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AN ELEMENTARY PROOF OF THE
DALANG-MORTON-WILLINGER THEOREM

Abstract. L. C. G. Rogers has given an elementary proof of the fun-
damental theorem of asset pricing in the case of finite discrete time, due
originally to Dalang, Morton and Willinger. The purpose of this paper is
to give an even simpler proof of this important theorem without using the
existence of regular conditional distribution, in contrast to Rogers’ proof.

1. Introduction. Let ({2,F7, P) be a probability space and let g C
$1 C --- C §r be a finite filtration. At time ¢ € {0,...,T} the price vector
of assets is a random variable S; : 2 — R?. We define a portfolio strategy
as a process 0; : £2 — R? The interpretation is that S! is the discounted
price of an asset and 6} is the amount of the asset the investor holds in
his portfolio. We suppose that the process S is adapted to (§¢)o<i<r (St is
Fr-measurable for all ¢ = 0,...,T) and the process 6 is predictable (6, is
§t—1-measurable for all ¢ = 1,...,7). We are interested in self-financing
strategies only, i.e. portfolios without any exogenous infusion or withdrawal
of money. The total gain (or loss) using such a strategy is then given by the
sum ZtT:1<9t7 Sy — Si-1)-

An arbitrage opportunity is a portfolio strategy 6 = (0o, 01, ...,07) with
the properties

T T
(1) Z<9t, Sy — St71> >0 a.s., P(Z<9t, Sy — St71> > 0) > 0.

t=1 t=1
The result of Dalang, Morton and Willinger [1] is the following:
THEOREM 1. There does not exist an arbitrage opportunity if and only
if there exists a probability ) equivalent to P such that (St,St)tTZO s a
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Q-martingale. In that case, it is possible to choose ) in such a way that

dQ/dP is bounded.

If such a @ exists, then EQ(ZtT:1<9tuSt — Si—1)) = 0 for every pre-
dictable process 6 = (0,01, ...,07). Since Zle(et,& — Si—1) > 0, we get
Zthl (0, St —Si¢—1) = 0 almost surely. So, it is impossible to find an arbitrage
opportunity.

It is well-known, and actually easy to show by an elementary induction
argument, that for the proof of Theorem 1 it suffices to show the following

(see e.g. [2]).

THEOREM 2. Let (£2,§, P) be a probability space, let X : 2 — R? be an
§-measurable mapping, and let & be a sub-o-field of §. Then there does not
exist a &-measurable mapping 0 : 2 — R? such that

(2) 0,X)>0 as. and P((#,X)>0)>0.

if and only if there exists a &-measurable mapping & and a measure Q) such

that dQ = ce~&X)-IXIP=IEI’gp X € LY(Q), and Eg(X | &) = 0.

The aim of the paper is to give a truly elementary proof of Theorem 2,
and therefore, of Theorem 1. Our argument is a further simplification of
L. C. G. Rogers’ technique (see [3]). A simple, but conceptually more difficult
proof is given by Yuri Kabanov and Christophe Stricker in [4]. However, their
proof works well in the case of a model where the investor’s decisions are
based on partial information (see [5]). Probably, our strategy of proof cannot
be successful in the restricted information case.

2. Proof of Theorem 2. Throughout this section we assume that
(12,5, P) is a given probability space, & is a sub-o-field of §, and X : 2 — R4
is an §-measurable mapping. Fix a dense countable subset DcC Sd-1 where
S9=1 denotes the unit sphere in R, and put D = {tx € R? : 2 € D,
t € Q, t > 0}. Note that D is a countable and dense subset of R

We first change to the probability measure P~P given by
db _ . IxIP

EZCI€

where ¢; ! = Ep(e’”XHQ). Then E}S(ellelz) < oo and the P-integrability of
e~(@X) is ensured for all a € R%, because e~ (%) < ellall®/4 . ol X%,
Next we will show that there exists a ®-measurable mapping with

specific properties. This problem in various forms has been considered by
L. C. G. Rogers (Proposition 2.4 in [3]) and F. Delbaen (Lemma 4.11 in [2]).
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LEMMA 3. There is a &-measurable matriz-valued mapping R : 2 —
R4 such that

e RR=R a.e. on §2;

e For any ®-measurable mapping o : 2 — R we have
(3) (0, X) =0 as < Ra=aas.
In particular, (Ro, X) =0 a.s.

Proof. For i,j = 1,...,d we put 4;(w) = X;(w)X;(w). Note that
Alw) = (Ai’j(w))f’jzl is a symmetric and non-negative definite (d x d)-
matrix. Next we define B; j(w) = Ep(A;;|®)(w) for i,j =1,...d. Observe
that for almost all w the matrix B(w) is also symmetric and non-negative
definite. Indeed, B; ; = B;; almost surely and for each ¢ € Q% we find a set
§2, of probability one such that ¢'B(w)q = E3(¢'Aq| &)(w) > 0 for w € £2,.
The countability of Q¢ implies that there exists a set 2 such that ﬁ(ﬁ) =1
and ¢'B(w)q > 0 on Q for every q € Q9. Moreover, for every z € R? there
exists a sequence (gn)nen of rational vectors such that ¢, — z. It follows
that 2/ Bx > 0 for every z € RY on 2.

Fix an w € 2. It is an elementary result from linear algebra that for
B(w) there exists an orthogonal matrix Y (w) such that Y (w)B(w)Y (w)~! is
a diagonal matrix. In other words, B(w) = Y~ }(w)B(w)Y (w), where B(w) =
diag(A1(w), ..., Ag(w)) and Aj(w) > --- > Ag(w) > 0. Define

R(w) = . ligrn et

The &-measurability of B implies that R is also &-measurable. If for some

w € §2 the rank of B(w) is k and \j(w) # 0 for i =1,..., k then
R(w) = Y (w) tdiag(0,...,0,1,...,1)Y (w),

with k zeros on the diagonal. From the definition we see that R(w)R(w) =
R(w) for a.a. w € £2.

Let o : 2 — R% be B-measurable. Note that the following conditions are
equivalent:

o (a,X)=0a.e. on {2
e &/Aa =0 a.e. on 2;
e o/ Ba =0 a.e. on 2.

Now fix w € £2 and assume that B(w) = Y (w) ' B(w)Y (w) (this is the previ-
ously used decomposition of B(w)). Put @ = Y (w)a(w). Then o/ (w) B(w)a(w)
= 0 if and only if a1(w) = -+ = ax(w) = 0. In a similar way R(w)a(w) =
a(w) if and only if @1 (w) = -+ = ag(w) = 0. Hence, (o, X) =0 a.e. on 2 if
and only if R = « a.e. on (2. In particular, (Ra, X) =0 a.e. on (2. =
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We have X{l ...ng € Ll(ﬁ) for any ji,...,j4 > 0. So, the functions
Yi,..ju(w) = E5(X{' ... X}"| 8)(w) are well defined. We put

() ooy = Y T

J15e,Ja=0

o J1 Ja
g V@)t

We see that ¢(0;w) = 1 for a.a. w € 2. Our aim is to show that ¢(-;w) is
a real-analytic function for a.a. w € (2. It suffices to show that the series in
(4) is convergent for all x € D and for a.a. w € {2. Define

(5)  en(iw) = >

(-1t I
—_— Yﬂ]d(w)xl .. .LIZ'd .

11! 51
lye§a>0, jibdjg<N L Id
Note that o — ¢ a.s. Moreover,
Yo i (w . .
(6) ’@N(x;wﬂ < Z M]wllﬁ...\xdvd
g0 J1:---7d:
< e||x”2/4Ep(€”X”2|(’5)(w).

For a.a. w € 2 and for € D we have ¢(z;w) = Ep(e” %) | 8)(w). Hence,
¢(;w) is convex for a.a. w € (2.
We define the ®-measurable convex function 1 : R? x £2 — [0, 00) by

(7) Y(@;w) = p(z;0) + | R(w)z|*.

We denote by B the set of all w € £2 such that there exists a sequence z,, € R%
with ||z, || — oo and ¥ (z,;w) < 1. Note that for a.a. w € 2\ B there exists
a unique ¢*(w) at which 9 (-;w) attains its minimum (the uniqueness follows
from the analyticity and convexity of ).

We need the following.

FACT. Let f : R? — [0,00) be a convex function. Then the following
conditions are equivalent:

(1) there exists a sequence x,, € R? such that

|xn]| — 00 and limsup f(x,) < f(0);

n—oo
(2) there exists a sequence ,, € R such that

|zn|| = 00 and limsup f(zy) < oo;
n—oo

(3) there exists a point x € S41 such that f(tx) < f(0) for any t > 0.
The only non-trivial implication is (2)=(3). Fix a sequence z,, € R? so

that ||z,|| — oo and limsup f(z,) < oo. Note that there exists a subse-
quence so that x,/||z,|| is convergent to z* € S9!, We may assume that
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the sequence x,, itself is convergent. Fix ¢ > 0. Then for m > ¢ we have

Tm t
f (t meu> < Tl T+ T 1O

Let m — oo to get f(tz*) < f(0).

Put D,, = {x € D : ||z|| > m}, m € N. From the above Fact we have
B = =1 Uzep, {w € 2 :9(z;w) < 2}, and therefore B € &.

For j =1,...,d we define B; (resp. B;_) as the set of all w € {2 such
that there exists a sequence x,, € R? with ||2,| — oo, ¥(zn;w) < 1, and
(xn); > € (resp. (zn); < —¢) for some € > 0. Here (x,); denotes the jth
coordinate of x,. Similarly to B, one can see that B, B;_ € &. Moreover,
Uj_(Bj+ UB;-) = B.

Our aim is to show that ﬁ(B) = 0. So, to get a contradiction we assume
that ]S(BH) > 0. Let us show that there exists a &-measurable function
0 : 2 — R? such that |#(w)| = 1 for a.a. w € By, O(w) = 0 for a.a.
w & Bit, and Y(t(w);w) < 1 for any ¢t > 0. For any fixed w € By
there exists a unique 0(w) € S9! such that (f(w)); is maximal. Indeed, if
0'(w),0"(w) € S 1 and (¢'(w))1 = (0" (w))1 is maximal and less than 1, then
for O(w) = (6'(w) + 0"(W))/|0'(w) + 0" (w)|| € S~ we have ¥ (t0(w);w) < 1
for any t > 0 and (6(w)); > (6'(w))1. A contradiction. So, we have the
uniqueness. Note that the function f(w) is B-measurable.

We claim that (0, X) > 0 a.s. and P((6, X) > 0) > 0. First note that

P(t(w);w) = Ep(e %) | &) (w) + 2| R(w)0(w)|”
for a.a. w € 2 and any t € Q, t > 0. So, we have R(w)f(w) =0 a.s.
For each n we consider the events

Cp={we B} : (fw),X(w)) <—-1/n}
and C = {J,,cry Cn. We have
Ep(e Y| 8)(w) = Ep(e " xe, |8)(w) > " Ep(xe, |6)(w)
for a.a. w € B. The conclusion is that E5(xc, | 8)(w) = 0 for a.a. w € B and

for all n € N. By using the monotone convergence theorem for conditional
expectation we also have E5(xc |®)(w) = 0 for a.a. w € B. Then

0= |Ep(xc|6)dP = | xcdP = P(C).
B B
So, (A(w), X (w)) > 0 for a.a. w € £2. Note that P((§, X) > 0) > 0. Indeed,
if<9X>:0ae on {2, then R = 0; but R = 0 and P(B) > 0, a
contradiction. But the existence of such a 6 is also a contradiction. So, we
have proved that P(B) = 0.
Therefore, the set {z € R? : 1)(x;w) < 1} is compact and there exists a

unique a* = a*(w) such that ¥(a*;w) < ¥(a;w) for all a € RY. For any open
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ball V C R? we have

(8) {arevi= {J () {¢wq) <vwp)}
qeQINV peQi\V

Since v is B-measurable, (8) implies that a* is also B-measurable.

Now we show that R(w) *(w ) = 0 for this minimising choice. Suppose
not, and define a(w) := a*(w) — 5 R(w)a*(w). For a.a. w € 2 we have

(a(w), X(w)) = <a*(W)7X(W)> and  R(w)a(w) = gR(w)a’(w),
and therefore,
Y(wia®) = Ep(e”" | &) (w) + [ R(w)a"|?
> Ep(e” @Y 8)(w) + | Rw)a"||? = (w;a),
a Contradictiog{b oh) — P2 (e — 0 1 L o
theli\;zr}e)l?,ve o, (@ (w)iw) = (a*(w);w) = 0 for any k = 1,...,d, an
(9) Elg(Xke_<‘ﬁ(”)’X> |&)(w)=0 foraa weRandk=1,...,d.
Note that
0— Eﬁ(Xke%a*(w),X%Ha DI” 1 &) (w) = EIS(Xke%a*,X%Ha*IIQ | &) (w)
for a.a. w e 2 and k=1,...,d. Now it suffices to take & = a™.
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