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MULTIPLICITY OF POSITIVE SOLUTIONS

TO SECOND ORDER DIFFERENTIAL EQUATIONS

WITH NEUMANN BOUNDARY CONDITIONS

Abstract. We study the existence of positive solutions to second order
nonlinear differential equations with Neumann boundary conditions. The
proof relies on a fixed point theorem in cones, and the positivity of Green’s
function plays a crucial role in our study.

1. Introduction. In recent years many papers in the literature have dis-
cussed nonlinear differential equations with Neumann boundary conditions;
see for example [1–5, 7, 10, 14, 15]. In this paper, we study the existence of
positive solutions to the following Neumann boundary value problem:

(1.1)

{

−x′′ + a(t)x = f(t, x), 0 ≤ t ≤ 1,

x′(0) = 0, x′(1) = 0,

where a : [0, 1] → (0,∞) is continuous and the nonlinearity f : [0, 1]×(0,∞)
→ (0,∞) is continuous. If a(t) = M > 0, we mention the following two
results: In [9], Jiang and Liu obtained the existence of one positive solution
of (1.1) when f is either superlinear or sublinear, and in [14], Sun and Li
gave some existence results for at least two positive solutions to (1.1) under
weaker conditions than [9]. In the above two papers, existence results were
obtained by using Krasnosel’skĭı’s fixed point theorem on compression and
expansion of cones [8]. Another useful tool in establishing existence is the
method of upper and lower solutions (see [2, 5, 6, 15]).
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The aim of this paper is to study the existence of solutions of prob-
lem (1.1) by using a fixed point theorem in cones. To do so, we study the
sign of the Green’s function for the corresponding linear problem

(1.2)

{

−x′′ + a(t)x = h(t), 0 ≤ t ≤ 1,

x′(0) = 0, x′(1) = 0

in Section 2. In particular, we construct the Green’s function for prob-
lem (1.2) and prove its positivity. This fact is crucial in our arguments
in Section 3. The Green’s function for second order periodic boundary value
problems was constructed and used in [11]. The sign property of the Green’s
function for differential equations with separated boundary conditions was
investigated in [12, 13].

In Section 3, we will show, under simple and reasonable conditions, that
(1.1) has at least one or two positive solutions by using a fixed point theorem
in cones (see Theorem 2.5). Some examples are also given in Section 3.

2. Green’s function and its positivity. In this section, we will con-
sider the linear nonhomogeneous problem

(2.1)

{

−x′′ + a(t)x = h(t), 0 ≤ t ≤ 1,

x′(0) = 0, x′(1) = 0.

Lemma 2.1 ([11]). Let K : [0, 1] × [0, 1] → [0,∞) be a continuous func-

tion and ψ be a nonnegative integrable function on [0, 1]. Then for any

nonnegative continuous function ϕ defined on [0, 1], the Volterra integral

equation

(2.2) x(t) = ϕ(t) +

t\
0

K(t, s)ψ(s)x(s) ds, 0 ≤ t ≤ 1,

has a unique solution x(t). This solution is continuous and satisfies the

inequality
x(t) ≥ ϕ(t), 0 ≤ t ≤ 1.

Lemma 2.2. Let u(t) and v(t) be the solutions of the homogeneous equa-

tion

(2.3) −x′′ + a(t)x = 0, 0 ≤ t ≤ 1,

satisfying the initial conditions u(0) = 1, u′(0) = 0, v(0) = 0 and v′(0) = 1.
Then for any s > t, we have

(2.4) v′(s) − tu′(s) ≥ 1.

Proof. Let E(s, t) = v(s) − tu(s). To prove (2.4), we note that for fixed
t ∈ [0, 1],

∂2E(s, t)

∂s2
= a(s)E(s, t)
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and

E(0, t) = −t,
∂E(s, t)

∂s

∣

∣

∣

∣

s=0

= 1.

Hence it follows that, for all s ∈ (t, 1], we have

(2.5) E(s, t) = (s− t) +

s\
0

(s− ξ)a(ξ)E(ξ, t) dξ

and

(2.6)
∂E(s, t)

∂s
= 1 +

s\
0

a(ξ)E(ξ, t) dξ.

By using Lemma 2.1, it follows from (2.5) and (2.6) that, for any s > t, we
have

E(s, t) ≥ s− t > 0,
∂E(s, t)

∂s
≥ 1.

Therefore,
v′(s) − tu′(s) ≥ 1, 0 ≤ t < s ≤ 1.

Theorem 2.3. Suppose h : [0, 1] → [0,∞) is continuous. Then prob-

lem (2.1) has a unique solution x ∈ C2([0, 1]) given by the formula

(2.7) x(t) =

1\
0

G(t, s)h(s) ds,

where

(2.8) G(t, s) =















u(t)v′(1) − v(t)u′(1)

u′(1)
u(s), 0 ≤ s ≤ t ≤ 1,

u(s)v′(1) − v(s)u′(1)

u′(1)
u(t), 0 ≤ t ≤ s ≤ 1,

is the Green’s function and u and v are as in Lemma 2.2.

Proof. It is easy to see that the general solution to the equation

−x′′ + a(t)x = h(t), 0 ≤ t ≤ 1,

has the form

x(t) = αu(t) + βv(t) +

t\
0

[u(t)v(s) − u(s)v(t)]h(s) ds,

where α and β are arbitrary constants. Substituting this expression for x(t)
in the boundary conditions x′(0) = 0, x′(1) = 0, we obtain

β = 0 and α =
1

u′(1)

1\
0

[u(s)v′(1) − u′(1)v(s)]h(s) ds.

Now (2.7) and (2.8) are immediate.
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Remark 2.4 ([9]). If a(t) = m2 > 0, then the Green’s function G(t, s)
of the boundary value problem (2.1) has the form

(2.9) G(t, s) =















chm(1 − t) chms

m shm
, 0 ≤ s ≤ t ≤ 1,

chm(1 − s) chmt

m shm
, 0 ≤ t ≤ s ≤ 1,

where

chx =
ex + e−x

2
, shx =

ex − e−x

2
.

Theorem 2.5. Suppose that a, h : [0, 1] → (0,∞) are continuous func-

tions. Then the Green’s function G(t, s) of problem (2.1) is positive, i.e.,
G(t, s) > 0, t, s ∈ [0, 1].

Proof. Since G(t, s) = G(s, t), it is enough to prove that G(t, s) > 0
for 0 ≤ s ≤ t ≤ 1. Using the initial conditions, we can easily deduce from
equation (2.3) that

u(t) = 1 +

t\
0

(t− s)a(s)u(s) ds, v(t) = t+

t\
0

(t− s)a(s)v(s) ds,

u′(t) =

t\
0

a(s)u(s) ds, v′(t) = 1 +

t\
0

a(s)v(s) ds.

It follows from Lemma 2.1 that

u(t) ≥ 1, u′(1) =

1\
0

a(s)u(s) ds ≥

1\
0

a(s) ds > 0.

Now we prove

F (t) = u(t)v′(1) − v(t)u′(1) > 0, ∀t ∈ [0, 1].

Obviously,

F ′′(t) = a(t)F (t), 0 ≤ t ≤ 1; F (0) = v′(1), F ′(0) = −u′(1).

Hence, it follows that, for all 0 ≤ t ≤ 1,

F (t) = v′(1) − tu′(1) +

t\
0

(t− s)a(s)F (s) ds.

It follows from Lemma 2.2 that v′(1) − tu′(1) ≥ 1, so we have F (t) ≥ 1 by
applying Lemma 2.1.

In the arguments of Section 3 we need the following fixed point theorem
in cones [8].
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Theorem 2.6. Let X be a Banach space and K a cone in X. Assume

Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let

Φ : K ∩ (Ω2 \Ω1) → K

be a continuous and completely continuous operator such that

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1;
(ii) there exists ψ ∈ K \ {0} such that x 6= Φx + λψ for x ∈ K ∩ ∂Ω2

and λ > 0.

Then Φ has a fixed point in K ∩ (Ω2 \Ω1).

Remark 2.7. In Theorem 2.6, if (i) and (ii) are replaced by

(i)∗ ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2;
(ii)∗ there exists ψ ∈ K \ {0} such that x 6= Φx + λψ for x ∈ K ∩ ∂Ω1

and λ > 0,

then Φ has also a fixed point in K ∩ (Ω2 \Ω1).

Let

(2.10) A = min
0≤s,t≤1

G(t, s), B = max
0≤s,t≤1

G(t, s), σ = A/B.

Thus B > A > 0 and 0 < σ < 1. In the applications below, we take
X = C([0, 1]) with the supremum norm ‖ · ‖ and define

(2.11) K = {x ∈ X : x(t) ≥ 0 for all t and min
0≤t≤1

x(t) ≥ σ‖x‖}.

One may readily verify that K is a cone in X. Suppose that f : [0, 1]×(0,∞)
→ (0,∞) is continuous and we define an operator Φ : X → X by

(2.12) (Φx)(t) =

1\
0

G(t, s)f(s, x(s)) ds

for x ∈ X and t ∈ [0, 1]. It is easy to prove:

Lemma 2.8. Φ is well defined and maps X into K. Moreover , Φ is con-

tinuous and completely continuous.

3. Multiplicity of positive solutions. In this section, we establish
the existence and multiplicity of positive solutions to problem (1.1).

Theorem 3.1. Suppose that there exist 0 < r < R such that f(t, x) ≥ 0
for all x ∈ [σr,R]. Then problem (1.1) has at least one positive solution if

one of the following two conditions holds:
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(I) f(t, x) ≥ a(t)x, ∀x ∈ [σr, r], f(t, x) ≤ a(t)x, ∀x ∈ [σR,R];
(II) f(t, x) ≤ a(t)x, ∀x ∈ [σr, r], f(t, x) ≥ a(t)x, ∀x ∈ [σR,R].

Proof. The existence is proved using Theorem 2.6 and Remark 2.7. De-
fine the open sets

Ωr = {x ∈ C([0, 1]) : ‖x‖ < r}, ΩR = {x ∈ C([0, 1]) : ‖x‖ < R}.

LetK be the cone defined by (2.11) and define an operator Φ onK by (2.12).
Clearly, Φ : K ∩ (ΩR \ Ωr) → C([0, 1]) is continuous and compact since
f : [0, 1] × [σr,R] → R is continuous. Also it is easy to see that Φ(K) ⊂ K.

First, suppose that condition (I) holds.
Let ψ ≡ 1, so ψ ∈ K. Now we prove that

(3.1) x 6= Φx+ λψ, ∀x ∈ K ∩ ∂Ωr and λ > 0.

If not, there would exist x0 ∈ K∩∂Ωr and λ0 > 0 such that x0 = Φx0+λ0ψ.
Since x0 ∈ K ∩ ∂Ωr, it follows that x0(t) ≥ σ‖x0‖ = σr. Let µ = mint x0(t),
so we have

x0(t) = (Φx0)(t) + λ0 =

1\
0

G(t, s)f(s, x0(s)) ds+ λ0

≥

1\
0

G(t, s)a(s)x0(s) ds+ λ0

≥ µ

1\
0

G(t, s)a(s) ds+ λ0 = µ+ λ0;

note
T1
0G(t, s)a(s) ds = 1 for each t (see Theorem 2.3 with h = a). This

implies µ ≥ µ+ λ0, a contradiction. Therefore, (3.1) holds.
Next we prove that

(3.2) ‖Φx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂ΩR.

In fact, for any x ∈ K ∩ ∂ΩR, we have

(Φx)(t) =

1\
0

G(t, s)f(s, x(s)) ds ≤

1\
0

G(t, s)a(s)x(s) ds

≤

1\
0

G(t, s)a(s) ds · max
t
x(t) = ‖x‖.

Therefore, ‖Φx‖ ≤ ‖x‖, i.e., (3.2) holds.
It follows from Remark 2.7, (3.1) and (3.2) that Φ has a fixed point

x ∈ K ∩ (ΩR \ Ωr). Clearly, this fixed point is a positive solution of (1.1)
satisfying r ≤ ‖x‖ ≤ R.
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If condition (II) holds, then similar reasoning yields

(3.3) ‖Φx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ωr,

and

(3.4) x 6= Φx+ λψ, ∀x ∈ K ∩ ∂ΩR and λ > 0.

Then it follows from Theorem 2.6, (3.3) and (3.4) that Φ has also a fixed
point x ∈ K ∩ (ΩR \Ωr).

Corollary 3.2. Assume that f(t, x) ≥ 0 for all (x, t) ∈ (0,∞)× [0, 1].
Then problem (1.1) has at least one positive solution if one of the following

two conditions holds:

(I) (Superlinear)

lim
x→0+

f(t, x)

x
= 0, lim

x→∞

f(t, x)

x
= ∞, uniformly for t ∈ [0, 1];

(II) (Sublinear)

lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= 0, uniformly for t ∈ [0, 1].

Proof. This follows immediately from Theorem 3.1 by taking r small
enough and R large enough.

Theorem 3.3. Suppose that there exist 0 < r < p < R such that

f(t, x) ≥ 0, ∀x ∈ [σr,R].

Then problem (1.1) has at least two positive solutions if one of the following

two conditions holds:

(I) f(t, x) ≥ a(t)x, ∀x ∈ [σr, r]; f(t, x) < a(t)x, ∀x ∈ [σp, p]; f(t, x) ≥
a(t)x, ∀x ∈ [σR,R];

(II) f(t, x) ≤ a(t)x, ∀x ∈ [σr, r]; f(t, x) > a(t)x, ∀x ∈ [σp, p]; f(t, x) ≤
a(t)x, ∀x ∈ [σR,R].

Proof. We only prove the result when condition (I) holds since similar
reasoning establishes the result for condition (II).

Define Ωr, ΩR, K and Φ as in Theorem 3.1 and define Ωp =
{x ∈ C([0, 1]) : ‖x‖ < p}. As in the proof of Theorem 3.1, it is easy to
see that

x 6= Φx+ λψ, ∀x ∈ K ∩ ∂Ωr and λ > 0;(3.5)

x 6= Φx+ λψ, ∀x ∈ K ∩ ∂ΩR and λ > 0;(3.6)

‖Φx‖ < ‖x‖ ∀x ∈ K ∩ ∂Ωp.(3.7)

Now Theorem 2.6 (applied with Ω1 = Ωp and Ω2 = ΩR) guaran-
tees that there exists a solution x2 with p ≤ ‖x2‖ ≤ R. Note ‖x2‖ > p
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from (3.7). Also Remark 2.7 (applied with Ω2 = Ωp and Ω1 = Ωr) guar-
antees that there exists a solution x1 with r ≤ ‖x1‖ ≤ p. Note ‖x1‖ < p
from (3.7).

In fact, we can derive some results from Theorem 3.3 if we assume appro-
priate asymptotic behavior of the nonlinearity. We introduce the following
hypotheses:

(H1) lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= ∞, uniformly in t ∈ [0, 1].

(H2) lim
x→0+

f(t, x)

x
= 0, lim

x→∞

f(t, x)

x
= 0, uniformly in t ∈ [0, 1].

(H3) There exists a p > 0 such that σp ≤ x ≤ p implies f(t, x) < a(t)p,
t ∈ [0, 1].

(H4) There exists a p > 0 such that σp ≤ x ≤ p implies f(t, x) > a(t)x,
t ∈ [0, 1].

Corollary 3.4. Assume that f(t, x) ≥ 0 for all (x, t) ∈ (0,∞)× [0, 1].
Then problem (1.1) has at least two positive solutions satisfying 0 < ‖x1‖ <
p < ‖x2‖ provided that conditions (H1) and (H3) (respectively (H2) and

(H4)) hold.

Proof. This follows from Theorem 3.3 by taking r small enough and R
large enough.

Example 3.5. Suppose the nonlinearity in problem (1.1) is

(3.8) f(t, x) = µb(t)(xα + xβ),

where 0 < α < 1, β > 0, b ∈ C([0, 1]) is a positive function, and µ > 0 is a

positive parameter.

(i) If β < 1, (1.1) has at least one positive solution for each µ > 0.
(ii) If β ≥ 1, (1.1) has at least two positive solutions for each 0 < µ < µ∗,

where µ∗ is some positive constant.

Proof. First we discuss (i). It is easy to see that

(3.9) lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= 0, uniformly in t ∈ [0, 1],

if 0 < α, β < 1. The result now follows from Corollary 3.2(II).
Next we discuss (ii). Notice that

(3.10) lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= ∞, uniformly in t∈ [0, 1],

since 0 < α < 1 and β > 1. Set

T (x) =
x

xα + xβ
, x > 0.
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Then T (0+) = T (∞) = 0 and

T (x) ≤ T (p) = sup
x∈(0,∞)

T (x), where p =

(

1 − α

β − 1

)1/(β−α)

.

Let µ∗ = σT (p)e−1, where e = maxt b(t)/a(t). Then for x ∈ [σp, p] and
µ ∈ (0, µ∗), we have

f(t, x) = µb(t)(xα + xβ) < µ∗a(t)(pα + pβ) max
t

b(t)

a(t)
(3.11)

= σT (p)a(t)(pα + pβ) = σa(t)p < a(t)p.

Now (3.10) and (3.11) imply that conditions (H1) and (H3) are satisfied, so
the existence of two solutions is guaranteed by applying Corollary 3.4.

Our main results can also be applied to the singular case.

Example 3.6. Let the nonlinearity in (1.1) be

(3.12) f(t, x) = b(t)x−α + µc(t)xβ + e(t), 0 ≤ t ≤ 1,

where α > 0, β ≥ 0, b, c, e ∈ C([0, 1]) are nonnegative functions with b(t) > 0
for all t, and µ > 0 is a positive parameter.

(i) If β < 1, (1.1) has at least one positive solution for each µ > 0.
(ii) If β > 1, (1.1) has at least two positive solutions for each 0 < µ < µ∗,

where µ∗ is some positive constant.

Proof. First we discuss (i). It is easy to see that

(3.13) lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= 0, uniformly in t ∈ [0, 1],

if α > 0, 0 < β < 1. The result follows from Corollary 3.2(II).
Next we prove (ii). Notice that

(3.14) lim
x→0+

f(t, x)

x
= ∞, lim

x→∞

f(t, x)

x
= ∞, uniformly in t ∈ [0, 1],

since 0 < α < 1 and β > 1. Set

T (x) =
alσ

αxα+1 − e0σ
αxα − b0

c0σαxα+β
,

where

al = min
t
a(t), b0 = max

t
b(t), c0 = max

t
c(t), e0 = max

t
e(t).

It is easy to see that there exists x∗ ∈ (0,∞) such that T (x∗) = 0 since
T (0+) < 0. Therefore, there exists p ∈ (x∗,∞) such that

T (x) ≤ T (p) = sup
x∈(x∗,∞)

T (x)
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since T (x∗) = T (∞) = 0. Let

µ∗ = T (p) =
alσ

αpα+1 − e0σ
αpα − b0

c0σαpα+β
.

Then for x ∈ [σp, p] and µ ∈ (0, µ∗), we have

f(t, x) = b(t)x−α + µc(t)xβ + e(t) < b0(σp)
−α + µ∗c0p

β + e0(3.15)

=
b0

σαpα
+
alσ

αpα+1 − e0σ
αpα − b0

σαpα
+ e0

= alp < a(t)p.

Now (3.14) and (3.15) imply that conditions (H1) and (H3) of Corollary 3.4
are satisfied, so the existence of two solutions is guaranteed.
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