)

Remarks. 1. From (16)–(8) we get
\[
\text{MISE}(f, h) \sim \text{AMISE} := \frac{1}{nh^d} \int_{\mathbb{R}^d} \left[\int_{[0,1]^d} K^2(x, y) \, dy \right] \, dx \\
+ h^2 \int_{\mathbb{R}^d} \left(\int_{[0,1]^d} \left[\sum_{|\beta| = \alpha} 1 \frac{1}{\beta!} D^\beta f(t)Q(\beta)(x) - x^\beta \right]^2 \, dx \right) \, dt.
\]
So the best choice of $h > 0$ which minimizes (16) is

$$h \sim n^{-1/(2\alpha+d)}.$$

2. Using the methods of [Dz2] one can prove the central limit theorem. This theorem generalizes the results for wavelet estimators [DL1]–[DL2] in \mathbb{R}^d and box spline estimators [Dz2]. These results are motivated by the result for the Rosenblatt–Parzen estimator [H].

References

