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ON THE GAP BETWEEN THE SEMILOCAL

CONVERGENCE DOMAINS OF TWO NEWTON METHODS

Abstract. We answer a question posed by Cianciaruso and De Pascale:
What is the exact size of the gap between the semilocal convergence domains
of the Newton and the modified Newton method? In particular, is it possible
to close it? Our answer is yes in some cases. Using some ideas of ours and
more precise error estimates we provide a semilocal convergence analysis
for both methods with the following advantages over earlier approaches:
weaker hypotheses; finer error bounds on the distances involved, and at
least as precise information on the location of the solution; and a smaller
gap between the two methods.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution of the nonlinear equation

F (x) = 0,(1.1)

where F is a Fréchet differentiable operator defined on a convex subset D
of a Banach space X with values in a Banach space Y.

The most popular methods for generating a sequence {xn} (n ≥ 0)
approximating a solution of (1.1) are Newton’s method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0, x0 ∈ D),(1.2)

and the modified Newton’s method

xn+1 = xn − F ′(x0)
−1F (xn) (n ≥ 0).(1.3)

There is an extensive literature on local as well as semilocal convergence
results for both methods under various assumptions (see [1]–[4], [8], [9], and
the references there).
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We are motivated by the elegant work by A. Galperin [7] dealing with
the question posed in [4]: What is the exact size of the gap between sufficient
convergence conditions for methods (1.2) and (1.3)

Here is what we know: Let F0 = F ′(x0)
−1F be the normalized operator

for F.

• B. A. Vertgeim [10]: if F ′
0 is λ-Hölder continuous on D (λ ∈ (0, 1]), i.e.

‖F ′
0(x) − F ′

0(y)‖ ≤ l‖x− y‖λ(1.4)

for all x, y ∈ D, then method (1.3) converges to x∗ provided that

h = l‖F0(x0)‖
λ ≤

(

λ

1 + λ

)λ

(1.5)

whereas Newton’s method converges provided that

h ≤ Vλ

(

λ

1 + λ

)λ

,(1.6)

where Vλ is the unique solution of the equation

t
λ

1+λ + λ
λ

1+λ t =

(

1 + λ

λ
λ

1+λ

)λ

.(1.7)

• F. Cianciaruso and E. De Pascale [4]: the Vλ can be replaced by an at
least as large parameter Cλ such that

h ≤ Cλ

(

λ

1 + λ

)λ

,(1.8)

which is the reciprocal of the number

α(λ) = min{b ≥ 1 : max
0≤t≤t(λ)

g(t) ≤ b},(1.9)

where

g(t) =
t1+λ + (1 + λ)t

(1 + t)1+λ − 1
.(1.10)

• A. Galperin [7]: The Cλ can be replaced by an at least as large param-
eter Gλ given by

Gλ =

[

1 + λ

λ
lim

s→∞
yn(0)

]λ

,(1.11)

where for y0(s) = 1− s, yn+1(s) is the unique solution of the equation (with
unknown r)

r1+λ

(1 + λ)[1 − (s+ r)λ]
= yn(s+ r).(1.12)

In fact the following table was given in [7].
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Table 1. Comparison table

λ .1 .2 .3 .4 .5 .6 .7 .8 .9 1

λVλ .204 .339 .453 .553 .644 .727 .803 .873 .939 1

Cλ .542 .590 .640 .692 .746 .799 .852 .903 .952 1

Gλ .605 .686 .748 .801 .846 .885 .920 .950 .976 1

In view of the above table Galperin concluded that the gap between the
convergence domains of methods (1.2) and (1.3) is positive and cannot be
closed under condition (1.4). Moreover, he showed that this is also the case
under the ω-smoothness assumption:

‖F0(x) − F0(y)‖ ≤ ω(‖x− y‖) for all x, y ∈ D(1.13)

where ω is a nonzero nondecreasing concave function on [0,∞) with ω(0) = 0.
Note that a possible choice of ω is

ω(t) = ltλ.(1.14)

Furthermore, under the regular smoothness condition:

(1.15) ω−1[min{‖A(x)‖, ‖A(y)‖} + ‖A(x) −A(y)‖]

− ω−1[min{‖A(x)‖, ‖A(y)‖}] ≤ ‖x− y‖

for A : D → L(X,Y ), x fixed in D and all y ∈ D, Galperin showed that the
gap can be closed for A = F ′

0.
In the next two sections we provide our contributions with the advantages

as already stated in the abstract.

2. Semilocal convergence of methods (1.2) and (1.3). Let us in-
troduce the center λ-Hölder condition

‖F ′
0(x) − I‖ ≤ l0‖x− x0‖

λ for all x ∈ D(2.1)

and set

h0 = l0‖F0(x0)‖
λ ≤

(

λ

1 + λ

)λ

.(2.2)

Clearly

l0 ≤ l(2.3)

and l/l0 may be arbitrarily large [1], [3]. Note that

h ≤

(

λ

1 + λ

)λ

⇒ h0 ≤

(

λ

1 + λ

)λ

,(2.4)

but not vice versa unless l0 = l. In [2] we showed that (2.1) and (2.2) can
replace (1.4) and (1.5) respectively in the study of the convergence of method
(1.3) with the following advantages:
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(A) (1) weaker hypotheses;
(2) finer error bounds on the distances involved;
(3) an at least as precise information on the location of the solution;
(4) smaller gap between methods (1.2) and (1.3).

In the case of method (1.2) we showed that if we use the combination of
conditions (1.4) and (2.1), instead of only (1.4), the condition corresponding
to (1.5) is given for l0 = ld, d ∈ [0, 1], by

h ≤



















[1 + δd/(1 − q)λ]−1δ, δ = (1 + λ)q, λ ∈ [0, 1)

for some q ∈ [0, 1) and η, λ

not zero at the same time,

(1 − δd)−1d for some δ ∈ [0, 1] and λ = 1.

(2.5)

In particular, if we take λ = 1 (Lipschitz case) and δ = 1 conditions
(1.5), (2.5) become

hk = l‖F0(x0)‖ ≤
1

2
,(2.6)

and

hA = l‖F0(x0)‖ ≤
1

2
, l =

l + l0
2

,(2.7)

respectively. Note that (2.6) is the famous Newton–Kantorovich hypothe-
sis [9] which is a sufficient convergence condition for Newton’s method (1.2)
in the Lipschitz case. Note again that

hk ≤
1

2
⇒ hA ≤

1

2
(2.8)

but not vice versa unless l0 = l. For λ ∈ [0, 1) and

q =
1

1 + λ
(2.9)

in view of condition (2.5) we get

h ≤ Aλ

(

λ

1 + λ

)λ

,(2.10)

where

Aλ =

[

d+

(

λ

1 + λ

)λ]−1

.(2.11)

Using e.g. d = 1/2 we obtain the table:

Table 2. Comparison table

λ .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Gλ .605 .686 .748 .801 .846 .885 .920 .950 .976 1

Aλ .777 .833 .874 .904 .926 .948 .964 .978 .990 1
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It shows that the gap between the convergence domains gets even smaller
than in all previous works. In fact it can be closed completely: We note that
since l/l0 (i.e., 1/d) is arbitrarily large there exists a unique λ ∈ [0, 1] such
that

d+

(

λ

1 + λ

)λ

= 1,(2.12)

i.e.

Aλ = 1.(2.13)

That is, taking into account the ratio l/l0 one can sometimes find a λ ∈ [0, 1]
such that the gap is zero.

To further compare our approach with the one in [7], we assume that
the normalized operator F0 is ω0-smooth on D relative to x0 ∈ D:

‖F ′
0(x) − F ′

0(x0)‖ ≤ ω0(‖x− x0‖) for all x ∈ D,(2.14)

where the function ω0 is as ω.

Note that

ω0(t) ≤ ω(t) for all t ∈ [0,∞)(2.15)

and ω/ω0 may be arbitrarily large [1], [3].

If we set

ω0(t) = l0t
λ,(2.16)

then condition (2.14) reduces to (2.1), whereas if l0 = l then ω0(t) = ω(t)
for all t ∈ [0,∞).

Let us introduce the notation

tn = ‖xn − x0‖, εn = ‖xn+1 − xn‖.(2.17)

Define

Ω0(t) =

t\
0

ω0(r) dr(2.18)

and

Ω(t) =

t\
0

ω(r) dr.(2.19)

Consider the map P : R
2
+ → R

2
+ that maps each nonnegative pair (t, ω) to

(t+, ε+) according to the formulas

t+ = t+ ε, ε+ = Ω0(t+ ε) −Ω0(t)(2.20)

in the case of method (1.3) and

t+ = t+ ε, ε+ = Ω(t+ ε) −Ω(t)(2.21)

in the case of method (1.2).
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Finally, define functions f0 and f on [0,∞) by

f0(t) = Ω0(t) − t+ ε0,(2.22)

and

f(t) = Ω(t) − t+ ε0.(2.23)

Then by simply replacing ω, Ω by ω0, Ω0 respectively in Theorem 2.3 of
[7, p. 389], we obtain the following semilocal convergence theorem for
method (1.3):

Theorem 2.1. Assume that the normalized operator F0 is ω0-smooth on

D relative to x0 ∈ D, and

‖F0(x0)‖ ≤ ε0 ≤ α0 −Ω0(α0), α0 = ω−1
0 (1).(2.24)

Then:

(a) The sequence {tn} generated by (2.20) and starting from (0, ε0) con-

verges to t∗, the smaller of the two zeros of function (2.22). Moreover ,
for all n ≥ 0,

tn ≤ tn,(2.25)

εn ≤ εn.(2.26)

(b) The sequence {xn} generated by method (1.3) is well defined , remains

in the ball U(x0, t∞) = {x ∈ X : ‖x − x0‖ ≤ t∞}, t∞ = limn→∞ tn,
and converges to a solution x∞ of equation (1.1). Moreover , for all

n ≥ 0,

‖x∞ − xn‖ ≤ t∞ − tn,(2.27)

‖F0(xn)‖ ≤ εn.(2.28)

(c) The solution x∞ is unique in U(x0, t
∗∗), where t∗∗ is the larger of the

two zeros of f0.
(d) The convergence condition (2.24), the radii r∗, t∗∗, and the bounds

(2.27) and (2.28) are sharp: they are attained for the function F0

which is ω0-smooth on [0,∞).

Remark 2.2. If equality holds in (2.15) our Theorem 2.1 reduces to
Theorem 2.3 of [7]. Otherwise, the advantages (A) mentioned above of our
approach over the one in [7] hold true.

In the case of method (1.2), retaining the notation introduced above we
have:

Lemma 2.3. Under conditions (1.13) and (2.14) the following estimates

hold for method (1.2):

tn+1 ≤ tn + εn(2.29)
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and

εn+1 ≤
Ω(εn)

1 − ω0(tn + εn)
for all n ≥ 0.(2.30)

Proof. In view of (2.14) we obtain

‖F ′
0(xn+1) − F ′

0(x0)‖ ≤ ω0(‖xn+1 − x0‖) ≤ ω0(tn+1) < 1.(2.31)

Using (2.31) and the Banach lemma on invertible operators [9] we obtain
F ′

0(xn+1)
−1 ∈ L(Y,X) and

‖F ′
0(xn+1)

−1‖ ≤
1

1 − ‖F ′
0(xn+1) − F ′

0(x0)‖
≤

1

1 − ω0(tn+1)
.(2.32)

The rest follows exactly as in Lemma 3.1 of [7].

Remark 2.4. If equality holds in (2.15) our Lemma 2.3 reduces to
Lemma 3.1 of [7]. Otherwise it is an improvement since our (tn, εn) are
smaller than the corresponding ones in [7] (obtained by simply replacing ω0

by ω in (2.30)).

Define the map p : R
2 ⊃ Dom p→ R

2 sending any pair in

Dom p = {(t, ε) | t ≥ 0, ε ≥ 0, t+ ε ≤ α0}(2.33)

to (t+, ε+) where

t+ = t+ ε, ε+ =







Ω(ε)

1 − ω0(t+ ε)
, t+ ε < α0,

0, t+ ε = α0.

(2.34)

As in Theorem 4.1 of [6] the convergence domain U = U(l0,l) = {(t0, ε0) |
tn < α0} of (2.34) is given by

U = {(t0, ε0) | 0 ≤ t0 ≤ α0 and 0 ≤ ε0 ≤ χ(t0, α0)},(2.35)

where χ(t, t′) is the unique nonzero and nonincreasing solution of

Ω(z(t))

1 − ω0[t+ z(t)]
= z(t+ z(t)), z(t′) = 0.(2.36)

For ω0, ω fixed we can compose the functions ε = χ(t, t′) and t′ = I(t, ε),
where I is the implicit function defined by χ(t, t′) = ε. In particular we can
compute χ(0, α0).

According to Theorem 4.3 of [6], χ(t, t′) = limn→∞ zn(t), where z0(t) =
t′ − t, and zn+1(t) is the unique solution of the equation

Ω(ε)

1 − ω0(t+ ε)
= zn(t+ ε)(2.37)

for ε ∈ [0, zn(t)].
We can state the following semilocal convergence theorem for Newton’s

method (1.2):
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Theorem 2.5. Suppose that the normalized operator F0 is ω0-smooth

relative to x0 ∈ D and ω-smooth on D. Moreover , assume that

‖F0(x0)‖ ≤ ε0 ≤ χ(0, α0).(2.38)

Then

(a) The scalar sequence {tn} generated by (2.34) starting at (0, ε0) con-

verges to the zero of the function t 7→ χ[t, I(0, ε0)], and for all n ≥ 0,

tn ≤ tn and εn ≤ εn.(2.39)

(b) The sequence {xn} generated by Newton’s method (1.2) is well de-

fined , remains in U(x0, t∞) for all n ≥ 0 and converges to a unique

solution of the equation F (x) = 0 in U(x0, t
∗∗), where t∗∗ is the

greatest zero of f. Moreover , for all n ≥ 0,

‖x∞ − xn‖ ≤ t∞ − tn,(2.40)

‖F0(xn+1)‖ ≤ Ω(εn).(2.41)

Proof. Use estimate (2.32), (2.34) instead of the corresponding estimates

‖F ′
0(xn+1)‖

−1 ≤
1

1 − ω(tn+1)
(2.42)

and (2.34) for ω0 = ω used in [7]. The rest of the proof follows exactly as in
Theorem 3.2 in [7, p. 393].

Remark 2.6. If equality holds in (2.15) our Theorem 2.5 reduces to
Theorem 3.2 of [7]. Otherwise it is an improvement with the advantages (A)
mentioned above.

If the function ω0 is given by (2.16), then the equation (2.37) becomes

lε1+λ

(1 + λ)[1 − dl(t+ ε)λ]
= zn(t+ ε).(2.43)

Then we can show exactly as in Proposition 3.3 in [7]:

Proposition 2.7. For all l > 0,

l1/λχ(0, l−1/λ) = lim
n→∞

yn(0),

where y0(s) = 1 − s, and yn+1(s) is the unique solution of the equation

r1+λ

(1 + λ)[1 − d(s+ r)λ]
= yn(s+ r)(2.44)

and

Aλ = lχ(0, l1/λ)

(

λ

1 + λ

)λ

=

[

1 + λ

λ
lim

n→∞
yn(0)

]λ

.(2.45)
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Remark 2.8. If equality holds in (2.15) then Proposition 2.7 reduces to
Proposition 3.3 in [7], and Gλ = Aλ. Otherwise we have

Gλ ≤ Aλ,(2.46)

which improves the most recent estimate given by Galperin [7].

3. Semilocal convergence under regular smoothness. We refer
the reader to [6]–[8] for the advantages of regular smoothness.

Denote by N the class of nondecreasing functions ω : [0,∞) → [0,∞)
that are concave and vanishing at 0. Given an ω ∈ N, we say that A : D →
L(X,Y ) is ω-regularly continuous on D relative to x ∈ D or, equivalently,
that ω is a regular continuity modulus of A on D relative to X, if

(3.1) ω−1[min{‖A(x)‖, ‖A(y)‖} + ‖A(y) −A(x)‖]

− ω−1(min{‖A(x)‖, ‖A(y)‖}) ≤ ‖y − x‖

for all y ∈ D.
A is ω-regularly continuous on D if the above is valid for all x, y ∈ D.

The operator F is ω-regularly smooth on D if its derivative F ′ is ω-regularly
continuous there. The function ω is then called a regular smoothness modulus

of F on D. A function is called regularly smooth on D if it has a regular
smoothness modulus on D.

Given ω0 ∈ N, define functions ψ and Ψ by

ψ0(u, t) = ω0[(u− t)+ + t] − ω0[(u, t)
+](3.2)

=

{

ω0(u) − ω0(u− t), t ∈ [0, u], u ≥ 0,

ω0(t), t ≥ u ≥ 0,

Ψ(u, t) =

t\
0

ψ(u, τ) dτ,(3.3)

where for a real number a,

a+ = max{a, 0}.(3.4)

We also need to introduce the generator

t+ = t+ ε, ε+ = Ψ(α0, t+ ε) − Ψ(α0, t)(3.5)

and the function

Φ(t) = Ψ(α0, t) − t+ ε0, t ≥ 0.(3.6)

By simply replacing ω by ω0 in the proof of Theorem 5.2 in [7, p. 400]
we can show the following semilocal theorem for method (1.3):

Theorem 3.1. Suppose that ω0 is a regular continuity modulus of F0 on

D relative to x0. If

‖F0(x0)‖ ≤ ε0 ≤ Ω(α0)(3.7)
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then:

(a) The scalar sequence {tn} starting from (0, ε0) and generated by (3.5)
converges to t∗, the smaller of the two zeros of Φ, and for all n ≥ 0,

tn ≤ tn and ε0 ≤ εn.(3.8)

(b) The sequence {xn} generated by modified Newton method (1.3) is

well defined , remains in U(x0, t
∗) for all n ≥ 0 and converges to a

unique solution x∞ of equation (1.1) in U(x0, t
∗∗), where t∗∗ is the

largest zero of Φ:

‖x∞ − xn‖ ≤ t∗ − tn,(3.9)

‖F0(xn)‖ ≤ εn.(3.10)

The convergence condition (3.7), the radius t∗, and the bounds (3.9) and

(3.10) are sharp: they are attained for a function Φ which is ω0-regularly

smooth on [0, α0].

From now on we set

αn = ω−1(‖F ′
0(xn)‖)(3.11)

and assume

(c) ω is a regular continuity modulus of F0 on D and ω0 is a regular
continuity modulus of F0 on D relative to x0.

Then as in Lemma 2.3 above and Lemma 6.1 in [7] we show:

Lemma 3.2. Under the above stated hypothesis (c) we have

tn+1 ≤ tn + εn,(3.12)

αn+1 ≥ (αn − εn)+,(3.13)

δn+1 ≤
Ψ(αn, εn)

1 − ω0(αn+1 + tn+1) − ω0(αn+1)
.(3.14)

Let us define the generator:

(3.15) t+ = t+ ε, α+ = (α− ε)+, ε+ =
Ψ(α, ε)

1 − ω0(α+ + t+) − ω0(α+)
.

Then exactly as in Theorem 6.2 in [7] we can show the semilocal convergence
result for Newton’s method (1.2) under (ω0, ω) regular smoothness.

Theorem 3.3. Under hypothesis (c), further assume that

‖F0(x0)‖ ≤ ε0 ≤ Ω(α0).(3.16)

Then:
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(a) The sequence {tn} generated by (3.16) starting at (0, ε0) converges

to t∗, the smaller of the two zeros of Φ given by (3.6) (for ω0 = ω),
and for all n ≥ 0,

tn ≤ tn and εn ≤ εn.(3.17)

(b) The sequence {xn} generated by Newton’s method (1.2) is well de-

fined , remains in U(x0, t
∗) for all n ≥ 0, and converges to a unique

solution x∞ of equation (1.1) in U(x0, t
∗∗), where t∗∗ is the largest

of the two zeros of Φ. Moreover , for all n ≥ 0,

‖x∞ − xn‖ ≤ t∗ − tn,(3.18)

‖F0(xn+1)‖ ≤ εn,(3.19)

where

εn = εnω0(α0 − tn) −Ω(α0 − tn) +Ω(α0 − tn+1).(3.20)

(c) The convergence condition (3.16), the radius t∗, and the bounds (3.18)
and (3.19) are sharp: they are attained for the function Φ.

Remark 3.4. If ω0 = ω Theorem 3.1 and Lemmas 3.1–3.2 reduce to
Theorem 5.2 and Lemmas 6.1–6.2 of [7] respectively. Otherwise they consti-
tute an improvement with the advantages as stated in the abstract.
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