
APPLICATIONES MATHEMATICAE
29,1 (2002), pp. 43–49

Dariusz Jabłoński (Kraków)

THE CONJUGACY BETWEEN CASCADES GENERATED
BY A WEAKLY NONLINEAR SYSTEM

AND THE EULER METHOD OF A FLOW

Abstract. Sufficient conditions for the existence of a topological conju-
gacy between a cascade obtained from a weakly nonlinear flow by fixing the
time step and a cascade obtained by the Euler method are analysed. The
aim of this paper is to provide relations between constants in the Fečkan the-
orem. Given such relations an implementation of a weakly nonlinear neuron
is possible.

1. Introduction. In recent years several papers have been devoted to
the study of the qualitative properties of discrete time dynamical systems
obtained via discretization methods. The basic question is whether the quali-
tative properties of a given continuous time dynamical system are preserved
under discretization. Therefore many papers concern the problem of the
existence of a topological conjugacy between a discretization of a flow and
cascades generated by numerical methods [1, 3, 4]. In Fečkan’s paper [3],
a topological conjugacy between the discretization of the flow generated
by a weakly perturbated linear differential equation and its discretization
obtained by the Euler method is analysed. Fečkan’s theorem ensures that
there exists a topological conjugacy between the discretization of the flow
induced by the differential equation dx/dt = Ax + g(x) and the discrete
dynamical system generated by the Euler method applied to this equation.
The proof of the theorem is similar to the proof of the Grobman–Hartman
theorem [5–7], known in the discrete and continuous cases. The discrete
case of the Grobman–Hartman theorem yields the existence of a topological
conjugacy between two small Lipschitz perturbations of a hyperbolic linear
homeomorphism [5, 6]. Relations (6), (7) given below between constants in
the Fečkan theorem constitute the first step towards the implementation of
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a weakly nonlinear neuron because they are needed to introduce the proper
form of the activation function of a weakly nonlinear neuron.

2. Preliminaries. Let n ≥ 2 be a fixed positive integer. We define
L(Rn) to be the set of all linear endomorphisms of the space Rn. Through-
out this paper we consider L(Rn) as a normed space, with the standard
operator norm related to the Euclidean norm on Rn. We say that an au-
tomorphism T ∈ L(Rn) is hyperbolic if σ(T ) ∩ S1 = ∅, where S1 ⊂ C
denotes the unit circle, and σ(T ) is the spectrum of the operator T . We
define CB(Rn) to be the set of all bounded continuous maps Rn → Rn. Two
continuous maps φ, ψ : Rn → Rn are said to be topologically conjugate if
there is a homeomorphism χ : Rn → Rn such that ψ = χ−1 ◦ φ ◦ χ. A
dynamical system on Rn with continuous time is a family {φt : t ∈ R} of
homeomorphisms of Rn such that the map (t, x) 7→ φt(x) is continuous,
φ0(x) = x and φt+s(x) = (φt ◦ φs)(x) for all x ∈ Rn and all t, s ∈ R. We
define a flow to be a dynamical system on Rn with continuous time gene-
rated by a homogeneous differential equation [1]. If an n× n matrix A has
no strictly imaginary eigenvalues, then the linear operator Ah := id + hA
with a fixed 0 < h < ‖A‖−1 is hyperbolic, which means that there exists an
invariant splitting Rn = Es⊕Eu such that ‖As‖ ≤ a < 1, ‖(Au)−1‖ ≤ a < 1,
where As = A|Es : Es → Es and Au = A|Eu : Eu → Eu. In the proof of the
main result, the following lemma will be used (see [6, Lemma 4.3]).

Lemma 2.1. Let maps φ1, φ2 ∈ CB(Rn) be Lipschitzian with constants
smaller than ε > 0. Assume that the operator A ∈ L(Rn) has no eigenvalue
on the imaginary axis. Then the maps Ah+φ1 and Ah+φ2 are topologically
conjugate provided

ε‖A−1
h ‖

1−M < 1,

where M = max {‖(Au)−1‖, ‖As‖}.

3. The main result. Recall the Fečkan theorem (see [3]). Assume that
Φ is the flow generated by the equation

dx

dt
= Ax+ g(x),(1)

where A ∈ L(Rn) has no eigenvalues on the imaginary axis, g ∈ C1
B(Rn)

is such that g(0) = 0 and ‖Dg(x)‖ ≤ b for all x ∈ Rn and for a positive
constant b. For the equation dx/dt = Ax and a fixed 0 < h < ‖A‖−1 we
consider the discretization

G(h, x) = Ahx, x ∈ Rn,(2)

generated by the Euler method. It is obvious that G(h, ·) : Rn → Rn is
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a hyperbolic endomorphism for each 0 < h < ‖A‖−1. We also consider the
discretization

H(h, x) = Ahx+ hg(x), x ∈ Rn,(3)

generated by the Euler method for the equation (1). The Fečkan theorem
can be expressed in the following way.

Theorem 3.1. For a sufficiently small b > 0 there is a number h0 > 0
and

Γ : (0, h0)× Rn → Rn(4)

such that for all h ∈ (0, h0), Γ (h, ·) is a homeomorphism satisfying

Φ(h, ·) ◦ Γ (h, ·) = Γ (h, ·) ◦G(h, ·).(5)

The aim of this paper is to give relations between the constants b and h
in the Fečkan theorem:

Theorem 3.2. Let 0 < h < ‖A‖−1 be fixed. Under the notation of the
Fečkan theorem, if the following inequalities are true:

(6) h · b < (1−M) · ‖A−1
h ‖−1,

(7) h · b (‖A‖+ b) < (1−M) · (‖A−1
h ‖ · ‖eAh‖)−1,

where M = max{‖(Au)−1‖, ‖As‖}, then the conclusion of the Fečkan theo-
rem holds.

Proof. Due to the transitivity of the topological conjugacy relation, the
proof can be divided into three steps.

Step I. The following lemma has been proved in [6].

Lemma 3.3. Let F (h, x) = ehAx, x ∈ Rn, and let Φ(h, x) be the dis-
cretization of the flow generated by equation (1). Then the maps Φ(h, ·) and
F (h, ·) are topologically conjugate provided

hb · ‖eAh‖ · (‖A‖+ b) < (1−M) · ‖A−1
h ‖−1.

This yields the inequality (7).

Step II.

Lemma 3.4. If F (h, x) = ehAx and G(h, x) = Ahx, then the maps
F (h, ·) and G(h, ·) are topologically conjugate.

Proof. We have

#{ν ∈ σ(ehA) | ν > 1} = #{ν ∈ σ(Ah) | ν > 1},
where # denotes cardinality. The analogous equality holds for the eigenval-
ues smaller than 1. The assertion follows from [6].
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Step III.

Lemma 3.5. Let g ∈ C1
B(Rn) be such that ‖Dg(x)‖ < b for all x ∈ Rn

and a constant b > 0. Then the maps G(h, ·) and H(h, ·) are topologically
conjugate provided

hb < (1−M) · ‖A−1
h ‖−1.

Proof. Recall that G(h, x) = Ahx and H(h, x) = Ahx + hg(x). Since
‖Dg(x)‖ ≤ b for all x ∈ Rn, the map hg is Lipschitzian with constant ε = hb.
So, according to Lemma 2.1, the map G(h, ·) is topologically conjugate to
H(h, ·) provided

hb(1−M)−1 < ‖A−1
h ‖−1.

The condition (6) follows from Lemma 3.5. This completes the proof of
Theorem 3.2.

4. Remarks. In general, it is not easy to compute eigenvalues of an
operator. We shall give relations for the constants of the Fečkan theorem in
the case where the matrix Ah is diagonal. Let k be a fixed positive integer
such that k < n. We fix positive numbers λ1, . . . , λk and negative numbers
λk+1, . . . , λn. Let

A = Diag(λ1, . . . , λk, . . . , λn).

Then the matrix Ah = id + hA has the diagonal form[
Au 0

0 As

]
,

where
Au = Diag(1 + λ1h, . . . , 1 + λkh),

As = Diag(1 + λk+1h, . . . , 1 + λnh).

The following operator norms (see also Theorem 3.2) can be easily com-
puted:

‖(Au)−1‖ = max{(1 + λ1h)−1, . . . , (1 + λkh)−1},
‖A−1

h ‖ = min{1 + λk+1h, . . . , 1 + λnh},
‖As‖ = max{1 + λk+1h, . . . , 1 + λnh},
‖Ah‖ = max{1 + λ1h, . . . , 1 + λkh},
‖A‖ = max{|λ1|, . . . , |λk|, . . . , |λn|},
‖ehA‖ = max{eλ1h, . . . , eλkh}.

To check whether the topological conjugacy between the flow induced by
a weakly perturbed linear differential equation and its discretization ob-
tained via the Euler method exists (Theorem 3.2) it is enough to estimate
the norms of the matrices. In numerical applications computing the eigen-
values of the matrix A allows us to calculate the norms of the operators
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As, (Au)−1, Ah, A
−1
h , ehA. Next we have to choose a map g with Lipschitz

constant b such that the inequalities of Theorem 3.2 hold.

5. Applications to artificial neural networks. The relations be-
tween the constants in the Fečkan theorem are applicable to the mathe-
matical basis of artificial neural networks. Let us recall the basic definitions
(see [2]). An artificial neuron is a unit having several weighted inputs and
one output (Figure 1). Thus we can say that a neuron is a function of two
vector variables. A neuron with l inputs transforming a set X ⊂ R of input
signals (an l-neuron on X) is a function

F : Rl ×X l 3 (w, x) 7→ F (w, x) = f(〈w, x〉) ∈ R,
where 〈·, ·〉 is a real scalar product and f : R → R is called the activation
function of the neuron. If f is linear, then the neuron is said to be linear.

-xl
. . .

-x3

-x2

-x1

-

ωl

. . .

ω3

ω2

ω1

y = f(Σl
i=1wixi)

Fig. 1. A neuron model

Neuron weights are set during a training process. Thus a trained neuron
can be defined as a mapping

F ? = F (w, ·) : Rl → R.(8)

An artificial neural network is a system of neurons which are connected in
such a way that an output signal of one neuron is transmitted to the input
of another neuron. The most often considered neural networks are those
with a layer structure of connections. Multilayer ANNs (Artificial Neural
Networks) should act correctly. This means that in response to a given input
signal the output signal should be a desired value. If some of these desired
output values are known, a training sequence, used in a training process,
can be defined. A finite sequence of pairs

((~x(1), z(1)), . . . , (~x (N), z(N))),

where ~x (i) are input signals of an l-ANN on X and z(i) is a required output
signal, is called a training sequence of the multilayer l-ANN on X. Adjust-
ment of weights causing the differences between real and desired outputs in
response to a given input signal to be as small as possible is called a training
process of an ANN. The problem of weight adjustment can be reduced to
finding the minimum of a certain function, called the criterial function. We
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will consider one-layer networks. Then the learning process of a neuron is
independent of learning others. In such a case the most often used criterial
function is given by

E(w1, . . . , wM ) =
N∑

n=1

[y(w1, . . . , wM )(n) − z(n)]2,(9)

where

y(w1, . . . , wM )(n) = f
( M∑

m=1

x(n)
m wm

)
.(10)

Here M is the number of neuron inputs and N is the number of elements
in a training sequence. The descent gradient learning process of a neuron is
given by the iterative rule

w
(p+1)
t = w

(p)
t − η ·

∂E(w(p))
∂wt

,(11)

where the index p is the number of iterations and w = {wt}t∈T is the vector
of all weights in the ANN. The formula (11) is the Euler method for the
gradient differential equation

dwt
ds

= −grad E(w).(12)

Thus the output deviation function plays the role of the potential E in
the gradient equation (12). Since, for sufficiently small η, (11) generates
a discrete dynamical system whereas (12) generates a continuous dynamical
system, the dynamical system theory can be used in the training process
analysis. We can see ([2]) that the gradient learning process of a weakly per-
turbed linear neuron is modelled by a weakly perturbed linear differential
equation. A special type of an artificial neuron, called a weakly nonlinear
neuron, was introduced by Bielecki [2]. A neuron is said to be weakly non-
linear if its activation function is of the form

f : R 3 β 7→ f(β) = β + u(β),(13)

where u ∈ C2
B(R) is such that |u′(β)| < c1, |u′′(β)| < c2, |β · u′(β)| < c3,

|β · u′′(β)| < c4 for each β ∈ R, where the constants c1, c2, c3, c4 are suffi-
ciently small as well. It has been shown that if the gradient equation (12) is
used to describe the training process of a weakly nonlinear neuron, i.e. the
function f in (10) is of the type (13), then the equation (12) satisfies the
assumptions of the Fečkan theorem. Since the constants c2, c3, c4 depend on
the constants b and h in the Fečkan theorem (see Theorem 3.1), the results
obtained are necessary to introduce actual forms of the mapping u (see for-
mula (13)) and to start implementation experiments with weakly nonlinear
neurons.
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