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LOCAL CONVERGENCE THEOREMS FOR
NEWTON’S METHOD FROM

DATA AT ONE POINT

Abstract. We provide local convergence theorems for the convergence of
Newton’s method to a solution of an equation in a Banach space utilizing
only information at one point. It turns out that for analytic operators the
convergence radius for Newton’s method is enlarged compared with earlier
results. A numerical example is also provided that compares our results
favorably with earlier ones.

1. Introduction. In this study, we are concerned with the problem of
approximating a solution x∗ of an equation

(1) F (x) = 0,

where F is sufficiently many times Fréchet-differentiable on an open, convex
subset D of a Banach space X, with values in a Banach space Y .

Newton’s method

(2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0, x0 ∈ D)

has been used to generate a sequence converging to x∗. There is an extensive
literature on local and semilocal convergence theorems for Newton’s method.
We refer the reader to [1]–[9] and the references there for such results.

Here we introduce some local results for Newton’s method, which enable
us to obtain a convergence radius larger than in earlier results [5], [7]–[10].
That is, we obtain a wider range of initial choices x0 than it was possible be-
fore. This information is important and also finds applications in step length
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selection in predictor–corrector continuation procedures [4], [5], [7]–[10]. See
also Remark 5 for other applications.

At the end of the study we provide a numerical example to show that
indeed our results can provide a larger convergence radius than before.

2. Convergence analysis. We state the following local convergence
theorem for Newton’s method:

Theorem 1. Let F : D ⊆ X → Y be twice Fréchet-differentiable. As-
sume:

(a) there exists a simple zero x∗ ∈ D of F ;
(b) there exists a constant ` ≥ 0 such that

(3) ‖F ′(x∗)−1F ′′(x)‖ ≤ ` (x ∈ D);

(c)

(4) U

(
x∗, r1 =

2
3`

)
= {x ∈ X | ‖x− x∗‖ ≤ r1} ⊆ D.

Then Newton’s method {xn} (n ≥ 0) generated by (2) is well defined ,
remains in U(x∗, r1) for all n ≥ 0, and converges to x∗ provided that
x0 ∈ U(x∗, r1). Moreover , the following error bounds hold for all n ≥ 0:

(5) ‖xn+1 − x∗‖ ≤
`

2[1− `‖xn − x∗‖]
‖xn − x∗‖2.

Proof. It follows from (3) that there exists D0 ⊆ D such that F ′ is
`-Lipschitz on D0, i.e.,

(6) ‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖ (x ∈ D0).

Without loss of generality we can assume D0 = D. The rest of the theorem
follows exactly as in [9].

Remark 1. In order for us to replace ` in Lipschitz conditions or as a
bound on Fréchet derivatives in convergence theorems for Newton’s method,
assume F is analytic on D, set

(7) γ(x) = sup
k>1

∥∥∥∥
1
k!
F ′(x)−1F (k)(x)

∥∥∥∥
1/(k−1)

(x ∈ D),

and

(8) γ = γ(x∗).

Moreover, assume that

U(x∗, r/γ) ⊆ D, r ∈ [0, 1/γ).

Then, for all x ∈ U(x∗, r), i = 1, 2, . . . , we get
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‖F ′(x∗)−1F (i+1)(x)‖ =
∥∥∥∥
∞∑

k=0

1
k!
F ′(x∗)−1F (i+k+1)(x∗)(x− x∗)k

∥∥∥∥(9)

≤
∞∑

k=0

(k + i+ 1)(k + i)γk+i‖x− x∗‖k

= γi
∞∑

k=0

(k + i+ 1)(k + i)(γ‖x− x∗‖)k

≤ δi+1 ≡
(i+ 1)!γi

(1− γr)i+2 .

It follows from (6) that ` can be replaced by δ2 (γ 6= 0). In this case the
convergence condition is

(10) r ≤ (1− γr)3

3γ
,

which becomes

(11) z3 − 3z2 + 6z − 1 ≤ 0, z = rγ.

Solving (11) we finally deduce that Newton’s method converges, provided
that

x0 ∈ U(x∗, r2) ⊆ D,
where

(12) r2 =
.182269

γ
(γ 6= 0).

Hence, we showed:

Theorem 2. Let F : D ⊆ X → Y be analytic, x∗ be as in Theorem 1,
γ and r2 as defined by (8) and (12) respectively. Moreover , assume:

(13) r2 ∈ (0, 1/γ),

(14) x0 ∈ U(x0, r2),

(15) U(x0, r2) ⊆ D.
Then the conclusions of Theorem 1 for Newton’s method hold with δ2 and
r2 replacing ` and r1 respectively.

The following local convergence theorem was essentially proved, e.g., [2]
or [3].

Theorem 3. Let F : D ⊆ X → Y be an (m + 1)-times (m ≥ 2, an
integer) Fréchet-differentiable operator and x∗ be as in Theorem 1. Assume
that there exist nonnegative constants αj , j = 2, . . . ,m+ 1, such that :
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‖F ′(x∗)−1F (j)(x∗)‖ ≤ αj , j = 2, . . . ,m,(16)

‖F ′(x∗)−1F (m+1)(x)‖ ≤ αm+1 (x ∈ D).(17)

Denote by r3 the minimum positive zero, guaranteed to exist by Descartes’
rule of signs, of the function g given by

(18) g(r) = βmr
m + βm−1r

m−1 + . . .+ β1r + β0,

where

βm =
2m+ 1
(m+ 1)!

αm+1,(19)

βi =
i+ (i+ 2)!(i+ 1)

(m+ 1)!m!
αi+1, i = 2, . . . ,m− 1,(20)

β1 =
3
2
α2,(21)

β0 = −1.(22)

Then Newton’s method {xn} (n ≥ 0) generated by (2) is well defined ,
remains in U(x∗, r3) for all n ≥ 0 and converges to x∗ provided that
x0 ∈ U(x∗, r3). Moreover , the following error bounds hold for all n ≥ 0:

(23) ‖xn+1 − x∗‖ ≤ an‖xn − x∗‖2,
where

bn =
m

(m+ 1)!
αm+1‖xn − x∗‖m−1(24)

+
(m− 1)αm

m!
‖xn − x∗‖m−2 + . . .+

α2

2!
,

cn = 1− α2‖xn − x∗‖ − . . .−
αm

(m− 1)!
‖xn − x∗‖m−1(25)

− αm+1

m!
‖xn − x∗‖m,

an =
bn
cn
.(26)

Remark 2. Note that condition (17) implies the weaker αm+1-Lipschitz
condition used in the proof of Theorem 2 in [2].

Remark 3. We can now argue as we did after Theorem 1. Replace αm+1

in Theorem 3 by δm+1 and denote by r4 the minimum positive zero of the
function h defined as g with δm+1 replacing αm+1.

We proved:
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Theorem 4. Let F : D ⊆ X → Y be analytic, let x∗, αj , j = 2, . . . ,m,
be as in Theorem 3, and let γ and r4 be defined above. Moreover , assume:

(27) r4 ∈ (0, 1/γ),

(28) x0 ∈ U(x∗, r4),

(29) U(x∗, r4) ⊆ D.
Then the conclusions of Theorem 3 for Newton’s method hold with δm+1 and
r4 replacing αm+1 and r3 respectively.

Remark 4. Note that condition (15) in Theorem 2 or condition (29) in
Theorem 4 are automatically satisfied when D = X.

3. Applications

Remark 5. As noted in [1]–[5], [8]–[10] our results can be used for pro-
jection methods such as Arnold’s, the generalized minimum residual method
(GMRES), the generalized conjugate residual method (GCR), and for com-
bined Newton-like/finite-difference projection methods.

Remark 6. The results obtained here can also be used to solve equations
of the form F (x) = 0, where F ′ satisfies the autonomous differential equation
([4], [7])

(30) F ′(x) = T (F (x)),

where T : Y → X is a known continuously sufficiently many times Fréchet-
differentiable operator. Since F ′(x∗) = T (F (x∗)) = T (0),

F ′′(x∗) = F ′(x∗)T ′(F (x∗)) = T (0)T ′(0)

etc., we can apply the results obtained here without actually knowing the
solution x∗ of equation (1).

We complete our study with such an example.

Example. Let X = Y = R, D = U(0, 1), and define a function F on D
by

(31) F (x) = ex − 1.

Then it can easily be seen that we can set T (x) = x+ 1 in (30).
Using (4), (6), (8), (12), (16)–(18), and (31) we obtain, for m = 2,

α2 = 1, α3 = e, γ = .5,

r1 = .245253, r2 = .364538, r3 = .411254048, r4 = .3822432.

Hence, our results provide a wider choice for x0 than the corresponding
ones in [9], [10, Theorem 3.1, p. 585]. This observation is important and also
finds applications in step length selection in predictor–corrector continuation
procedures [5], [8], [10].



486 I. K. Argyros

References

[1] I. K. Argyros, Improved error bounds for Newton-like iterations under Chen–Yama-
moto assumptions, Appl. Math. Lett. 10 (1997), no. 4, 97–100.

[2] —, Local convergence theorems for Newton’s method using outer or generalized in-
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