
APPLICATIONES MATHEMATICAE34,2 (2007), pp. 223�235

L. Gajek (�ód¹)P. Mi± (�ód¹)J. Sªowi«ska (Amsterdam)
OPTIMAL STREAMS OF PREMIUMS IN MULTIPERIODCREDIBILITY MODELS
Abstrat. Optimal arrangement of a stream of insurane premiums for amultiperiod insurane poliy is onsidered. In order to satisfy solveny re-quirements we assume that a weak Axiom of Solveny is satis�ed. Then twooptimization problems are solved: �nding a stream of net premiums thatapproximates optimally 1) future laims, or 2) �antiipating premiums�. Itis shown that the resulting optimal streams of premiums enable di�erenti-ating between poliyholders muh more quikly than one-period redibilitypremiums.1. Introdution. Various aspets of premiums alulation were pre-sented by N. L. Bowers et al. [1℄, H. U. Gerber [8℄, H. Bühlmann [2℄, H. Bühl-mann and A. Gisler [3℄, H. H. Panjer et al. [12℄, to name but a few authorsof monographs only. On the other hand, some authors onsidered noninsur-ane approah to optimal funding of a stream of deterministi liabilities (seee.g. [5℄). Perhaps the most important di�erene between insurane and non-insurane approah to �naning possible laims is that insurane premiumsare alulated for a group of risks in order to over the total sum of all laimsorresponding to those risks. For some insureds the premium alulated inthis way will be lower than their future laims and for some it will be higher,but no one is expeted to return the resulting pro�t or to pay an additionalpost fatum premium. If all risks are independent and identially distributedrandom variables, the system is fair in the sense that it does not privilegeany of the insureds. If, however, the risks are not identially distributed, the2000 Mathematis Subjet Classi�ation: 62C10, 62P05, 91B30.Key words and phrases: multiperiod redibility theory, optimal streams of premiums,progressive solveny requirements, risk pro�le.[223℄ © Instytut Matematyzny PAN, 2007



224 L. Gajek et al.premium is expeted to start di�erentiating as soon as we get informationabout the lient's laim distribution. Nevertheless even then we still do notexpet the lient to pay a post fatum premium to over past indemnities;instead we use the information about the past laims to identify better thelient's laim distribution. More preisely, aording to redibility theory wepredit future laims of the lient on the basis of his past laims.In this paper we propose a new method of alulation of insurane pre-miums when we do not treat eah of the insurane periods separately. Suha general approah allows us to propose a more e�etive way of distributingpremiums through all insurane periods. Speaking more tehnially, everypremium is designed so that it takes into aount the value of the laimswhih have happened so far and the values of all laims predited hereafter.Thus the approah desribed in the paper may be seen as a generalizationof the one-period redibility theory. Premiums alulated in suh a way willalso ensure a more fair treatment of ustomers (for details see Setion 4).1.1. The model. Let us onsider m insurane periods before the begin-ning of a new insurane and T periods of the new insurane. The presentvalue of the laim resulting from period t is modeled by a random variable
Xt, where t = −m, . . . ,−1, 1, . . . , T . Every lient belongs to some lass ofrisk haraterized by a risk pro�le θ (see [3℄). The onditional distribution ofeah Xt, given θ, is assumed to be dominated by a σ-�nite measure ν, witha Radon�Nikodym density w(· | θ). The problem is that we usually do notknow θ, but basing on historial data we only know that some θ are more andsome are less likely. In the present paper the risk pro�le θ is onstant in timefor eah lient. It is worth mentioning that θ may also be time-dependent(see [14℄ and [3℄). Assume that Θ is a random variable with distributionfuntion π(θ) (also alled the strutural funtion of the olletive�see [3℄).Then the laim Xt has the unonditional density funtion

p(x) =
\
w(x|θ) dπ(θ).Let us de�ne

Rm =
−1
∑

i=−m

Xi, St =
t

∑

i=1

Xi,for t = 1, . . . , T . Assume that
Cov(Xi, Xj |Θ = θ) =

{

σ2(θ) for i = j,
0 for i 6= j,and set

E(Xi |Θ = θ) = µ(θ),

E(µ(Θ)) = µ, Var(µ(Θ)) = a2, E(σ2(Θ)) = s2,



Optimal streams of premiums 225for i, j = −m, . . . ,−1, 1, . . . , T . Additionally, we denote by βt(x−m, . . . , x
−1,

x1, . . . , xt−1) a predition of the present value of the lient's laim in period
t taking into aount the values of all his laims in the past. Throughoutthe paper we shall use the following formula for the best linear preditor,derived in redibility theory (see [3, formula (3.1)℄):
(1) βt = βt(X−m, . . . , X

−1, X1, . . . , Xt−1) = zt
St−1 + Rm

t − 1 + m
+ (1 − zt)µ,

t = 1, . . . , T,where
zt =

a2(t − 1 + m)

s2 + a2(t − 1 + m)
, t = 1, . . . , T.If m = 0, we an de�ne βt as µ for t = 1, and by the right side of (1)with R0 = 0 for t > 1. The above preditor βt is optimal in the sense ofminimizing the mean squared error (see e.g. Theorem 3.2 of [3℄). However,also other measures are used to �nd optimal preditors (see e.g. [13℄).Payments of indemnities will be �naned by suessively olleted insur-ane premiums. The insurane premium in eah period will onsist of a netpremium with present value Pt plus premium for the risk, plus the osts andplus return on apital. We de�ne the insurane net premium Pt as follows:

(2) Pt = αt[St−1 + (T − t + 1)βt(X−m, . . . , X
−1, X1, . . . , Xt−1)],

t = 1, . . . , T,where α1, . . . , αT ≥ 0. The parameter αt de�nes the fration of the totalof the laims that have happened so far and the ones that are preditedhereafter whih the ustomer �nanes at period t.1.2. Solveny requirements. The parameter αt is hosen in a way thatthe following weak Axiom of Solveny be satis�ed (see [7℄ and [4℄):
E

t
∑

i=1

Pi ≥ E
t

∑

i=1

Xi, t = 1, . . . , T − 1,(3)
E

T
∑

i=1

Pi = E
T

∑

i=1

Xi.By simple algebra, one an show that (3) is equivalent to(4) t
∑

i=1

αi ≥
t

T
, t = 1, . . . , T − 1,and(5) T

∑

i=1

αi = 1.



226 L. Gajek et al.1.3. The results. Let us observe that
T

∑

t=1

E(Pt − Xt)
2an be treated as the overall measure of the predition risk so our aim isto minimize it over all streams (α1, . . . , αT ) that satisfy (4) and (5). Thisproblem will be solved expliitly in Setion 2 (see Theorem 1).Setion 3 will be devoted to �nding a stream of insurane premiums wellapproximating so-alled antiipating premiums. This optimization problemis motivated by the fat that if we knew all the laims whih were to ourin the future we would be able to alulate the antiipating premiums:(6) Yt = αt

T
∑

i=1

Xi, t = 1, . . . , T,where the oe�ients αt satisfy (4) and (5). Obviously we do not know thelaims in advane, therefore we try to �nd premiums Pt whih in some senseare lose to the antiipating premiums Yt. Theorem 2 says that the weights
αt = 1/T , t = 1, . . . , T,provide suh an approximation. Moreover, the above onstant weights arethe limits, as s/µ → 0, of the weights solving the �rst optimization problem.The main idea of this paper is based on the results of [5℄, [11℄ and [15℄.It is also possible to look at the redibility theory from other points ofview. For instane, Landsman [9℄ onsiders the seond order optimal estima-tion while Bühlmann and Gisler [3℄ investigate time-dependent risk pro�lesof the insureds. For other approahes and extensions we refer the reader tothe monograph of Bühlmann and Gisler [3℄.2. Insurane premiums approximating laims. Let us suppose thatthe net insurane premiums should orrespond as well as possible to thefuture payment in every period. This leads to the following optimizationproblem:(7) minimize

α1,...,αT

T
∑

t=1

E(Pt − Xt)
2subjet to

(8)


































t
∑

i=1

αi ≥ t/T , t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
T

∑

t=1

αt = 1,where onstraints (8) orrespond to solveny restritions (3).



Optimal streams of premiums 227Optimal oe�ients αt that solve (7) subjet to (8) are provided in The-orem 1 below.Theorem 1. If(9) αt =

(

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

+ lt

)

1

kt

, t = 1, . . . , T,where ki and li are given by (11) and (12) below , then (α1, . . . , αT ) is asolution to (7) subjet to (8).Proof. Let us notie that
(10)

T
∑

t=1

E(Pt − Xt)
2

=
T

∑

t=1

α2
t

s2 + a2(t − 1 + m)
[(t − 1)s4 + (2T + m)(t − 1)a2s2

+ T 2a4(t − 1 + m) + T 2µ2((t − 1 + m)a2 + s2)]

− 2

T
∑

t=1

αt

s2 + a2(t − 1 + m)
[(t − 1)s2a2 + T (t − 1 + m)a4

+ Tµ2(s2 + a2(t − 1 + m))] + T (a2 + s2 + µ2).It is easy to show that the foregoing funtion is onvex. Let us de�ne
kt =

1

s2 + a2(t − 1 + m)
[(t − 1)s4 + (2T + m)(t − 1)a2s2(11)

+ T 2a4(t − 1 + m) + T 2µ2((t − 1 + m)a2 + s2)],

lt =
(t − 1)s2a2 + T (t − 1 + m)a4 + Tµ2(s2 + a2(t − 1 + m))

s2 + a2(t − 1 + m)
,(12)and

A = T (a2 + s2 + µ2).Then the Lagrangian for our problem an be written as follows:
L(α, λ, p) =

T
∑

t=1

(α2
t kt − 2αtlt) + A +

T−1
∑

t=1

λt

(

t

T
−

t
∑

i=1

αi

)

+ p

(

1 −
T

∑

i=1

αi

)

.By the Kuhn�Tuker theorem (see [12, Corollary 8.11.2℄), the optimizationproblem (7)�(8) takes the form
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(13)































































































2αtkt − 2lt −
T−1
∑

i=t

λi − p = 0, t = 1, . . . , T ,
λt

(

t

T
−

t
∑

i=1

αi

)

= 0, t = 1, . . . , T − 1,
1 −

T
∑

i=1

αi = 0,

t

T
−

t
∑

i=1

αi ≤ 0, t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
p ∈ R,

λt ≥ 0, t = 1, . . . , T − 1.Assume that λ1 = · · · = λT−1 = 0 and α1, . . . , αT , p > 0. Then from the�rst equation of (13) we obtain
αt =

2lt + p

2kt

, t = 1, . . . , T,and additionally, for t = 1,
p = 2α1k1 − 2l1.Thus(14) αt =

lt + α1k1 − l1
kt

, t = 1, . . . , T.Then, using the third equation of (13), we get
T

∑

i=1

li − l1 + α1k1

ki

= 1,hene
α1 =

1 −
∑T

i=1
(li − l1)/ki

∑T
i=1

k1/ki

.From (14) the optimal hoie of αt is
αt =

(

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

+ lt

)

1

kt

> 0, t = 1, . . . , T,and
p = 2

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

> 0.It is easy to hek that
lt/kt > lt+1/kt+1, kt < kt+1 t = 1, . . . , T − 1.



Optimal streams of premiums 229Therefore(15) αt > αt+1, t = 1, . . . , T − 1.From (15) and the third equation of (13) we have
t

∑

i=1

αi ≥ t/T t = 1, . . . , T − 1.Thus we have obtained the oe�ients αt solving (7) subjet to (8).Theorem 1 enables us to onstrut the stream of insurane premiumswhih well approximates the stream of laims. Formula (9) simpli�es onsid-erably for some speial limit ase. Notie that if s ≪ µ (so that s2/µ2 ≈ 0),from (11) and (12) we get
lt
kt

µ−2

µ−2
≈

T (t − 1 + m)a4/µ2 + T (s2 + a2(t − 1 + m))

T 2(t − 1 + m)a4/µ2 + T 2(s2 + a2(t − 1 + m))
=

1

T
.Therefore, by (9),

αt =















1 −
T

∑

i=1

li
ki

µ−2

µ−2

T
∑

i=1

1

ki

+ lt















1

kt

≈















1 −
T

∑

i=1

1

T

T
∑

i=1

1

ki

+ lt















1

kt

=
1

T
.

We will show in Setion 3 that the above limit ase premiums have furtheroptimality properties.3. Antiipating insurane premiums. If we ould know the future,an insured should pay the total net premium ∑T
i=1

Xi. This total premiumould be distributed over all insurane periods in suh a way that the weakAxiom of Solveny (3) be satis�ed. So let us de�ne
Yt = αt

T
∑

i=1

Xi, t = 1, . . . , T,where the oe�ients αt satisfy (4) and (5). Throughout the paper the ran-dom variables Yt are alled the antiipating premiums. They ould be al-ulated if we were able to use in the premium formula both the laims thathappened in the past and those whih will our hereafter. Suppose that wewant to minimize the overall di�erene between the insurane premiums Pt,given by (2), and the antiipating premiums Yt. To be more preise, we arelooking for a solution to the following problem:(16) minimize
α1,...,αT

T
∑

t=1

E(Pt − Yt)
2,subjet to
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(17)



































t
∑

i=1

αi ≥ t/T , t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
T

∑

t=1

αt = 1.Theorem 2. The weights
αt = 1/T , t = 1, . . . , T,solve the minimization problem (16) subjet to (17).Proof. Let us notie that

T
∑

t=1

E (Pt − Yt)
2 =

T
∑

t=1

α2
t

s2 + (T + m)a2

s2 + a2(t − 1 + m)
(T − t + 1)s2.It is easily seen that the above funtion is onvex. Let us de�ne

kt =
s2 + (T + m)a2

s2 + a2(t − 1 + m)
(T − t + 1)s2.The Lagrangian for our problem is given by

L(α, λ, p) =
T

∑

t=1

α2
t kt +

T−1
∑

t=1

λt

(

t

T
−

t
∑

i=1

αi

)

+ p
(

1 −
T

∑

i=1

αi

)

.By the use of the Kuhn�Tuker theorem (see [12, Corollary 8.11.2℄), theminimization problem (16)�(17) takes the form

(18)































































































2αtkt −
T−1
∑

i=t

λi − p = 0, t = 1, . . . , T ,
λt

(

t

T
−

t
∑

i=1

αi

)

= 0, t = 1, . . . , T − 1,

1 −

T
∑

i=1

αi = 0,

t

T
−

t
∑

i=1

αi ≤ 0, t = 1, . . . , T − 1,
αt ≥ 0, t = 1, . . . , T ,
p ∈ R,

λt ≥ 0, t = 1, . . . , T − 1.



Optimal streams of premiums 231Assume that α1, . . . , αT , p > 0. From the �rst equation of (18) we get
αt =

∑T−1

i=t λi + p

2kt

, t = 1, . . . , T.Note that for t = T ,
p = 2ktαT .Also assume that λt > 0 for t = 1, . . . , T −1. Then from the seond equationof (18) we obtain

αt = 1/T > 0, t = 1, . . . , T,and
p = 2kT /T > 0.Thus

1

T
= αt =

λt +
∑T−1

i=t+1
λi + p

2kt

, t = 1, . . . , T,hene
λt =

2kt

T
−

T−1
∑

i=t+1

λi − p =

(

2kt

T
− p −

T−1
∑

i=t+2

λi

)

− λt+1

=

(

2kt

T
− p −

T−1
∑

i=t+2

λi

)

−

(

2kt+1

T
−

T−1
∑

i=t+2

λi − p

)

=
2(kt − kt+1)

Tfor all t = 1, . . . , T . It is a simple matter to show that
kt > kt+1, t = 1, . . . , T − 1.Therefore

λt =
2(kt − kt+1)

T
> 0, t = 1, . . . , T − 1.Hene(19) αt = 1/T , t = 1, . . . , T,minimize (16). It an be easily heked that the αt given by (19) satisfyrestritions (17) so they provide the solution to our problem. Thus we haveonstruted the insurane premiums

Pt =
1

T

[

St−1 + (T − t + 1)

(

zt
St−1 + Rm

t − 1 + m
+ (1 − zt)µ

)]

, t = 1, . . . , T,where zt = a2(t− 1+m)/[s2 +a2(t− 1+m)], whih are losest, in the senseof (16) and (17), to the antiipating premiums.4. Comparisons with one-period redibility premiums. Let usompare our methodology with the one orresponding to the one-periodredibility theory. First observe that for eah t = 1, . . . , T , the preditor
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βt equals the redibility premium. Let us suppose that αt = 1/T for all
t = 1, . . . , T . The funtion

Ut(θ) = E[Pt − βt |Θ = θ], t = 1, . . . , T,measures expeted di�erenes between the premium's values when applyingour approah and those given by the one-period redibility theory, for anarbitrary �xed risk pro�le θ. It is easy to hek that
Ut(θ) =

s2

T [s2 + a2(t − 1 + m)]

[

t−1
∑

i=1

E(Xi |Θ = θ) − (t − 1)µ
]

.

Notie that U1(θ) = 0. This means that the insurane premiums are equalto eah other for both approahes in the �rst period. Now, let us onsiderthe ase t > 1.Corollary 3.
Ut(θ) > 0 if E(X |Θ = θ) > µ (bad risk ase),
Ut(θ) = 0 if E(X |Θ = θ) = µ (average risk ase),
Ut(θ) < 0 if E(X |Θ = θ) < µ (good risk ase)for every t > 1.This means that bad risks pay higher premiums in our model, averagerisks have the same premiums in both models, and good risks pay lowerpremiums. Additionally we haveCorollary 4.If E(X |Θ = θ) > µ (bad risk ase), then Ut+1 > Ut > 0,and if E(X |Θ = θ) < µ (good risk ase), then Ut+1 < Ut < 0for all t > 1.Let us notie that bad risks will pay higher and higher premiums, om-pared with the one-period redibility theory, and good risks will pay lowerand lower ones. More detailed omparisons are provided in the followingexample.Example 5. Assume that the laims have Gamma distribution withparameters p, θ:

w(x | θ) =
θp

Γ (p)
xp−1e−θx,and Θ is a random variable with a density funtion
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π(θ) =

dc

Γ (c)
θc−1e−dθ.We take T = 10 and m = 4. Additionally let p = 1, c = 21 and d = 4000.From the above it follows that

E(µ(Θ)) = µ = $200,

Var(µ(Θ)) = a2 = 2105.26,
E(σ2(Θ)) = s2 = 42105.26.Let us onsider three poliyholders: insured A with E(X|Θ = θ) = $108(good risk ase), insured B with E(X |Θ = θ) = $200 (average risk ase),and insured C with E(X |Θ = θ) = $292 (bad risk ase).Table 1. Expeted di�erenes between multi-and one-period redibility net premiumsPeriod Good risk Average risk Bad risk

t Ut(θ) Ut(θ) Ut(θ)($) ($) ($)
1 −0.00 0.00 0.00

2 −7.36 0.00 7.36

3 −14.15 0.00 14.15

4 −20.44 0.00 20.44

5 −26.29 0.00 26.29

6 −31.72 0.00 31.72

7 −36.80 0.00 36.80

8 −41.55 0.00 41.55

9 −46.00 0.00 46.00

10 −50.18 0.00 50.18Total −274.50 0.00 274.50Thus, due to our methodology after 10 periods insured A (good risk)saves on average $274.50 while insured C (bad risk) pays on average $274.50more.In Figure 1 it is shown how the average premiums hange in time for goodand bad risks as ompared with the one-period redibility theory premiums.In our model in the last period a bad risk pays over $50 more and a goodrisk pays over $50 less than in the one-period redibility theory. In our modelthe average total sum of premiums of insured A (good risk) is $1457.79.Insured A an buy for this sum only 8 premiums aording to the one-periodredibility theory.In Figure 2 it is shown in suessive periods how Ut(θ) hanges in relationto E[βt |Θ = θ]. In period 10 a bad risk pays the premium 21% higher
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Fig. 1. Expeted net premiums of good and bad risks in a multiperiod redibility model(ompared with one-period redibility premiums).

Fig. 2. Expeted di�erene Ut(θ) as a perentage of net premiums in a one-period redi-bility model.and a good risk pays the premium 31% lower than given by the one-periodredibility theory.The above example shows the advantage of the multiperiod redibilityapproah: it is pro�table for good risks and unpro�table for bad ones. Thusgood risks would be more likely to hoose our ompany whereas bad riskswould rather go to other ones. Therefore we ould lower the premiums su-essively while the ompeting ompanies will have to inrease their premiumsin order to over an inreasing number of bad risks.
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