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OPTIMAL SOLUTIONS
TO STOCHASTIC DIFFERENTIAL INCLUSIONS

Abstract. A martingale problem approach is used first to analyze com-
pactness and continuous dependence of the solution set to stochastic dif-
ferential inclusions of Ito type with convex integrands on the initial distri-
butions. Next the problem of existence of optimal weak solutions to such
inclusions and their dependence on the initial distributions is investigated.

1. Introduction. Stochastic inclusions appear in a natural way as a
reduced or theoretical description of stochastic control problems (see e.g.
[7] and references therein). The major contributions in this field concern
strong solutions to stochastic inclusions. On the other hand M. Kisielewicz
[8] investigated the main properties of weak solutions. The aim of this work
is to study optimal weak solutions to such inclusions. We use the so called
martingale problem approach owing to which some results obtained in [8]
can be stated under weaker assumptions and in more suitable form for our
aims.

Consider the stochastic differential inclusion

(1)
dξt ∈ F (t, ξt)dt+G(t, ξt)dWt, t ∈ [0, T ],

P ξ0 = µ,

where F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd → Conv(Rd×m)
are measurable, compact and convex valued multifunctions, W is an
m-dimensional Wiener process on the filtered probability space (Ω,F ,
{Ft}0≤t≤T, P ), and µ is a given probability measure on the space (Rd,B(Rd)).
Here Conv() denotes the space of nonempty, convex and compact subsets
of the underlying space. By Rd×m we denote the space of all d × m ma-
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trices (gij)d×k with real elements, equipped with the norm ‖(gij)d×m‖ =
max1≤i≤d,1≤j≤m |gij |.

For an Rd-valued stochastic process X, let X∗t = sup0≤s≤t |Xs|. We de-
note by FXt = σ{Xs; s ≤ t} the “history ofX” (σ-field generated by X) until
time t. Finally, EP denotes expectation with respect to the probability P .

The basic notion in the paper is that of a weak solution:

Definition 1. By a weak solution to the stochastic inclusion (1) we
mean a d-dimensional, continuous stochastic process ξ defined on the prob-
ability space (Ω,F , P ) together with, a Wiener process (Wt,Fξt ), and (Fξt )-
adapted processes ft ∈ F (t, ξt), gt ∈ G(t, ξt) dt× dP -a.e. such that:

ξt = ξ0 +
t�
0

fs ds+
t�
0

gs dWs, t ∈ [0, T ],

P ξ0 = µ,

provided the above integrals exist.

We denote such a solution by (Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ).

Remark 1. Note that in the single-valued case this notion coincides
with that of a weak solution to a stochastic equation, which can be found
in [3, 5, 13, 14].

In [9] the problem of existence of weak solutions to the stochastic inclu-
sion

(2)
dξt ∈ F (t, ξt)dt+ g(t, ξt)dWt, t ≥ 0,

P ξ0 = µ,

was considered with the set-valued drift F being bounded and jointly upper
semicontinuous (u.s.c.), and with a single-valued diffusion term, i.e. a con-
tinuous bounded function g : R+×Rd → Rd×m. The case of inclusions with
set-valued drift and diffusion terms being jointly upper semicontinuous was
investigated by J. P. Aubin and G. Da Prato [1].

Another type of assumptions on set-valued integrands involves lower
semicontinuity (l.s.c.) with respect to the second variable (see [8]). For the
notions of continuity, upper and lower semicontinuity, and measurability of
set-valued mappings we refer to [4] or [6]. Let us close the introduction with
the following result needed in what follows.

Theorem 1 (Kisielewicz [8]). Let F : [0, T ]× Rd → Conv(Rd) and G :
[0, T ]×Rd → Conv(Rd×m) be measurable bounded set-valued mappings such
that F (t, ·) and G(t, ·) are l.s.c. for fixed t ∈ [0, T ]. Let µ be a probability
measure on (Rd,B(Rd)). Then there exists a weak solution to the stochastic
inclusion (1).
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The existence result for the inclusion (1) is a starting point to considering
the optimality problem. In Section 4, we shall consider conditions under
which there exist optimal weak solutions to (1), i.e. solutions ξ∗ satisfying

(3) E

T�
0

h(t, ξ∗t ) dt = sup
ξ
E

T�
0

h(t, ξt) dt,

for a given bounded continuous function h : [0, T ] × Rd → R, where the
supremum is taken over the set of all weak solutions to (1).

2. Weak solutions and a local martingale problem. Let (Ω,F , P,
Wt, (Fξt )t∈[0,T ], ξ) be a weak solution to (1). Let C := C([0, T ],Rd) be the
space of vector-valued continuous functions. We denote by B(C) the Borel
σ-field in C and let Q := P ξ denote the distribution of ξ. Since the solution
process ξ can be considered as a random element ξ : Ω → C, the mea-
sure space (C,B(C), (Γt)t∈[0,T ], Q) appears as its canonical representation
(or canonical version), where (Γt) is a right continuous filtration, Γt = βt+,
βt = σ{πs : s ∈ [0, t]}. Here (πt)t∈[0,T ] denotes the canonical projection pro-
cess, i.e. πt : C → Rd, πt(x) = x(t) for x ∈ C, and t ∈ [0, T ]. The canonical
version of weak solutions allows us to consider them on the same canonical
space. In the case of a stochastic single-valued equation, the existence of a
weak solution is equivalent to the fact that its distribution is a solution to
a local martingale problem (see [13, 14]). A similar approach can be used in
the set-valued case.

Let a : [0, T ]×C → Rd and b : [0, T ]×C → Rd×m be measurable functions.
Let u ∈ C2

b(Rd), i.e. u : Rd → R is bounded and twice differentiable. Suppose
y ∈ C. We use the following differential operator:

(Atu)(y) :=
1
2

d∑

i=1

d∑

k=1

γik(t, y)
∂2u(y(t))
∂xi∂xk

+
d∑

i=1

ai(t, y)
∂u(y(t))
∂xi

,

where γik(t, y) =
∑m
j=1 bij(t, y)bkj(t, y), 1 ≤ i, k ≤ d.

Let M(C) denote the set of all probability measures on (C,B(C)). For
given multifunctions F,G and a probability measure µ on (Rd,B(Rd)) we
introduce:

Definition 2. A probability measure Q ∈M(C) is said to be a solution
to the local martingale problem for (F,G, µ) if:

(i) Qπ0 = µ,
(ii) there exist measurable mappings a : [0, T ]× C → Rd and b : [0, T ]×

C → Rd×m such that a(t, y) ∈ F (t, y(t)), b(t, y) ∈ G(t, y(t)) dt × dQ-a.e.,
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and for every f ∈ C2
b(Rd) the process (Mf

t ) (on (C,B(C), Q)) defined by

Mf
t := f ◦ πt − f ◦ π0 −

t�
0

(Asf) ds, t ∈ [0, T ],

is a (Γt, Q)- local martingale.

Let Rloc(F,G, µ) denote the set of those measures Q ∈ M(C) which are
solutions to the local martingale problem for (F,G, µ). The space M(C),
and hence the set Rloc(F,G, µ), can be equipped with the topology of weak
convergence of probability measures (see e.g. [2]). We denote by SI(F,G, µ)
the set of weak solutions to the stochastic inclusion (1). Fix an initial dis-
tribution µ. We have the following relation between the existence of weak
solutions to the stochastic inclusion and solutions to the martingale problem
described above.

Theorem 2. Let F,G : [0, T ] × Rd → 2R
d

, 2R
d×m

be B([0, T ] × Rd)-
measurable multifunctions, and let µ be a probability measure on (Rd,B(Rd)).
Then SI(F,G, µ) 6= ∅ if and only if Rloc(F,G, µ) 6= ∅.

Proof. Let (Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ) be a weak solution to (1). Then
there exist selections ft ∈ F (t, ξt), gt ∈ G(t, ξt) dt× dP -a.e. such that ft, gt
are Fξt -measurable for t ∈ [0, T ]. By [10, Lemma 4.9], one can find measur-
able mappings a : [0, T ]×C → Rd and b : [0, T ]×C → Rd×m such that a(t, ·)
and b(t, ·) are Γt-measurable for t ∈ [0, T ] (hence progressively measurable)
such that a(t, ξ) = ft and b(t, ξ) = gt. It follows that in the “canonical set-
ting” we have a(t, y) ∈ F (t, y(t)) and b(t, y) ∈ G(t, y(t)) dt×dP ξ-a.e. Hence,
the system (Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ) is a weak solution to the stochastic
differential equation

dξt = a(t, ξ)dt+ b(t, ξ)dWt,

P ξ0 = µ.

The rest of the proof follows from [5, Proposition 4.11, Ch. 5], which indicates
the equivalence between the existence of a weak solution to the stochastic
differential equation and the existence of a solution to the local martingale
problem for (a, b, µ), hence for (F,G, µ). The measures P and Q are related
by Q = P ξ.

By Theorems 1 and 2 we have

Corollary 1. Under the assumptions of Theorem 1, Rloc(F,G, µ) 6= ∅.
Note that the nonemptiness of the set Rloc(F,G, µ) can be proved under

weaker assumptions on F and G.

Proposition. Let F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd →
Conv(Rd×m) be B([0, T ])×B(Rd)-measurable multifunctions such that F (t, ·)
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and G(t, ·) are lower semicontinuous for t ∈ [0, T ], and suppose that

max{‖F (t, x)‖2, ‖G(t, x)‖2} ≤ K(1 + ‖x‖2).

Then Rloc(F,G, µ) 6= ∅.
Proof. From [4, Th. 7.23], there exist mappings f, g : [0, T ] × Rd →

Rd,Rd×m which are Carathéodory selections for F and G respectively. Let
a : [0, T ] × C → Rd and b : [0, T ] × C → Rd×m be mappings defined by
a(t, y) = f(t, y(t)) and b(t, y) = g(t, y(t)). Hence they are jointly measurable
and continuous with respect to the second variable. Now by [3, Th. 2, Ch. 5,
§2] there exists a weak solution to the stochastic equation

dξt = a(t, ξ)dt+ b(t, ξ)dWt,

P ξ0 = µ,

which completes the proof.

3. Topological properties of Rloc(F,G, µ). In order to state our op-
timality result we have to describe the topological properties of the set
SI(F,G, µ) or equivalently, what we shall do, properties of Rloc(F,G, µ).
The closedness of SI(F,G, µ) has been proved by M. Kisielewicz [8]. In the
same paper the compactness of the set of weak solutions was considered only
for solutions living on the same filtered probability space. Owing to Theo-
rem 2, a more general result can be proved for the whole set of solutions
without the latter restriction. Moreover the result holds true with a weaker
l.s.c. assumptions imposed on F and G. Namely, we have:

Theorem 3. Let F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd →
Conv(Rd×m) be measurable and bounded set-valued mappings such that F (t,·)
and G(t, ·) are l.s.c. for each fixed t ∈ [0, T ], and let (µk) be a tight a
sequence of probability measures. Then

⋃
k≥1Rloc(F,G, µk) is a nonempty

and relatively compact subset of M(C).

Proof. The nonemptiness follows from Corollary 1. By Prokhorov’s The-
orem [2], it is enough to show that the set considered is tight. Note first that

lim
a→∞

sup
Q∈⋃k≥1Rloc(F,G,µk)

Q{y ∈ C : ‖y(0)‖ > a}

≤ lim
a→∞

sup
k≥1

µk{x ∈ Rd : ‖x‖ > a} = 0,

because the sequence (µk) is tight. Hence by [2, Th. 8.2] it is sufficient to
show that for every ε > 0,

(4) lim
n→∞

sup
Q∈⋃k≥1Rloc(F,G,µk)

Q{y ∈ C : ∆T (1/n, y) > ε} = 0,
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where ∆T (δ, y) = sup{‖y(t) − y(s)‖ : s, t ∈ [0, T ], |s − t| < δ} for y ∈ C.
Let Q ∈ ⋃k≥1Rloc(F,G, µk). Then there exist k ≥ 1, and measurable and
bounded (say by a constant L > 0) mappings ak, bk : [0, T ]×C → Rd,Rd×m
such that ak(t, y) ∈ F (t, y(t)), bk(t, y) ∈ G(t, y(t)) dt × dQ-a.e. and Q ∈
Rloc(ak, bk, µk). Hence, taking f : Rd → R, f(x) = xi, i = 1, . . . , d, we
obtain continuous Q-local martingales (on C)

Mk,i
t = πit −

t�
0

aki (s, ·) ds,

with quadratic covariations

[Mk,i,Mk,j ]t =
t�
0

(bk(bk)T )ij(s, ·) ds, i, j = 1, . . . , d.

Let Mk = (Mk,1, . . . ,Mk,d). For 0 ≤ t0 < t1 < T, introduce the stopping
time τ(y) = inf{u > 0 : ‖πt0+u(y)− πt0(y)‖ > ε/3} ∧ (t1 − t0), where y ∈ C.
Then the process Mk

t0+t∧τ −Mk
t0 is a continuous (Γt0+t, Q)-martingale. We

let t0 = 0 for simplicity. Then one can show that

‖πt∧τ − π0‖2 ≤ 2‖Mk
t∧τ −Mk

0 ‖2 + 2
∥∥∥
t∧τ�
0

ak(s, ·) ds
∥∥∥

2
Q-a.e.,

and consequently

(5) (π − π0)∗2t∧τ ≤ 2(Mk −Mk
0 )∗2t∧τ + 2L2τ2.

By (5) for any p ≥ 1 we get

(6) EQ(π − π0)∗2pτ ≤ 2pEQ(Mk −Mk
0 )∗2pτ + 2pL2pEQ(τ2p).

For the continuous Q-local martingale Mk − Mk
0 we apply Burkholder’s

inequality (see e.g. [13]) (with the same p) to get

EQ(Mk −Mk
0 )∗2pτ ≤ C2pEQ

{ τ�
0

d∑

i=1

(bk(bk)T )ii(s, ·) ds
}p
,

where

C2p =
{(

2p− 1
2p

)2p

p(2p− 1)
}p
.

Thus by the bounds on F and G, the inequality (6) has the form

EQ(π − π0)∗2pτ ≤ 2pALpC2pEQ(τp) + 2pL2pEQ(τ2p),

where A is some constant depending on L, p, and d. Restoring t0 and setting
α = t1 − t0, p = 2, we obtain

EQ(π − πt0)∗4α ≤ 4AL2C4α
2 + 4L4α4.
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Hence by the Chebyshev inequality we get, for each ε > 0,

(7) Q{sup
s≤α
‖πt0+s − πt0‖ > ε} ≤ 4AL2C4α

2 + 4L4α4

ε4 .

Let T ∗ = [T ] + 1. For arbitrary n ∈ N, divide the interval [0, T ∗] by the
points 1/n, i = 0, 1, . . . , T ∗n. Then

Q{y : ∆T (1/n, y) > ε} ≤ Q{y : ∆T ∗(1/n, y) > ε}

= Q
{ T ∗n−1⋃

i=0

{ sup
0≤s≤1/n

‖πi/n+s − πi/n‖ > ε/3}
}
.

Hence using (7) with α = 1/n, we get

Q{y : ∆(1/n, y) > ε} ≤ 34T ∗
(

4AL2C4

nε4 +
4L4

n3ε4

)
,

which proves (4) and completes the proof.

Corollary 2. If F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd →
Conv(Rd×m) are measurable bounded set-valued mappings such that F (t, ·)
and G(t, ·) are l.s.c. for each fixed t ∈ [0, T ], then for every probability
measure µ on (Rd,B(Rd)) the set Rloc(F,G, µ) is nonempty and relatively
compact in M(C).

The closedness of the set of weak solutions is another important property.
Let us recall the following definition.

Definition 3 ([8]). A set U ⊂ Rd×m is said to be diagonally convex if
the set D(U) = {uuT : u ∈ U} is a convex subset of Rd×d.

It can be shown (see [8]) that if U ⊂ R1×m is convex then it is also
diagonally convex. A set-valued mapping G : [0, T ] × Rd → Conv(Rd×m)
will be called diagonally convex valued if G(t, x) is diagonally convex for
every t ∈ [0, T ] and x ∈ Rd. In [8] the following result was proved.

Theorem 4 (Kisielewicz [8]). Let F : [0, T ]× Rd → Conv(Rd) and G :
[0, T ]×Rd → Conv(Rd×m) be measurable bounded set-valued mappings such
that F (t, ·) and G(t, ·) are continuous for each fixed t ∈ [0, T ]. Assume also
that G is diagonally convex valued. Then, for every probability measure µ
on (Rd,B(Rd)) the set SI(F,G, µ) is nonempty and closed with respect to
convergence in distribution.

Using the equivalent martingale problem approach, by Theorems 3 and 4,
we can state:

Corollary 3. Let F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd →
Conv(Rd×m) be measurable bounded set-valued mappings such that F (t, ·)
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and G(t, ·) are continuous for each fixed t ∈ [0, T ]. Assume also that G is
diagonally convex valued. Then, for every probability measure µ on
(Rd,B(Rd)), the set Rloc(F,G, µ) is nonempty and compact in M(C).

To study the dependence of Rloc(F,G, µ) on the initial distribution, we
recall the following characterization of upper semicontinuity of set-valued
mappings. Below, Comp() denotes the space of all nonempty compact sub-
sets of the underlying space.

Theorem 5 ([6]). Let X and Y be metric spaces. A set-valued mapping
Z : X → Comp(Y ) is u.s.c. if and only if for every x ∈ X and every
sequence xn → x, each sequence yn ∈ Z(xn) has a subsequence converging
to a limit belonging to Z(x).

Let M(Rd) denote the space of probability measures on (Rd,B(Rd))
equipped with the topology of weak convergence. By the corollary above
we can introduce the solution set mapping Rloc(F,G, ·) : M(Rd) →
Comp(M(C)). Since the topology of weak convergence of probability mea-
sures both in M(Rd) and M(C) can be metrized by Prokhorov’s metrics
(see e.g. [2]), under the assumptions of Corollary 3 the mapping µ 7→
Rloc(F,G, µ) can be considered as a multifunction defined on the metric
spaceM(Rd) with values in Comp(M(C)). Let µ be an arbitrary initial dis-
tribution and let (µk) be a sequence of probability measures weakly converg-
ing to µ. By Theorem 3, the set

⋃
k≥1Rloc(F,G, µk) is relatively compact.

This implies that any sequence (Qk) such that Qk ∈ Rloc(F,G, µk), has a
subsequence converging to some probability measure Q∼ ∈ M(C). By the
Continuous Mapping Theorem (see e.g. [2]) it follows that (Q∼)π0 = µ. As
in [8, Th. 12] it can be shown that Q∼ ∈ Rloc(F,G, µ). By Theorem 5 we
have:

Theorem 6. Under the assumptions of Corollary 3, the mapping µ 7→
Rloc(F,G, µ) is a u.s.c. multifunction from M(Rd) into Comp(M(C)).

Remark 2. The basic consequence of the above theorem is the measur-
able dependence of the solution set on the initial distribution in the sense
of measurability of set-valued mappings (see e.g. [4], [6]).

Using Proposition 2.3 of [6] we obtain an immediate consequence of this
theorem, which can be viewed as a set-valued version of Levakov’s result on
compactness of the weak solution set for the stochastic inclusion (2) (see [9,
Th. 2]).

Corollary 4. Let Π be a compact subset of M(Rd). Then under the
assumptions of Corollary 3, the set Rloc(F,G,Π) :=

⋃
µ∈Π Rloc(F,G, µ) is

a compact subset of M(C).
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4. Optimal solutions to stochastic inclusions. First, observe that
for each weak solution (Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ) and an arbitrary inte-
grable function h : R+ × Rd → R we have

EP

[ T�
0

h(t, ξt) dt
]

= EQ

[ T�
0

h(t, πt) dt
]
,

and for this reason, the optimality problem described by (3) in the Intro-
duction can be rewritten as

EQ∗
[ T�

0

h(t, πt) dt
]

= sup
Q
EQ

[ T�
0

h(t, πt) dt
]
,

where the supremum is taken over the set of all distributions of weak
solutions to (1) and Q∗ is the distribution of an optimal weak solution
(Ω∗,F∗, P ∗,W ∗t , (Fξ

∗

t )t∈[0,T ], ξ
∗).

Hence we introduce the following definition.

Definition 4. By an optimal solution to the inclusion (1) we mean a
probability measure Q∗ ∈ Rloc(F,G, µ) such that

EQ∗
[ T�

0

h(t, πt) dt
]

= sup
Q∈Rloc(F,G,µ)

EQ

[ T�
0

h(t, πt) dt
]
.

Remark 3. It is clear that the optimal solution can depend on the initial
distribution µ. In fact it will be shown (see Theorem 7 below) that it depends
on it in a measurable way.

The proof of the next lemma is standard so it is omitted here.

Lemma. Let U : M(C) → R be a continuous mapping. Then the map-
pings S : Comp(M(C)) 3 K 7→ supQ∈K U(Q) ∈ R and W : Comp(M(C)) 3
K 7→ {Q ∈ K : U(Q) = S(K)} ∈ Comp(M(C)) are measurable.

We have the following optimality result.

Theorem 7. Let h : [0, T ] × Rd → R be a bounded continuous func-
tion. Then under the assumptions of Corollary 3, there exists a measurable
mapping Q∗ :M(Rd)→M(C) such that :

(a) Q∗µ ∈ Rloc(F,G, µ) for every µ ∈ M(Rd),
(b) Q∗µ is an optimal solution for every µ ∈ M(Rd).

Proof. We have to prove the existence of a measurable mapping Q∗µ ∈
Rloc(F,G, µ) such that
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EQ∗µ

[ T�
0

h(t, πt(y)) dt
]

= sup
Q∈Rloc(F,G,µ)

EQ

[ T�
0

h(t, πt(y)) dt
]

for every µ ∈ M(Rd). Recall once again that by Theorem 6, Rloc(F,G, ·) is
a measurable set-valued mapping. Define

Rloc(F,G, µ)∗ =
{
Q ∈ Rloc(F,G, µ) :

EQ

[ T�
0

h(t, πt(y)) dt
]

= sup
Q∈Rloc(F,G,µ)

EQ

[ T�
0

h(t, πt(y)) dt
]}
.

Since the function C 3 y 7→ � T0 h(t, πt(y)) dt ∈ R is continuous and bounded,

the mapping U(Q) = EQ[ � T0 h(t, πt(y)) dt] is continuous as well. Thus
Rloc(F,G, µ)∗ ∈ Comp(M(C)) for every µ ∈ M(Rd). In the notation of the
Lemma, Rloc(F,G, ·)∗ = W ◦ Rloc(F,G, ·), which implies the measurabil-
ity of Rloc(F,G, ·)∗. Finally applying the Kuratowski and Ryll-Nardzewski
Measurable Selection Theorem (see e.g. [6]) we get the desired measurable
measure-valued mapping Q∗.

Remark 4. Note that the proof above shows in particular that under
the assumptions of Theorem 7, the set Rloc(F,G, µ)∗ of optimal solutions
to (1) is a measurable and compact valued mapping.

Finally, we consider so called weakly viable solutions to the stochastic
inclusion (1).

For a fixed, nonempty and closed set K ⊂ Rd and ε ∈ [0, 1), define
Π(K, ε) = {µ ∈M(Rd) : µK ≥ 1− ε}. We say that the stochastic inclusion
(1) has a weakly viable (or ε-viable) solution in K if for every µ ∈ Π(K, ε),
there exists a weak solution (Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ) of (1) such that
P ξt ∈ Π(K, ε), t ∈ [0, T ]. Recall that for strong solutions the viability
problem for ε = 0 was studied first by Aubin and Da Prato (see e.g. [1]).
Weakly viable solutions to controlled diffusion equations were considered
in [11]. By [2, Th. 2.1], it is easy to see that Π(K, ε) is a closed subset of
M(Rd). Similarly it can be shown that the mapping Q 7→ Qπt{K} is u.s.c.,
for every t ∈ [0, T ]. Thus, Q 7→ inft∈[0,T ] Q

πt{K} is u.s.c. as well. Conse-
quently, D := {Q ∈ M(C) : inft∈[0,T ]Q

πt{K} ≥ 1 − ε} is a closed subset
of M(C).

Let µ ∈ Π(K, ε) and suppose that the assumptions of Corollary 3 are
satisfied. If Rloc(F,G, µ) ∩ D 6= ∅, then by Theorem 6 and the proper-
ties of upper semicontinuous set-valued mappings (see e.g. [4, 6]), the map-
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ping Rloc
K,ε(F,G, ·) : Π(K, ε) → Comp(M(C)) defined by Rloc

K,ε(F,G, ·) =
Rloc(F,G, ·) ∩ D is u.s.c. as well. Thus, as in the proof of Theorem 7 one
can show:

Theorem 8. Under the assumptions of Theorem 7, if Rloc(F,G, µ)
∩ D 6= ∅ for µ ∈ Π(K, ε), then:

(i) the set-valued mapping Rloc
K,ε(F,G, ·) : Π(K, ε) → Comp(M(C)) is

u.s.c.,
(ii) there exists a measurable mapping Q+ : Π(K, ε)→M(C) such that

Q+
µ ∈ Rloc

K,ε(F,G, µ) and

EQ+
µ

[ T�
0

h(t, πt) dt
]

= sup
Q∈Rloc

K,ε(F,G,µ)
EQ

[ T�
0

h(t, πt) dt
]

for every µ ∈ Π(K, ε).

Remark 5. The condition Rloc(F,G, µ)∩D 6= ∅ is fulfilled under the so
called weak tangential condition (see [11, 12] and simply means that there
exists a weakly viable solution to (1). Part (ii) of Theorem 8 indicates the
existence of a weakly viable optimal solution to this inclusion.
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