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AN ELEMENTARY PROOF OF THEDALANG�MORTON�WILLINGER THEOREM

Abstrat. L. C. G. Rogers has given an elementary proof of the fun-damental theorem of asset priing in the ase of �nite disrete time, dueoriginally to Dalang, Morton and Willinger. The purpose of this paper isto give an even simpler proof of this important theorem without using theexistene of regular onditional distribution, in ontrast to Rogers' proof.1. Introdution. Let (Ω,FT , P ) be a probability spae and let F0 ⊂
F1 ⊂ · · · ⊂ FT be a �nite �ltration. At time t ∈ {0, . . . , T} the prie vetorof assets is a random variable St : Ω → Rd. We de�ne a portfolio strategyas a proess θt : Ω → Rd. The interpretation is that Sit is the disountedprie of an asset and θit is the amount of the asset the investor holds inhis portfolio. We suppose that the proess S is adapted to (Ft)0≤t≤T (St is
Ft-measurable for all t = 0, . . . , T ) and the proess θ is preditable (θt is
Ft−1-measurable for all t = 1, . . . , T ). We are interested in self-�naningstrategies only, i.e. portfolios without any exogenous infusion or withdrawalof money. The total gain (or loss) using suh a strategy is then given by thesum ∑T

t=1〈θt, St − St−1〉.An arbitrage opportunity is a portfolio strategy θ = (θ0, θ1, . . . , θT ) withthe properties(1) T∑

t=1

〈θt, St − St−1〉 ≥ 0 a.s., P
( T∑

t=1

〈θt, St − St−1〉 > 0
)
> 0.The result of Dalang, Morton and Willinger [1℄ is the following:Theorem 1. There does not exist an arbitrage opportunity if and onlyif there exists a probability Q equivalent to P suh that (St,Ft)
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Q-martingale. In that ase, it is possible to hoose Q in suh a way that
dQ/dP is bounded.If suh a Q exists, then EQ(

∑T
t=1〈θt, St − St−1〉) = 0 for every pre-ditable proess θ = (θ0, θ1, . . . , θT ). Sine ∑T

t=1〈θt, St − St−1〉 ≥ 0, we get∑T
t=1〈θt, St−St−1〉 = 0 almost surely. So, it is impossible to �nd an arbitrageopportunity.It is well-known, and atually easy to show by an elementary indutionargument, that for the proof of Theorem 1 it su�es to show the following(see e.g. [2℄).Theorem 2. Let (Ω,F, P ) be a probability spae, let X : Ω → Rd be an

F-measurable mapping , and let G be a sub-σ-�eld of F. Then there does notexist a G-measurable mapping θ : Ω → Rd suh that(2) 〈θ,X〉 ≥ 0 a.s. and P (〈θ,X〉 > 0) > 0.if and only if there exists a G-measurable mapping ξ and a measure Q suhthat dQ = ce−〈ξ,X〉−‖X‖2−‖ξ‖2

dP , X ∈ L1(Q), and EQ(X |G) = 0.The aim of the paper is to give a truly elementary proof of Theorem 2,and therefore, of Theorem 1. Our argument is a further simpli�ation ofL. C. G. Rogers' tehnique (see [3℄). A simple, but oneptually more di�ultproof is given by Yuri Kabanov and Christophe Striker in [4℄. However, theirproof works well in the ase of a model where the investor's deisions arebased on partial information (see [5℄). Probably, our strategy of proof annotbe suessful in the restrited information ase.
2. Proof of Theorem 2. Throughout this setion we assume that

(Ω,F, P ) is a given probability spae, G is a sub-σ-�eld of F, andX : Ω → Rdis an F-measurable mapping. Fix a dense ountable subset D̃ ⊂ Sd−1, where
Sd−1 denotes the unit sphere in Rd, and put D = {tx ∈ Rd : x ∈ D̃,
t ∈ Q, t ≥ 0}. Note that D is a ountable and dense subset of Rd.We �rst hange to the probability measure P̃ ∼ P given by

dP̃

dP
= c1e

−‖X‖2

,where c−1
1 = EP (e−‖X‖2

). Then E
P̃
(e‖X‖2

) < ∞ and the P̃ -integrability of
e−〈a,X〉 is ensured for all a ∈ Rd, beause e−〈a,X〉 ≤ e‖a‖

2/4 · e‖X‖2 .Next we will show that there exists a G-measurable mapping withspei� properties. This problem in various forms has been onsidered byL. C. G. Rogers (Proposition 2.4 in [3℄) and F. Delbaen (Lemma 4.11 in [2℄).



Dalang�Morton�Willinger theorem 385Lemma 3. There is a G-measurable matrix-valued mapping R : Ω →
Rd×d suh that

• RR = R a.e. on Ω;
• For any G-measurable mapping α : Ω → Rd we have

(3) 〈α,X〉 = 0 a.s. ⇔ Rα = α a.s.In partiular , 〈Rα,X〉 = 0 a.s.Proof. For i, j = 1, . . . , d we put Ai,j(ω) = Xi(ω)Xj(ω). Note that
A(ω) = (Ai,j(ω))di,j=1 is a symmetri and non-negative de�nite (d × d)-matrix. Next we de�ne Bi,j(ω) = EP̃ (Ai,j |G)(ω) for i, j = 1, . . . d. Observethat for almost all ω the matrix B(ω) is also symmetri and non-negativede�nite. Indeed, Bi,j = Bj,i almost surely and for eah q ∈ Qd we �nd a set
Ωq of probability one suh that q′B(ω)q = E

P̃
(q′Aq |G)(ω) ≥ 0 for ω ∈ Ωq.The ountability of Qd implies that there exists a set Ω̂ suh that P̃ (Ω̂) = 1and q′B(ω)q ≥ 0 on Ω̂ for every q ∈ Qd. Moreover, for every x ∈ Rd thereexists a sequene (qn)n∈N of rational vetors suh that qn → x. It followsthat x′Bx ≥ 0 for every x ∈ Rd on Ω̂.Fix an ω ∈ Ω. It is an elementary result from linear algebra that for

B(ω) there exists an orthogonal matrix Y (ω) suh that Y (ω)B(ω)Y (ω)−1 isa diagonal matrix. In other words, B(ω) ≡ Y −1(ω)B̃(ω)Y (ω), where B̃(ω) =
diag(λ1(ω), . . . , λd(ω)) and λ1(ω) ≥ · · · ≥ λd(ω) ≥ 0. De�ne

R(ω) := lim
t→+∞

e−tB(ω).The G-measurability of B implies that R is also G-measurable. If for some
ω ∈ Ω the rank of B(ω) is k and λi(ω) 6= 0 for i = 1, . . . , k then

R(ω) = Y (ω)−1 diag(0, . . . , 0, 1, . . . , 1)Y (ω),with k zeros on the diagonal. From the de�nition we see that R(ω)R(ω) =
R(ω) for a.a. ω ∈ Ω.Let α : Ω → Rd be G-measurable. Note that the following onditions areequivalent:

• 〈α,X〉 = 0 a.e. on Ω;
• α′Aα = 0 a.e. on Ω;
• α′Bα = 0 a.e. on Ω.Now �x ω ∈ Ω and assume that B(ω) = Y (ω)−1B̃(ω)Y (ω) (this is the previ-ously used deomposition ofB(ω)). Put α̃ = Y (ω)α(ω). Then α′(ω)B(ω)α(ω)

= 0 if and only if α̃1(ω) = · · · = α̃k(ω) = 0. In a similar way R(ω)α(ω) =
α(ω) if and only if α̃1(ω) = · · · = α̃k(ω) = 0. Hene, 〈α,X〉 = 0 a.e. on Ω ifand only if Rα = α a.e. on Ω. In partiular, 〈Rα,X〉 = 0 a.e. on Ω.



386 A. Edigarian and A. RygielWe have Xj1
1 . . .Xjd

d ∈ L1(P̃ ) for any j1, . . . , jd ≥ 0. So, the funtions
Yj1,...,jd(ω) = E

P̃
(Xj1

1 . . . Xjd
d |G)(ω) are well de�ned. We put(4) ϕ(x;ω) =

∑

j1,...,jd≥0

(−1)j1+···+jd

j1! . . . jd!
Yj1...jd(ω)xj11 . . . xjdd .We see that ϕ(0;ω) = 1 for a.a. ω ∈ Ω. Our aim is to show that ϕ(·;ω) isa real-analyti funtion for a.a. ω ∈ Ω. It su�es to show that the series in(4) is onvergent for all x ∈ D and for a.a. ω ∈ Ω. De�ne(5) ϕN (x;ω) =

∑

j1,...,jd≥0, j1+···+jd≤N

(−1)j1+···+jd

j1! . . . jd!
Yj1...jd(ω)xj11 . . . xjdd .Note that ϕN → ϕ a.s. Moreover,

|ϕN(x;ω)| ≤
∑

j1,...,jd≥0

|Yj1...jd(ω)|

j1! . . . jd!
|x1|

j1 . . . |xd|
jd(6)

≤ e‖x‖
2/4EP (e‖X‖2

|G)(ω).For a.a. ω ∈ Ω and for x ∈ D we have ϕ(x;ω) = EP (e−〈x,X〉 |G)(ω). Hene,
ϕ(·;ω) is onvex for a.a. ω ∈ Ω.We de�ne the G-measurable onvex funtion ψ : Rd ×Ω → [0,∞) by(7) ψ(x;ω) := ϕ(x;ω) + ‖R(ω)x‖2.We denote by B the set of all ω ∈ Ω suh that there exists a sequene xn ∈ Rdwith ‖xn‖ → ∞ and ψ(xn;ω) ≤ 1. Note that for a.a. ω ∈ Ω \B there existsa unique a∗(ω) at whih ψ(·;ω) attains its minimum (the uniqueness followsfrom the analytiity and onvexity of ψ).We need the following.Fat. Let f : Rd → [0,∞) be a onvex funtion. Then the followingonditions are equivalent :(1) there exists a sequene xn ∈ Rd suh that

‖xn‖ → ∞ and lim sup
n→∞

f(xn) ≤ f(0);(2) there exists a sequene xn ∈ Rd suh that
‖xn‖ → ∞ and lim sup

n→∞
f(xn) <∞;(3) there exists a point x ∈ Sd−1 suh that f(tx) ≤ f(0) for any t ≥ 0.The only non-trivial impliation is (2)⇒(3). Fix a sequene xn ∈ Rd sothat ‖xn‖ → ∞ and lim sup f(xn) < ∞. Note that there exists a subse-quene so that xn/‖xn‖ is onvergent to x∗ ∈ Sd−1. We may assume that



Dalang�Morton�Willinger theorem 387the sequene xn itself is onvergent. Fix t ≥ 0. Then for m ≥ t we have
f

(
t
xm

‖xm‖

)
≤

t

‖xm‖
f(xm) +

‖xm‖ − t

‖xm‖
f(0).Let m→ ∞ to get f(tx∗) ≤ f(0).Put Dm = {x ∈ D : ‖x‖ ≥ m}, m ∈ N. From the above Fat we have

B =
⋂∞
m=1

⋃
x∈Dm

{ω ∈ Ω : ψ(x;ω) < 2}, and therefore B ∈ G.For j = 1, . . . , d we de�ne Bj+ (resp. Bj−) as the set of all ω ∈ Ω suhthat there exists a sequene xn ∈ Rd with ‖xn‖ → ∞, ψ(xn;ω) ≤ 1, and
(xn)j ≥ ε (resp. (xn)j ≤ −ε) for some ε > 0. Here (xn)j denotes the jthoordinate of xn. Similarly to B, one an see that Bj+, Bj− ∈ G. Moreover,⋃d
j=1(Bj+ ∪Bj−) = B.Our aim is to show that P̃ (B) = 0. So, to get a ontradition we assumethat P̃ (B1+) > 0. Let us show that there exists a G-measurable funtion

θ : Ω → Rd suh that |θ(ω)| = 1 for a.a. ω ∈ B1+, θ(ω) = 0 for a.a.
ω 6∈ B1+, and ψ(tθ(ω);ω) ≤ 1 for any t ≥ 0. For any �xed ω ∈ B1+there exists a unique θ(ω) ∈ Sd−1 suh that (θ(ω))1 is maximal. Indeed, if
θ′(ω), θ′′(ω) ∈ Sd−1 and (θ′(ω))1 = (θ′′(ω))1 is maximal and less than 1, thenfor θ(ω) = (θ′(ω) + θ′′(ω))/‖θ′(ω) + θ′′(ω)‖ ∈ Sd−1 we have ψ(tθ(ω);ω) ≤ 1for any t ≥ 0 and (θ(ω))1 > (θ′(ω))1. A ontradition. So, we have theuniqueness. Note that the funtion θ(ω) is G-measurable.We laim that 〈θ,X〉 ≥ 0 a.s. and P (〈θ,X〉 > 0) > 0. First note that

ψ(tθ(ω);ω) = E
P̃
(e−t〈θ,X〉 |G)(ω) + t2‖R(ω)θ(ω)‖2for a.a. ω ∈ Ω and any t ∈ Q, t ≥ 0. So, we have R(ω)θ(ω) = 0 a.s.For eah n we onsider the events

Cn = {ω ∈ B1+ : 〈θ(ω), X(ω)〉 ≤ −1/n}and C =
⋃
n∈NCn. We have

E
P̃
(e−t〈θ,X〉 |G)(ω) ≥ E

P̃
(e−t〈θ,X〉χCn

|G)(ω) ≥ et/nE
P̃
(χCn

|G)(ω)for a.a. ω ∈ B. The onlusion is that E
P̃
(χCn

|G)(ω) = 0 for a.a. ω ∈ B andfor all n ∈ N. By using the monotone onvergene theorem for onditionalexpetation we also have E
P̃
(χC |G)(ω) = 0 for a.a. ω ∈ B. Then

0 =
\
B

E
P̃
(χC |G) dP̃ =

\
B

χC dP̃ = P̃ (C).

So, 〈θ(ω), X(ω)〉 ≥ 0 for a.a. ω ∈ Ω. Note that P̃ (〈θ,X〉 > 0) > 0. Indeed,if 〈θ,X〉 = 0 a.e. on Ω, then Rθ = θ; but Rθ = 0 and P (B) > 0, aontradition. But the existene of suh a θ is also a ontradition. So, wehave proved that P̃ (B) = 0.Therefore, the set {x ∈ Rd : ψ(x;ω) ≤ 1} is ompat and there exists aunique a∗ ≡ a∗(ω) suh that ψ(a∗;ω) ≤ ψ(a;ω) for all a ∈ Rd. For any open



388 A. Edigarian and A. Rygielball V ⊆ Rd we have(8) {a∗ ∈ V } =
⋃

q∈Qd∩V

⋂

p∈Qd\V

{ψ(ω; q) < ψ(ω; p)}.

Sine ψ is G-measurable, (8) implies that a∗ is also G-measurable.Now we show that R(ω)a∗(ω) = 0 for this minimising hoie. Supposenot, and de�ne ã(ω) := a∗(ω) − 1
2R(ω)a∗(ω). For a.a. ω ∈ Ω we have

〈ã(ω), X(ω)〉 = 〈a∗(ω), X(ω)〉 and R(ω)ã(ω) = 1
2R(ω)a∗(ω),and therefore,

ψ(ω; a∗) = EP̃ (e−〈a∗,X〉 |G)(ω) + ‖R(ω)a∗‖2

> EP̃ (e−〈ã,X〉 |G)(ω) + 1
4‖R(ω)a∗‖2 = ψ(ω; ã),a ontradition.We have ∂ψ

∂xk
(a∗(ω);ω) = ∂ϕ

∂xk
(a∗(ω);ω) = 0 for any k = 1, . . . , d, andtherefore,(9) E

P̃
(Xke

−〈a∗(ω),X〉 |G)(ω) = 0 for a.a. ω ∈ Ω and k = 1, . . . , d.Note that
0 = E

P̃
(Xke

−〈a∗(ω),X〉−‖a∗(ω)‖2

|G)(ω) = E
P̃
(Xke

−〈a∗,X〉−‖a∗‖2

|G)(ω)for a.a. ω ∈ Ω and k = 1, . . . , d. Now it su�es to take ξ = a∗.
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