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Abstra
t. L. C. G. Rogers has given an elementary proof of the fun-damental theorem of asset pri
ing in the 
ase of �nite dis
rete time, dueoriginally to Dalang, Morton and Willinger. The purpose of this paper isto give an even simpler proof of this important theorem without using theexisten
e of regular 
onditional distribution, in 
ontrast to Rogers' proof.1. Introdu
tion. Let (Ω,FT , P ) be a probability spa
e and let F0 ⊂
F1 ⊂ · · · ⊂ FT be a �nite �ltration. At time t ∈ {0, . . . , T} the pri
e ve
torof assets is a random variable St : Ω → Rd. We de�ne a portfolio strategyas a pro
ess θt : Ω → Rd. The interpretation is that Sit is the dis
ountedpri
e of an asset and θit is the amount of the asset the investor holds inhis portfolio. We suppose that the pro
ess S is adapted to (Ft)0≤t≤T (St is
Ft-measurable for all t = 0, . . . , T ) and the pro
ess θ is predi
table (θt is
Ft−1-measurable for all t = 1, . . . , T ). We are interested in self-�nan
ingstrategies only, i.e. portfolios without any exogenous infusion or withdrawalof money. The total gain (or loss) using su
h a strategy is then given by thesum ∑T

t=1〈θt, St − St−1〉.An arbitrage opportunity is a portfolio strategy θ = (θ0, θ1, . . . , θT ) withthe properties(1) T∑

t=1

〈θt, St − St−1〉 ≥ 0 a.s., P
( T∑

t=1

〈θt, St − St−1〉 > 0
)
> 0.The result of Dalang, Morton and Willinger [1℄ is the following:Theorem 1. There does not exist an arbitrage opportunity if and onlyif there exists a probability Q equivalent to P su
h that (St,Ft)
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Q-martingale. In that 
ase, it is possible to 
hoose Q in su
h a way that
dQ/dP is bounded.If su
h a Q exists, then EQ(

∑T
t=1〈θt, St − St−1〉) = 0 for every pre-di
table pro
ess θ = (θ0, θ1, . . . , θT ). Sin
e ∑T

t=1〈θt, St − St−1〉 ≥ 0, we get∑T
t=1〈θt, St−St−1〉 = 0 almost surely. So, it is impossible to �nd an arbitrageopportunity.It is well-known, and a
tually easy to show by an elementary indu
tionargument, that for the proof of Theorem 1 it su�
es to show the following(see e.g. [2℄).Theorem 2. Let (Ω,F, P ) be a probability spa
e, let X : Ω → Rd be an

F-measurable mapping , and let G be a sub-σ-�eld of F. Then there does notexist a G-measurable mapping θ : Ω → Rd su
h that(2) 〈θ,X〉 ≥ 0 a.s. and P (〈θ,X〉 > 0) > 0.if and only if there exists a G-measurable mapping ξ and a measure Q su
hthat dQ = ce−〈ξ,X〉−‖X‖2−‖ξ‖2

dP , X ∈ L1(Q), and EQ(X |G) = 0.The aim of the paper is to give a truly elementary proof of Theorem 2,and therefore, of Theorem 1. Our argument is a further simpli�
ation ofL. C. G. Rogers' te
hnique (see [3℄). A simple, but 
on
eptually more di�
ultproof is given by Yuri Kabanov and Christophe Stri
ker in [4℄. However, theirproof works well in the 
ase of a model where the investor's de
isions arebased on partial information (see [5℄). Probably, our strategy of proof 
annotbe su

essful in the restri
ted information 
ase.
2. Proof of Theorem 2. Throughout this se
tion we assume that

(Ω,F, P ) is a given probability spa
e, G is a sub-σ-�eld of F, andX : Ω → Rdis an F-measurable mapping. Fix a dense 
ountable subset D̃ ⊂ Sd−1, where
Sd−1 denotes the unit sphere in Rd, and put D = {tx ∈ Rd : x ∈ D̃,
t ∈ Q, t ≥ 0}. Note that D is a 
ountable and dense subset of Rd.We �rst 
hange to the probability measure P̃ ∼ P given by

dP̃

dP
= c1e

−‖X‖2

,where c−1
1 = EP (e−‖X‖2

). Then E
P̃
(e‖X‖2

) < ∞ and the P̃ -integrability of
e−〈a,X〉 is ensured for all a ∈ Rd, be
ause e−〈a,X〉 ≤ e‖a‖

2/4 · e‖X‖2 .Next we will show that there exists a G-measurable mapping withspe
i�
 properties. This problem in various forms has been 
onsidered byL. C. G. Rogers (Proposition 2.4 in [3℄) and F. Delbaen (Lemma 4.11 in [2℄).



Dalang�Morton�Willinger theorem 385Lemma 3. There is a G-measurable matrix-valued mapping R : Ω →
Rd×d su
h that

• RR = R a.e. on Ω;
• For any G-measurable mapping α : Ω → Rd we have

(3) 〈α,X〉 = 0 a.s. ⇔ Rα = α a.s.In parti
ular , 〈Rα,X〉 = 0 a.s.Proof. For i, j = 1, . . . , d we put Ai,j(ω) = Xi(ω)Xj(ω). Note that
A(ω) = (Ai,j(ω))di,j=1 is a symmetri
 and non-negative de�nite (d × d)-matrix. Next we de�ne Bi,j(ω) = EP̃ (Ai,j |G)(ω) for i, j = 1, . . . d. Observethat for almost all ω the matrix B(ω) is also symmetri
 and non-negativede�nite. Indeed, Bi,j = Bj,i almost surely and for ea
h q ∈ Qd we �nd a set
Ωq of probability one su
h that q′B(ω)q = E

P̃
(q′Aq |G)(ω) ≥ 0 for ω ∈ Ωq.The 
ountability of Qd implies that there exists a set Ω̂ su
h that P̃ (Ω̂) = 1and q′B(ω)q ≥ 0 on Ω̂ for every q ∈ Qd. Moreover, for every x ∈ Rd thereexists a sequen
e (qn)n∈N of rational ve
tors su
h that qn → x. It followsthat x′Bx ≥ 0 for every x ∈ Rd on Ω̂.Fix an ω ∈ Ω. It is an elementary result from linear algebra that for

B(ω) there exists an orthogonal matrix Y (ω) su
h that Y (ω)B(ω)Y (ω)−1 isa diagonal matrix. In other words, B(ω) ≡ Y −1(ω)B̃(ω)Y (ω), where B̃(ω) =
diag(λ1(ω), . . . , λd(ω)) and λ1(ω) ≥ · · · ≥ λd(ω) ≥ 0. De�ne

R(ω) := lim
t→+∞

e−tB(ω).The G-measurability of B implies that R is also G-measurable. If for some
ω ∈ Ω the rank of B(ω) is k and λi(ω) 6= 0 for i = 1, . . . , k then

R(ω) = Y (ω)−1 diag(0, . . . , 0, 1, . . . , 1)Y (ω),with k zeros on the diagonal. From the de�nition we see that R(ω)R(ω) =
R(ω) for a.a. ω ∈ Ω.Let α : Ω → Rd be G-measurable. Note that the following 
onditions areequivalent:

• 〈α,X〉 = 0 a.e. on Ω;
• α′Aα = 0 a.e. on Ω;
• α′Bα = 0 a.e. on Ω.Now �x ω ∈ Ω and assume that B(ω) = Y (ω)−1B̃(ω)Y (ω) (this is the previ-ously used de
omposition ofB(ω)). Put α̃ = Y (ω)α(ω). Then α′(ω)B(ω)α(ω)

= 0 if and only if α̃1(ω) = · · · = α̃k(ω) = 0. In a similar way R(ω)α(ω) =
α(ω) if and only if α̃1(ω) = · · · = α̃k(ω) = 0. Hen
e, 〈α,X〉 = 0 a.e. on Ω ifand only if Rα = α a.e. on Ω. In parti
ular, 〈Rα,X〉 = 0 a.e. on Ω.
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1 . . .Xjd

d ∈ L1(P̃ ) for any j1, . . . , jd ≥ 0. So, the fun
tions
Yj1,...,jd(ω) = E

P̃
(Xj1

1 . . . Xjd
d |G)(ω) are well de�ned. We put(4) ϕ(x;ω) =

∑

j1,...,jd≥0

(−1)j1+···+jd

j1! . . . jd!
Yj1...jd(ω)xj11 . . . xjdd .We see that ϕ(0;ω) = 1 for a.a. ω ∈ Ω. Our aim is to show that ϕ(·;ω) isa real-analyti
 fun
tion for a.a. ω ∈ Ω. It su�
es to show that the series in(4) is 
onvergent for all x ∈ D and for a.a. ω ∈ Ω. De�ne(5) ϕN (x;ω) =

∑

j1,...,jd≥0, j1+···+jd≤N

(−1)j1+···+jd

j1! . . . jd!
Yj1...jd(ω)xj11 . . . xjdd .Note that ϕN → ϕ a.s. Moreover,

|ϕN(x;ω)| ≤
∑

j1,...,jd≥0

|Yj1...jd(ω)|

j1! . . . jd!
|x1|

j1 . . . |xd|
jd(6)

≤ e‖x‖
2/4EP (e‖X‖2

|G)(ω).For a.a. ω ∈ Ω and for x ∈ D we have ϕ(x;ω) = EP (e−〈x,X〉 |G)(ω). Hen
e,
ϕ(·;ω) is 
onvex for a.a. ω ∈ Ω.We de�ne the G-measurable 
onvex fun
tion ψ : Rd ×Ω → [0,∞) by(7) ψ(x;ω) := ϕ(x;ω) + ‖R(ω)x‖2.We denote by B the set of all ω ∈ Ω su
h that there exists a sequen
e xn ∈ Rdwith ‖xn‖ → ∞ and ψ(xn;ω) ≤ 1. Note that for a.a. ω ∈ Ω \B there existsa unique a∗(ω) at whi
h ψ(·;ω) attains its minimum (the uniqueness followsfrom the analyti
ity and 
onvexity of ψ).We need the following.Fa
t. Let f : Rd → [0,∞) be a 
onvex fun
tion. Then the following
onditions are equivalent :(1) there exists a sequen
e xn ∈ Rd su
h that

‖xn‖ → ∞ and lim sup
n→∞

f(xn) ≤ f(0);(2) there exists a sequen
e xn ∈ Rd su
h that
‖xn‖ → ∞ and lim sup

n→∞
f(xn) <∞;(3) there exists a point x ∈ Sd−1 su
h that f(tx) ≤ f(0) for any t ≥ 0.The only non-trivial impli
ation is (2)⇒(3). Fix a sequen
e xn ∈ Rd sothat ‖xn‖ → ∞ and lim sup f(xn) < ∞. Note that there exists a subse-quen
e so that xn/‖xn‖ is 
onvergent to x∗ ∈ Sd−1. We may assume that
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e xn itself is 
onvergent. Fix t ≥ 0. Then for m ≥ t we have
f

(
t
xm

‖xm‖

)
≤

t

‖xm‖
f(xm) +

‖xm‖ − t

‖xm‖
f(0).Let m→ ∞ to get f(tx∗) ≤ f(0).Put Dm = {x ∈ D : ‖x‖ ≥ m}, m ∈ N. From the above Fa
t we have

B =
⋂∞
m=1

⋃
x∈Dm

{ω ∈ Ω : ψ(x;ω) < 2}, and therefore B ∈ G.For j = 1, . . . , d we de�ne Bj+ (resp. Bj−) as the set of all ω ∈ Ω su
hthat there exists a sequen
e xn ∈ Rd with ‖xn‖ → ∞, ψ(xn;ω) ≤ 1, and
(xn)j ≥ ε (resp. (xn)j ≤ −ε) for some ε > 0. Here (xn)j denotes the jth
oordinate of xn. Similarly to B, one 
an see that Bj+, Bj− ∈ G. Moreover,⋃d
j=1(Bj+ ∪Bj−) = B.Our aim is to show that P̃ (B) = 0. So, to get a 
ontradi
tion we assumethat P̃ (B1+) > 0. Let us show that there exists a G-measurable fun
tion

θ : Ω → Rd su
h that |θ(ω)| = 1 for a.a. ω ∈ B1+, θ(ω) = 0 for a.a.
ω 6∈ B1+, and ψ(tθ(ω);ω) ≤ 1 for any t ≥ 0. For any �xed ω ∈ B1+there exists a unique θ(ω) ∈ Sd−1 su
h that (θ(ω))1 is maximal. Indeed, if
θ′(ω), θ′′(ω) ∈ Sd−1 and (θ′(ω))1 = (θ′′(ω))1 is maximal and less than 1, thenfor θ(ω) = (θ′(ω) + θ′′(ω))/‖θ′(ω) + θ′′(ω)‖ ∈ Sd−1 we have ψ(tθ(ω);ω) ≤ 1for any t ≥ 0 and (θ(ω))1 > (θ′(ω))1. A 
ontradi
tion. So, we have theuniqueness. Note that the fun
tion θ(ω) is G-measurable.We 
laim that 〈θ,X〉 ≥ 0 a.s. and P (〈θ,X〉 > 0) > 0. First note that

ψ(tθ(ω);ω) = E
P̃
(e−t〈θ,X〉 |G)(ω) + t2‖R(ω)θ(ω)‖2for a.a. ω ∈ Ω and any t ∈ Q, t ≥ 0. So, we have R(ω)θ(ω) = 0 a.s.For ea
h n we 
onsider the events

Cn = {ω ∈ B1+ : 〈θ(ω), X(ω)〉 ≤ −1/n}and C =
⋃
n∈NCn. We have

E
P̃
(e−t〈θ,X〉 |G)(ω) ≥ E

P̃
(e−t〈θ,X〉χCn

|G)(ω) ≥ et/nE
P̃
(χCn

|G)(ω)for a.a. ω ∈ B. The 
on
lusion is that E
P̃
(χCn

|G)(ω) = 0 for a.a. ω ∈ B andfor all n ∈ N. By using the monotone 
onvergen
e theorem for 
onditionalexpe
tation we also have E
P̃
(χC |G)(ω) = 0 for a.a. ω ∈ B. Then

0 =
\
B

E
P̃
(χC |G) dP̃ =

\
B

χC dP̃ = P̃ (C).

So, 〈θ(ω), X(ω)〉 ≥ 0 for a.a. ω ∈ Ω. Note that P̃ (〈θ,X〉 > 0) > 0. Indeed,if 〈θ,X〉 = 0 a.e. on Ω, then Rθ = θ; but Rθ = 0 and P (B) > 0, a
ontradi
tion. But the existen
e of su
h a θ is also a 
ontradi
tion. So, wehave proved that P̃ (B) = 0.Therefore, the set {x ∈ Rd : ψ(x;ω) ≤ 1} is 
ompa
t and there exists aunique a∗ ≡ a∗(ω) su
h that ψ(a∗;ω) ≤ ψ(a;ω) for all a ∈ Rd. For any open



388 A. Edigarian and A. Rygielball V ⊆ Rd we have(8) {a∗ ∈ V } =
⋃

q∈Qd∩V

⋂

p∈Qd\V

{ψ(ω; q) < ψ(ω; p)}.

Sin
e ψ is G-measurable, (8) implies that a∗ is also G-measurable.Now we show that R(ω)a∗(ω) = 0 for this minimising 
hoi
e. Supposenot, and de�ne ã(ω) := a∗(ω) − 1
2R(ω)a∗(ω). For a.a. ω ∈ Ω we have

〈ã(ω), X(ω)〉 = 〈a∗(ω), X(ω)〉 and R(ω)ã(ω) = 1
2R(ω)a∗(ω),and therefore,

ψ(ω; a∗) = EP̃ (e−〈a∗,X〉 |G)(ω) + ‖R(ω)a∗‖2

> EP̃ (e−〈ã,X〉 |G)(ω) + 1
4‖R(ω)a∗‖2 = ψ(ω; ã),a 
ontradi
tion.We have ∂ψ

∂xk
(a∗(ω);ω) = ∂ϕ

∂xk
(a∗(ω);ω) = 0 for any k = 1, . . . , d, andtherefore,(9) E

P̃
(Xke

−〈a∗(ω),X〉 |G)(ω) = 0 for a.a. ω ∈ Ω and k = 1, . . . , d.Note that
0 = E

P̃
(Xke

−〈a∗(ω),X〉−‖a∗(ω)‖2

|G)(ω) = E
P̃
(Xke

−〈a∗,X〉−‖a∗‖2

|G)(ω)for a.a. ω ∈ Ω and k = 1, . . . , d. Now it su�
es to take ξ = a∗.
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