IOANNIS K. ARGYROS (Lawton, OK)

LOCAL CONVERGENCE THEOREMS FOR NEWTON'S METHOD FROM DATA AT ONE POINT

Abstract. We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.

1. Introduction. In this study, we are concerned with the problem of approximating a solution x^* of an equation

(1)
$$F(x) = 0,$$

where F is sufficiently many times Fréchet-differentiable on an open, convex subset D of a Banach space X, with values in a Banach space Y.

Newton's method

(2)
$$x_{n+1} = x_n - F'(x_n)^{-1}F(x_n) \quad (n \ge 0, x_0 \in D)$$

has been used to generate a sequence converging to x^* . There is an extensive literature on local and semilocal convergence theorems for Newton's method. We refer the reader to [1]–[9] and the references there for such results.

Here we introduce some local results for Newton's method, which enable us to obtain a convergence radius larger than in earlier results [5], [7]–[10]. That is, we obtain a wider range of initial choices x_0 than it was possible before. This information is important and also finds applications in step length

 $^{2000\} Mathematics\ Subject\ Classification:\ 65B05,\ 47H17,\ 49D15,\ 65G99,\ 65J15,\ 65N30,\ 65N35.$

Key words and phrases: Banach space, Newton's method, Fréchet-differentiable/analytic operator, radius of convergence, simple zero.

selection in predictor–corrector continuation procedures [4], [5], [7]–[10]. See also Remark 5 for other applications.

At the end of the study we provide a numerical example to show that indeed our results can provide a larger convergence radius than before.

2. Convergence analysis. We state the following local convergence theorem for Newton's method:

THEOREM 1. Let $F : D \subseteq X \to Y$ be twice Fréchet-differentiable. Assume:

(a) there exists a simple zero $x^* \in D$ of F;

(b) there exists a constant $\ell \geq 0$ such that

(3)
$$||F'(x^*)^{-1}F''(x)|| \le \ell \quad (x \in D);$$

(c)

(4)
$$\overline{U}\left(x^*, r_1 = \frac{2}{3\ell}\right) = \{x \in X \mid ||x - x^*|| \le r_1\} \subseteq D.$$

Then Newton's method $\{x_n\}$ $(n \ge 0)$ generated by (2) is well defined, remains in $\overline{U}(x^*, r_1)$ for all $n \ge 0$, and converges to x^* provided that $x_0 \in \overline{U}(x^*, r_1)$. Moreover, the following error bounds hold for all $n \ge 0$:

(5)
$$||x_{n+1} - x^*|| \le \frac{\ell}{2[1 - \ell ||x_n - x^*||]} ||x_n - x^*||^2.$$

Proof. It follows from (3) that there exists $D_0 \subseteq D$ such that F' is ℓ -Lipschitz on D_0 , i.e.,

(6)
$$||F'(x^*)^{-1}[F'(x) - F'(y)]|| \le \ell ||x - y|| \quad (x \in D_0).$$

Without loss of generality we can assume $D_0 = D$. The rest of the theorem follows exactly as in [9].

REMARK 1. In order for us to replace ℓ in Lipschitz conditions or as a bound on Fréchet derivatives in convergence theorems for Newton's method, assume F is analytic on D, set

(7)
$$\gamma(x) = \sup_{k>1} \left\| \frac{1}{k!} F'(x)^{-1} F^{(k)}(x) \right\|^{1/(k-1)} \quad (x \in D),$$

and

(8)
$$\gamma = \gamma(x^*).$$

Moreover, assume that

 $\overline{U}(x^*, r/\gamma) \subseteq D, \quad r \in [0, 1/\gamma).$

Then, for all $x \in U(x^*, r)$, $i = 1, 2, \ldots$, we get

$$(9) ||F'(x^*)^{-1}F^{(i+1)}(x)|| = \left\| \sum_{k=0}^{\infty} \frac{1}{k!} F'(x^*)^{-1}F^{(i+k+1)}(x^*)(x-x^*)^k \right\| \\ \leq \sum_{k=0}^{\infty} (k+i+1)(k+i)\gamma^{k+i} \|x-x^*\|^k \\ = \gamma^i \sum_{k=0}^{\infty} (k+i+1)(k+i)(\gamma \|x-x^*\|)^k \\ \leq \delta_{i+1} \equiv \frac{(i+1)!\gamma^i}{(1-\gamma r)^{i+2}}.$$

It follows from (6) that ℓ can be replaced by δ_2 ($\gamma \neq 0$). In this case the convergence condition is

(10)
$$r \le \frac{(1-\gamma r)^3}{3\gamma},$$

which becomes

(11)
$$z^3 - 3z^2 + 6z - 1 \le 0, \quad z = r\gamma$$

Solving (11) we finally deduce that Newton's method converges, provided that

$$x_0 \in \overline{U}(x^*, r_2) \subseteq D,$$

where

(12)
$$r_2 = \frac{.182269}{\gamma} \quad (\gamma \neq 0).$$

Hence, we showed:

THEOREM 2. Let $F: D \subseteq X \to Y$ be analytic, x^* be as in Theorem 1, γ and r_2 as defined by (8) and (12) respectively. Moreover, assume:

(13)
$$r_2 \in (0, 1/\gamma),$$

(14)
$$x_0 \in \overline{U}(x_0, r_2),$$

(15)
$$\overline{U}(x_0, r_2) \subseteq D.$$

Then the conclusions of Theorem 1 for Newton's method hold with δ_2 and r_2 replacing ℓ and r_1 respectively.

The following local convergence theorem was essentially proved, e.g., [2] or [3].

THEOREM 3. Let $F : D \subseteq X \to Y$ be an (m + 1)-times $(m \ge 2, an integer)$ Fréchet-differentiable operator and x^* be as in Theorem 1. Assume that there exist nonnegative constants $\alpha_j, j = 2, ..., m + 1$, such that:

I. K. Argyros

(16)
$$||F'(x^*)^{-1}F^{(j)}(x^*)|| \le \alpha_j, \qquad j = 2, \dots, m,$$

(17)
$$||F'(x^*)^{-1}F^{(m+1)}(x)|| \le \alpha_{m+1} \quad (x \in D).$$

Denote by r_3 the minimum positive zero, guaranteed to exist by Descartes' rule of signs, of the function g given by

(18)
$$g(r) = \beta_m r^m + \beta_{m-1} r^{m-1} + \ldots + \beta_1 r + \beta_0,$$

where

(19)
$$\beta_m = \frac{2m+1}{(m+1)!} \alpha_{m+1},$$

(20)
$$\beta_i = \frac{i + (i+2)!(i+1)}{(m+1)!m!} \alpha_{i+1}, \quad i = 2, \dots, m-1,$$

(21)
$$\beta_1 = \frac{3}{2}\alpha_2,$$

$$(22) \qquad \qquad \beta_0 = -1.$$

Then Newton's method $\{x_n\}$ $(n \ge 0)$ generated by (2) is well defined, remains in $\overline{U}(x^*, r_3)$ for all $n \ge 0$ and converges to x^* provided that $x_0 \in \overline{U}(x^*, r_3)$. Moreover, the following error bounds hold for all $n \ge 0$:

(23)
$$||x_{n+1} - x^*|| \le a_n ||x_n - x^*||^2,$$

where

(24)
$$b_{n} = \frac{m}{(m+1)!} \alpha_{m+1} \|x_{n} - x^{*}\|^{m-1} + \frac{(m-1)\alpha_{m}}{m!} \|x_{n} - x^{*}\|^{m-2} + \ldots + \frac{\alpha_{2}}{2!},$$

(25)
$$c_{n} = 1 - \alpha_{2} \|x_{n} - x^{*}\| - \ldots - \frac{\alpha_{m}}{(m-1)!} \|x_{n} - x^{*}\|^{m-1} - \frac{\alpha_{m+1}}{m!} \|x_{n} - x^{*}\|^{m},$$

(26)
$$a_{n} = \frac{b_{n}}{c_{n}}.$$

REMARK 2. Note that condition (17) implies the weaker α_{m+1} -Lipschitz condition used in the proof of Theorem 2 in [2].

REMARK 3. We can now argue as we did after Theorem 1. Replace α_{m+1} in Theorem 3 by δ_{m+1} and denote by r_4 the minimum positive zero of the function h defined as g with δ_{m+1} replacing α_{m+1} .

We proved:

484

THEOREM 4. Let $F: D \subseteq X \to Y$ be analytic, let $x^*, \alpha_j, j = 2, \ldots, m$, be as in Theorem 3, and let γ and r_4 be defined above. Moreover, assume:

$$(27) r_4 \in (0, 1/\gamma),$$

(28)
$$x_0 \in \overline{U}(x^*, r_4),$$

(29) $\overline{U}(x^*, r_4) \subseteq D.$

Then the conclusions of Theorem 3 for Newton's method hold with δ_{m+1} and r_4 replacing α_{m+1} and r_3 respectively.

REMARK 4. Note that condition (15) in Theorem 2 or condition (29) in Theorem 4 are automatically satisfied when D = X.

3. Applications

REMARK 5. As noted in [1]–[5], [8]–[10] our results can be used for projection methods such as Arnold's, the generalized minimum residual method (GMRES), the generalized conjugate residual method (GCR), and for combined Newton-like/finite-difference projection methods.

REMARK 6. The results obtained here can also be used to solve equations of the form F(x) = 0, where F' satisfies the autonomous differential equation ([4], [7])

(30)
$$F'(x) = T(F(x)),$$

where $T: Y \to X$ is a known continuously sufficiently many times Fréchetdifferentiable operator. Since $F'(x^*) = T(F(x^*)) = T(0)$,

$$F''(x^*) = F'(x^*)T'(F(x^*)) = T(0)T'(0)$$

etc., we can apply the results obtained here without actually knowing the solution x^* of equation (1).

We complete our study with such an example.

EXAMPLE. Let $X = Y = \mathbb{R}$, D = U(0, 1), and define a function F on D by

$$F(x) = e^x - 1$$

Then it can easily be seen that we can set T(x) = x + 1 in (30).

Using (4), (6), (8), (12), (16)–(18), and (31) we obtain, for m = 2,

$$\alpha_2 = 1, \quad \alpha_3 = e, \quad \gamma = .5,$$

 $r_1 = .245253, \quad r_2 = .364538, \quad r_3 = .411254048, \quad r_4 = .3822432.$

Hence, our results provide a wider choice for x_0 than the corresponding ones in [9], [10, Theorem 3.1, p. 585]. This observation is important and also finds applications in step length selection in predictor-corrector continuation procedures [5], [8], [10].

I. K. Argyros

References

- I. K. Argyros, Improved error bounds for Newton-like iterations under Chen-Yamamoto assumptions, Appl. Math. Lett. 10 (1997), no. 4, 97–100.
- [2] —, Local convergence theorems for Newton's method using outer or generalized inverses and m-Fréchet differentiable operators, Math. Sci. Res. Hot-Line 4 (2000), no. 4, 47–56.
- [3] —, A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer, J. Comput. Appl. Math. 131 (2001), 149–159.
- [4] I. K. Argyros and F. Szidarovszky, The Theory and Applications of Iteration Methods, CRC Press, Boca Raton, FL, 1993.
- P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference projection methods, SIAM J. Numer. Anal. 24 (1987), 407–434.
- [6] J. M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997), 131–145.
- [7] L. V. Kantorovich and G. R. Akilov, *Functional Analysis*, Pergamon Press, New York, 1982.
- [8] F. A. Potra, On Q-order and R-order of convergence, J. Optim. Theory Appl. 63 (1989), 415–431.
- W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in: Banach Center Publ. 3, PWN, Warszawa, 1977, 129–142.
- [10] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583–590.

Department of Mathematics Cameron University Lawton, OK 73505, U.S.A. E-mail: ioannisa@cameron.edu

> Received on 23.11.2001; revised version on 13.6.2002 (1604)

486