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MONOTONICITY OF THE PERIOD FUNCTION FOR

SOME PLANAR DIFFERENTIAL SYSTEMS.

PART I: CONSERVATIVE AND QUADRATIC SYSTEMS

Abstract. We first examine conditions implying monotonicity of the pe-
riod function for potential systems with a center at 0 (in the whole period
annulus). We also present a short comparative survey of the different cri-
teria. We apply these results to quadratic Loud systems (LD,F ) for various
values of the parameters D and F . In the case of noncritical periods we pro-
pose an algorithm to test the monotonicity of the period function for (LD,F ).
Our results may be viewed as a contribution to proving (or disproving) a
conjecture of Chicone and Jacobs.

1. Introduction. The general question of monotonicity of the period
function T has been treated by many authors in the special case when the
phase flow has a Hamiltonian form or for special families of vector fields. In
particular, this problem has been widely discussed for potential systems

ẋ = −y, ẏ = g(x),

(u̇ = du/dt), where different criteria have been given (one may consult [R],
[Sc], [Ch-C] and the references therein).

Following R. Schaaf [Sc], C. Chicone [C] points out an especially in-
teresting behavior of the period function for the Neumann boundary value
problem ẋ(0) = 0, ẋ(T ) = 0. A solution to this problem corresponds to one
of the periodic orbits in the phase plane that starts at time t = 0 on the
x-axis and returns to the x-axis after time T . Monotonicity ensures unique-
ness of the solutions with a fixed number of nodes N , which correspond to
such a periodic trajectory with minimum period 2T/N . This situation may
occur for autonomous systems other than conservative ones. The interval

2000 Mathematics Subject Classification: 34C15, 34C23, 34C25, 34C37, 37G15.
Key words and phrases: period function, monotonicity, isochronicity, Loud systems,

polynomial systems.

[305]



306 A. R. Chouikha

of period values determines the interval of initial conditions for which the
equation has a solution.

Another point of interest is the role played by the period function in
many perturbation problems (see for example [CLY]). On the other hand,
in studying the perturbation of periodic orbits γ by Melnikov’s method it is
assumed that the derivative T ′(γ) is not zero.

For any center 0 of a planar differential system, the largest neighborhood
of 0 which is covered by periodic orbits is called the period annulus of 0 and
will be denoted by γ0. A center is said to be a global center when its period
annulus is the whole plane. The function T which associates to any periodic
orbit γ in γ0 its period is called the period function. The center is called an
isochronous center when the period function is constant. A center is said to
be nondegenerate when the linearized vector field at the critical point has
two nonzero eigenvalues. It is well known that only nondegenerate centers
can be isochronous.

When the differential system is analytic, the period annulus of an iso-
chronous center is unbounded.

The orbits may be parametrized for example by choosing their initial
values in the segment (0, π) on the x-axis.

Let T : γ0 → R be the function defined by associating to every point
(x, 0) ∈ γ0 the minimum period of a trajectory starting at (x, 0) and reaching
the negative x-axis. Then T is the period function and is constant on cycles.
We say that T is (strictly) increasing if, for every couple of cycles γ1 and γ2,
with γ1 included in γ2, we have T (γ1) ≤ T (γ2) (T (γ1) < T (γ2)).

0 is an isochronous center if T is constant in a neighborhood of 0.

When the period function is monotone on the whole period annulus we
will call it globally monotone.

The interest in isochronicity phenomena arises from several areas. One of
them is to better understand the nature of the period function for a family
of closed orbits. This in turn is useful in the study of critical periods when
analyzing harmonic and subharmonic bifurcations for forced systems.

Apart from this situation and trivial ones, we know very few cases where
the behavior of the period function and isochronicity of the center are known.
Many more details can be found in the survey article [C-S].

We assume g(0) = 0, so that the origin is a critical point for the two-

dimensional problem. Also we suppose dg
dx(0) = g′(0) > 0 and xg(x) > 0 for

x 6= 0 so that 0 is a center for (1).

There are many criteria of global monotonicity of period functions for
potential systems with a center at 0. Some of them will be listed below.
These conditions are of course related in the sense that some of them imply
others. For a complete description and a comparison we refer to [Ch-C].
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If in addition we suppose d2g
dx2 (0) = g′′(0) = 0 many global monotonicity

conditions reduce to the one of Z. Opial [O].
Indeed, we first remark that Opial’s condition of monotonicity for the

period function:

(Op) x
d

dx

(

g(x)

x

)

> 0

is the best among conditions for which g′′(0) = 0. Moreover, when g′′(0) = 0,
Rothe’s criterion

R(g) = x[3g′′(0)g′(x)2 − g′′(0)g(x)g′′(x) − 3g′(0)2g′′(x)] ≥ 0

reduces to xg′′(x) ≤ 0 (which is a particular case of (Op)).
These results will be used (in Section 3) to determine global monotonicity

cases of the period function for Loud quadratic systems (LD,F ).
We will describe monotonicity properties of the period function for (LD,F )

when the parameters D or F take one of the critical values

D = 0,−1

2
and F = 2, 1,−1

2
,
1

2
.

In particular, for the systems
{

ẋ = −y + xy,

ẏ = x+Dx2 + 2y2,

with a center at the origin we prove the following:

• If −11/10 ≤ D < −1/2 the period function decreases in the whole
period annulus.

• For −1/2 < D < 13/10 the period function increases in the whole
period annulus.

More generally, a necessary condition for a Loud system (LD,F ) to have a
critical period is F − 1 + 2D 6= 0.

Furthermore, [C-J] conjectures that if λ3 = λ6 in the Bautin form and
the system is not isochronous, then the period function is globally increasing.
Our results below may be viewed as a contribution to proving (or disproving)
this conjecture.

2. The period function of conservative systems. The results of
this part will be useful in what follows. Let us consider the potential system

(1) ẋ = −y, y = g(x),

(u̇ = du/dt), where g ∈ C1(J,R), J is a real interval containing 0, and
g(0) = 0, g′(0) > 0, and xg(x) > 0 for x ∈ J − {0}. So, 0 is a center for (1).

Let G be the primitive of g satisfying G(0) = 0 and G(a) = G(b) = c,
with α < a < 0 and 0 < b < β, [α, β] ⊂ J.
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There exists a positive constant γ such that 0 < c < γ. Notice that the
bound γ is the energy of the homoclinic orbit enclosing 0. Then the period
function is

T (c) =
√

2

b\
a

dx
√

c−G(x)
.

Let us recall some facts concerning the monotonicity of the period func-
tion of the potential system (1). As a corollary we may deduce that when
g is at least of class C2 Opial’s criterion (Op) is optimal among those for
which g′′(0) = 0 holds.

We first state the following version of a result of Opial [O, Theorem 8]:

Proposition 1. Let g : J → R, where J is an interval containing 0 and

g(0) = 0. Suppose xg(x) > 0 for x ∈ J , and either

(i) g ∈ C1(J,R), g /∈ C2(J,R), and g′(0) > 0, or

(ii) g ∈ C2(J,R), g′(0) > 0 and g′′(0) = 0.

Then

(2) if x
d

dx

(

g(x)

x

)

< 0 for x ∈ J − {0},

then the period T = T (c) of (1) is strictly increasing in a neighborhood of 0;

(3) if x
d

dx

(

g(x)

x

)

> 0 for x ∈ J − {0},

then the period T = T (c) of (1) is strictly decreasing in a neighborhood of 0.
Moreover , if g ∈ C3(J,R), g′′(0) = 0 and g(3)(0) 6= 0, then xg(3)(x) and

(d/dx)(g(x)/x) have the same sign in a neighborhood of 0.

The proof of (2) and (3) may be found for example in [RSC]. For the
last part of Proposition 1, consider the function

ψ(x) = x
d

dx

(

g(x)

x

)

,

obviously of class C2. Its derivatives are

ψ′(x) = g′′(x) − ψ(x)

x
, ψ′′(x) = g(3)(x) − g′′(x)

x
+ 2

ψ(x)

x2
.

By the de l’Hospital rule we find

2 lim
x→0

d

dx

(

ψ(x)

x

)

= lim
x→0

ψ′(x) = g′′(0) = 0.

Again, by the de l’Hospital rule we obtain

lim
x→0

ψ′′(x) = 2 lim
x→0

ψ(x)

x2
= lim

x→0

ψ′(x)

x
= g(3)(0) − lim

x→0

ψ(x)

x2
.
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So, g(3)(0) has the same sign as the function ψ(x). Thus, ψ(x) has a constant
sign provided g′′(0) = 0.

Remarks. Let us recall some conditions ensuring the monotonicity of
the period function and compare some of them. We adopt the notations of
[Ch-C].

(i) For g(x) convex in the interval (a, b), S. N. Chow and D. Wang [C-W]
stated a criterion of monotonicity for the period function of (1). They proved
that

(C1)

{

g′′(x) > 0 for x ∈ (a, b),

∆(x) = x(g′′(0)g′(x) − g′(0)g′′(x)) ≥ 0 (≤ 0) for x ∈ (a, b).

implies

(C0) H0(x) = g(x)2 +
g′′(0)

3g′(0)2
g(x)3 − 2G(x)g′(x) > 0 (< 0)

for x ∈ (a, b), x 6= 0, which implies the monotonicity of the period function
T (c) for 0 < c < γ.

(ii) When g(x) is of class C2 and is nonconvex in (a, b), [C-W] proved
an analogous result, where the function (d/dx)(g(x)/x) in Proposition 1
is replaced by x(d2g/dx2) (this result is obviously weaker than Proposi-
tion 1 because x(d2g/dx2) and (d/dx)(g(x)/x) share the same sign). How-
ever, F. Rothe exhibited a stronger criterion:

(C4) R(g) = x[3g′′(0)g′(x)2 − g′′(0)g(x)g′′(x) − 3g′(0)2g′′(x)] ≥ 0

for x ∈ (a, b), which is denoted f4 in [R].

Note that the assumption xg′′(x) < 0 for all x 6= 0 also implies (C4). But
then necessarily g′′(0) = 0, which is a strong condition (see Proposition 2
below).

(iii) Recall that conditions (C0) and (C1) were introduced by [C-W]. The
following criterion (C3) due to R. Schaaf:

(C3) S(g) = 5g′′(x)2 − 3g′(x)g(3)(x) > 0 (< 0),

for x ∈ (a, b), x 6= 0, is equivalent to (G′′)−2/3 being convex (G is the
primitive of g).

Let us also recall the criterion (C5) ([Ch-C]) which is weaker than (C0),
and under an additional assumption is more general than the above criteria
of Rothe and Schaaf (respectively (C4) and (C3)):

(C5)











g′′(0)[3g′(x)2 − g(x)g′′(x)] − 3g′(0)2g′′(x) 6= 0 for x ∈ (g′(0)−1, 0),

g′(x)g′′(0)

g′′(x)g′(0)2
6= 2G(x)

g(x)2
for x ∈ (0, b), x 6= 0.
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It should be noticed that each of these conditions implies that (C0) holds,
which itself implies the monotonicity of the period.

In the case where the function g is not convex (remark (ii) above), the
following proposition underlines relations between different monotonicity
conditions for the period function. Even if this result is not new, at least it
has the advantage of making precise some facts of [R, Theorem 1]. However,
especially in the case where g(x) is of class C2 or C3, we may notice that
the condition g′′(0) = 0 appears to be very restrictive. This emphasizes the
importance of Rothe’s criterion, which avoids that condition.

Proposition 2. Suppose the function g(x) is of class C2 in an interval

J containing 0 and satisfies xg(x) > 0 for x ∈ J and g′(0) > 0. Let G(x) be

the primitive of g(x) satisfying G(0) = 0 and G(a) = G(b) = c, α < a < 0 <
b < β, [α, β] ⊂ J. Then the following implications hold for any x ∈ [a, b]:

(i) xg′′(x) < 0 ⇒ g(x)2 − 2G(x)g′(x) > 0 ⇒ x
d

dx

(

g(x)

x

)

< 0,

provided that g′′(0) = 0. Moreover , each of these conditions implies that the

period function T (c) of (1) is strictly increasing for 0 < c < γ.

(ii) xg′′(x) > 0 ⇒ g(x)2 − 2G(x)g′(x) < 0 ⇒ x
d

dx

(

g(x)

x

)

> 0,

provided that g′′(0) = 0. Moreover , each of these conditions implies that

T (c) is strictly decreasing for 0 < c < γ.

If we suppose in addition g(x) is of class C3, then

g(3)(x) < 0 (> 0) and g′′(0) = 0 ⇒ xg′′(x) < 0 (> 0).

Proof. Notice that, since G(x) > 0 for x 6= 0 and

d

dx
[g(x)2 − 2G(x)g′(x)] = −2G(x)g′′(x),

it follows that 2xG(x)g′′(x) < 0 (resp. > 0) implies g(x)2 − 2G(x)g′(x) > 0
(resp. < 0), because x(d/dx)[g(x)2 − 2G(x)g′(x)] and −xg′′(x) have the
same sign. So, the first two implications are proved.

The second implication, g(x)2 − 2G(x)g′(x) > 0 (resp. < 0) implies
x(d/dx)(g(x)/x) < 0 (resp. > 0), has been proved by Rothe (see [R, Propo-
sition 4, p. 138]; according to his notations: h+

3 ⊂ h+
2 ).

Note that the conditions

xg′′(x) < 0 (resp. > 0) and g(x)2 − 2G(x)g′(x) > 0 (resp. < 0)

independently imply

H0(x) = g(x)2 +
g′′(0)

3g′(0)2
g(x)3 − 2G(x)g′(x) ≥ 0 (resp. ≤ 0)
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and imply that the period function is increasing (resp. decreasing); see [C-W,
Corollary 2.3].

On the other hand, the condition g(3)(x) < 0 (> 0) and g′′(0) = 0 implies
that

H3(x) = 5g′′(x)2 − 3g′(x)g(3)(x) > 0 (< 0) for x ∈ (a, b), x 6= 0,

which in turn implies (C0).
By Proposition 1, g(3)(0) has the same sign as the function ψ(x) =

x(d/dx)(g(x)/x). Thus, g(3)(x) < 0 (> 0) and g′′(0) = 0 implies xg′′(x) < 0
(> 0), which implies x(d/dx)(g/x) < 0 (> 0).

From the latter remark, if g(3)(0) 6= 0 the function x(d/dx)(g(x)/x) has
the same sign as g(3)(0).

3. An application to quadratic systems. We will apply the preced-
ing results to prove some global monotonicity (or nonmonotonicity) cases of
the period function for some quadratic systems with a center at the origin.
This allows one in particular to study the bifurcation of critical periods from
their centers.

It is well known [C-J] that any quadratic system with a center at the
origin may be transformed under a linear change of coordinates to a Bautin
form:

(Bλ)

{

ẋ = −y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x+ λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

After a rotation of coordinates, the Bautin system (Bλ) may be transformed
to the Loud system

(LB,D,F )

{

ẋ = −y +Bxy,

ẏ = x+Dx2 + Fy2,

for some real parameters B,D and F . Notice that if B 6= 0, then another
change of variables u = Bx and v = By brings the preceding system to the
form

(LD,F )

{

ẋ = −y + xy,

ẏ = x+Dx2 + Fy2,

called a dehomogenized Loud system.
So, for studying the monotonicity of the period function for quadratic

systems it suffices the consider their reduced forms (LD,F ).
Recall that the quadratic system (of Bautin form) has an isochronous

center at 0 if and only if either it is linear or by rotation of the axes it can
be transformed into a Loud system with (D,F ) being one of

(0, 1), (−1/2, 2), (0, 1/4), (−1/2, 1/2).

Each of these quadratic isochronous systems has a period annulus that ex-
tends from the origin to a separatrix orbit on the Poincaré sphere. Note that
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at most two critical periods bifurcate from an isochronous center in a Loud
system.

More precisely, Chicone and Jacobs [C-J] proved that a quadratic iso-
chronous system under a quadratic perturbation of the form



















ẋ =
∑

1≤i+j≤2

[aij +O(ε)]xiyj ,

ẏ =
∑

1≤i+j≤2

[bij +O(ε)]xiyj ,

separates at most one family of limit cycles for (L−1/2,1/2) when ε 6= 0 and
at most two families of limit cycles for (L0,1), (L0,1/4), or (L−1/2,2).

We will describe the monotonicity properties of the period function for
some systems (LD,F ) when the parameters D and F take one of the critical
values

D = 0,−1

2
and F = 2, 1,−1

2
,
1

2
.

A general description of our method to determine the monotonicity cases of
the period function for any Loud system (LD,F ) will be given in an appendix
at the end of the paper.

Furthermore, [C-J] conjectures that if λ3 = λ6 in the Bautin form and
the system is not isochronous, then the period function is globally increasing.
Our results below may be viewed as a contribution to proving (or disproving)
this stronger conjecture.

3.1. Analysis of Loud systems (LD,2). First consider systems corres-
ponding to F = 2 with a center at 0,

(LD,2)

{

ẋ = −y + xy,

ẏ = x+Dx2 + 2y2.

It is known [L] that if (1 + 2D)(7 + 5D) 6= 0 the period function T (γ) of
(LD,2) is increasing in a neighborhood of 0.

As we will see, it seems that for D 6= −1/2 and D > −7/5 the period
function is globally monotonic in the whole period annulus, but we cannot
prove it.

To investigate this, we will change the system (LD,2) to a potential one,
and we will apply different criteria described in Section 2.

More precisely, we prove the following

Theorem 3. Consider a Loud system (LD,2) with a center at 0. Then:

• If −11/10 ≤ D < −1/2 then the period function decreases in the whole

period annulus.
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• If −1/2 < D ≤ 13/10 then the period function increases in the whole

period annulus.

The system (L−1/2,2) has an isochronous center at 0.

Proof. Following Loud [L], we will use the following transformation of
the system (LD,2):

x = 1 − (1 + 2u)−1/2 ≡ φ(u),

y =
ẋ

x− 1
=

φ′(u)u̇

φ(u) − 1
.

One obtains the scalar equation

(E) ü+ g(u) = 0

where
g(u) = D + (1 +D)(1 + 2u) − (1 + 2D)(1 + 2u)1/2.

Let γ be a periodic orbit of the Loud system which surrounds the origin.
The interior of γ does not contain a critical point other than 0. The critical
points of (LD,2) are (u0, y0) such that g(u0) = 0 and y0 = 0. The line x = 1
is invariant. So, γ cannot intersect this line. Thus, the system

du

dt
= y,

dv

dt
= −g(u)

which is equivalent to (E) has periodic orbits γ surrounding the origin such
that −1/2 < u and ug(u) > 0 for u 6= 0. Moreover, u lies in the strip
α < u < β where −1/2 < α < 0 < β.

Any periodic orbit of equation (E) must lie in the half-plane 1+2u > 0.
Hence, the corresponding orbit of the system (LD,2) has the same period T .
Let γ and γ′ be two periodic orbits of (LD,2) such that γ ⊂ γ′. Then the
corresponding orbits of (E), γ and γ′, are such that γ ⊂ γ′. Thus,

T (γ) = T (γ) ≤ (resp. ≥) T (γ′) = T (γ′)

means that the period function is increasing (resp. decreasing).
A calculation yields

g′(u) = 2(1 +D) − (1 + 2D)(1 + 2u)−1/2,

g′′(u) = (1 + 2D)(1 + 2u)−3/2,

g(3)(u) = −3(1 + 2D)(1 + 2u)−5/2.

Schaaf’s monotonicity condition ((C3) in Section 2) asserts that if

S(g) = 5g′′(u)2 − 3g′(u)g(3)(u) < 0

then the period function of (E) decreases. In our case

S(g) = 5(1 + 2D)2(1 + 2u)−3

+ 9(1 + 2D)(1 + 2u)−5/2[2(1 +D) − (1 + 2D)(1 + 2u)−1/2].
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After simplifying one gets

S(g) = 18(1 +D)(1 + 2D)(1 + 2u)−5/2 − 4(1 + 2D)2(1 + 2u)−3.

Thus −1 ≤ D < −1/2 implies the period function is decreasing.

Furthermore, since Rothe’s monotonicity condition (C4) is better than
Schaaf’s (C2), one can hope for an improvement while enlarging the interval
of monotonicity of the period function.

More precisely, the Rothe function

R(g) = 3g′′(0)g′(u)2 − g′′(0)g(u)g′′(u) − 3g′(0)2g′′(u)

yields

R(g) = 3(1 + 2D)[2(1 +D) − (1 + 2D)(1 + 2u)−1/2]2

− (1 + 2D)2(1 + 2u)−3/2[D + (1 +D)(1 + 2u)

− (1 + 2D)(1 + 2u)1/2 − 3(1 + 2D)(1 + 2u)−3/2].

After simplifying this gives

R(g) = (1 + 2D)[X1/2 − 1]

× [−(2D2 +D + 3)X−1 − 13(1 +D)(1 + 2D)X−1/2 + 12(1 +D)2]

where X = 1 + 2u. An easy calculation shows that if −11/10 < D < 13/10
then 100D2−20D−143 has no real square root. We deduce that u = 0 is the
only root of R(g) = 0. Thus, according to Rothe’s criterion, uR(g)(u) > 0
implies the period function is decreasing.

On the other hand, Chicone and Dumortier [C-D] showed that the period
function may have a critical point when D < −7/5 and F = 2. Thus T
cannot be monotonic.

Perhaps we may improve the lower bound of D from −11/10 down to
−7/5 so that the period function of the corresponding system increases.
Note that the Rothe criterion fails for (L−7/5,2).

The Rothe function takes the following form:

R(u) =
1242

125
(X−1/2 − 1)2

[

X−1/2 − 8

23

]

where X = 1 + 2u.

The period function T for a general Loud system has the expression [L]

T (γ) = 2π +
π

12
[10D2 + 10DF + 4F 2 −D − 5F + 1]ξ2 + o(ξ2)

(the orbit γ starting from the point (ξ, 0) at t = 0). We may deduce that T
is increasing near zero if

5g′′(0)2 − 3g′(0)g(3)(0) = 10D2 + 10DF + 4F 2 −D − 5F + 1 > 0.
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For the system (LD,2) this reads

5g′′(0)2 − 3g′(0)g(3)(0) = 2(1 + 2D)(7 + 5D) > 0.

Remarks. (a) As a consequence we deduce a result of [F-G-G; Prop. 19].
They proved that the system

{

ẋ = −y + δxy,

ẏ = x+ 2δx2 + δy2,

has a decreasing period function. By an easy change of variables one obtains

(L−1,2)

{

ẋ = −y + xy,

ẏ = x− x2 + 2y2,

which is contained in the above family.

(b) It seems that Rothe’s criterion for the monotonicity of the period
of (E) fails when D /∈ [−11/10,−1/2]. It will be interesting to improve
Theorem 3 for example by using more powerful criteria than the one given
in the preceding section. However, we hope that for the system (LD,2) the
period function T is decreasing when D ∈ [−7/5,−11/10].

(c) Monotonicity conditions for the period function may also be applied
to systems other than potential or Loud systems. For example, for Hamil-
tonian systems of the form H(x, y) = F (x) + G(y) with a center at the
origin the monotonicity of the period function has been studied by A. Cima,
A. Gasull and F. Mañosas (Sect. 6 in [CGM]).

They proved that if ψF (h) > 0 and ψG(h) > 0 where

ψF (h) =
1

2
[φF (x+) − φF (x−)] and φF (x) =

1

2

F ′(x)2 − 2F (x)F ′′(x)

F ′(x)3
,

then the period function T (h) is increasing.

Therefore, if φF (x) is monotone then ψF (h) > 0 implying T (h) is in-
creasing. This criterion of monotonicity may be improved.

Indeed, the hypothesis of φF (x) monotone which implies φF (x) > φF (0)
also implies ψF (h) > 0. To see that, by the de l’Hospital rule one obtains

φF (0) = lim
x→0

φF (x) = −1

6

F (3)(0)

F ′′(0)2

and φF (x) > φF (0) yields φF (x+) > φF (0) > φF (x−).

Thus, the condition φF (x) > φF (0) is stronger than φF (x) monotone.
These two criteria ensure the monotonicity of the period function.

3.2. Other Loud systems (LD,F ). In this section we will use different cri-
teria described in Section 2 (essentially those of Schaaf and Rothe). Various
cases of monotonicity for the period function of Loud systems (LD,F ) with
a center at the origin will be proved.
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3.2.1. Systems (L(1−F )/2,F ) for any real F. Consider first systems (LD,F )
where D = (1 − F )/2. We shall prove that if F −1+2D = 0 then the period
function of this system is monotonic. Opial’s condition

ug′′(u) 6= 0

ensures the monotonicity of the period function for the potential system
u′′ + g(u) = 0 with a center at 0 when g′′(0) = 0. Recall that the Rothe
function R(g) = 3g′′(0)g′(u)2 − g′′(0)g(u)g′′(u) − 3g′(0)2g′′(u) reduces to
Opial’s when g′′(0) = 0.

We then prove the following

Theorem 4. Consider the following Loud system with a center at 0:

(L(1−F )/2,F )

{ ẋ = −y + xy,

ẏ = x+
1 − F

2
x2 + Fy2.

Then:

(a) If 1 < F < 2 the period function decreases in the whole period annu-

lus.

(b) If F < 1 or F > 2 the period function increases in the whole period

annulus.

(c) If F = 1 or F = 2 the origin is an isochronous center.

Proof. We proceed as in the proof of Theorem 3. Notice that a periodic
orbit of the above system which surrounds the origin must lie in the half
plane 1 − x > 0 since ẋ = dx/dt = 0 on the bounding line x = 1.

Following Loud [L], the system (L(1−F )/2,F ) may be transformed to a
second order equation by means of the substitution

x = 1 − (1 + Fu)−1/F ≡ φ(u),

y =
ẋ

x− 1
=

φ′(u)u̇

φ(u) − 1
.

After this transformation one obtains the potential equation

(E) ü+ g(u) = 0

where

g(u) =
3 − F

2
(1 + Fu) − (2 − F )(1 + Fu)1−1/F +

1 − F

2
(1 + Fu)1−2/F .

By the remark above the orbits of equation (E) must lie in the half-plane
1+Fu > 0. Moreover, by the above transformation equation (E) and system
(L(1−F )/2,F ) have the same period function T . A calculation yields

g′(0) = 1, g′′(0) = 0,

ug′′(u) = (F − 1)(2 − F )u(1 + Fu)2−2/F [(1 + Fu)1/F − 1],
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and

g(3)(u) = (1−F 2)(2−F )(1 +Fu)−2−1/F + (1−F )(F 2 − 4)(1 +Fu)−2−2/F .

So, ug′′(u) has the same sign as the product (F −1)(2−F ). Then by Propo-
sition 2 one gets (a) and (b) of our theorem. Assertion (c) is due to Loud [L].

3.2.2. Systems (LD,−1). The following gives increasing cases of the pe-
riod for systems coresponding to F = −1 and any parameter D. Consider
the quadratic system

(LD,−1)

{

ẋ = −y + xy,

ẏ = x+Dx2 − y2.

Theorem 5. For the system (LD,−1) with a center at 0, the period func-

tion increases in the whole period annulus for any value of D.

Proof. The function g(u) of the corresponding potential system has the
expression

g(u) = (1−u)[(1+D)−(1+2D)(1−u)+D(1−u)2] = −Du3+(D−1)u2+u.

Its successive derivatives are

g′(u) = −3Du2 + 2(D − 1)u, g′′(u) = −6Du+ 2(D − 1).

The Schaaf function may be written as

5g′′(u)2 − 3g′(u)g(3)(u)

= 5[2(D − 1) − 6Du]2 + 18D[1 + 2(D − 1)u− 3Du2]

= 126D2u2 − 84D(D − 1)u+ 20(D − 1)2 + 18D

= 126

[

Du− D − 1

3

]2

+ 9[D2 −D + 1] > 0

for any D.

3.2.3. Systems (L−1/2,F )

Theorem 6. Consider the system (L−1/2,F ) with a center at 0,

(L−1/2,F )

{

ẋ = −y + xy,

ẏ = x− 1
2x

2 + Fy2.

Then:

(a) If −2 ≤ F ≤ 0 the period function increases in the whole period

annulus.

(b) If 4/3 ≤ F < 2 the period function decreases in the whole period

annulus.

(c) If F = 2 the origin is an isochronous center.
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Proof. The function g(u) of the corresponding potential system has the
following expression:

g(u) =
1

2
(1 + Fu) − 1

2
(1 + Fu)1−2/F .

Its successive derivatives are

g′(u) =
F

2
− F − 1

2
(1 + Fu)−2/F ,

g′′(u) = (F − 2)(1 + Fu)−1−2/F ,

g(3)(u) = −(F 2 − 4)(1 + Fu)−2−2/F .

The associated Schaaf function is

S(g) = 5(F − 2)2(1 + Fu)−2−4/F

+ 3(F 2 − 4)(1 + Fu)−2−2/F

[

F

2
− F − 1

2
(1 + Fu)−2/F

]

=

[

5(F − 2)2 − 3

2
(F 2 − 4)(F − 2)

]

(1 + Fu)−2−4/F

+
3

2
F (F 2 − 4)(1 + Fu)−2−2/F

= (F − 2)2
(

2 − 3

2
F

)

(1 + Fu)−2−4/F +
3

2
F (F 2 − 4)(1 + Fu)−2−2/F .

We see that if 4/3 ≤ F < 2 then S(g) < 0. If −2 ≤ F ≤ 0 then S(g) > 0.
This proves the theorem.

Perhaps it is possible to extend Theorem 6 by using Rothe’s function
R(g) instead of S(g). But the calculation seems to be hard.

3.2.4. Systems (L0,F )

Theorem 7. Consider the system (L0,F ) with a center at 0,

(L0,F )

{

ẋ = −y + xy,

ẏ = x+ Fy2.

Then:

(a) If 2/3 ≤ F < 1 the period function decreases in the whole period

annulus.

(b) If F = 1 the origin is an isochronous center.

Proof. The function g(u) of the potential system has the following ex-
pression:

g(u) = (1 + Fu) − (1 + Fu)1−1/F .
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Its derivatives are

g′(u) = F − (F − 1)(1 + Fu)−1/F ,

g′′(u) = (F − 1)−1−1/F ,

g(3)(u) = (1 − F 2)−2−1/F .

The corresponding Schaaf function is

S(g) = 5(F − 1)2(1 + Fu)−2−2/F

+ 3(F 2 − 1)(1 + Fu)−2−1/F [F − (F − 1)(1 + Fu)−1/F ]

= [5(F − 1)2 − 3(F 2 − 1)(F − 1)](1 + Fu)−2−2/F

+ 3F (F 2 − 1)(1 + Fu)−2−1/F

= (F − 1)2(2 − 3F )(1 + Fu)−2−2/F + 3F (F 2 − 1)(1 + Fu)−2−1/F .

Thus S(g) < 0 if 2/3 ≤ F < 1.

3.2.5. Systems (LD,1)

Theorem 8. Consider the system (LD,1) with a center at 0,

(LD,1)

{

ẋ = −y + xy,

ẏ = x+Dx2 + y2.

Then:

(a) If D > 0 the period function increases in the whole period annulus.

(b) If D < −1 the period function increases in the whole period annulus.

(c) If D = 0 the origin is an isochronous center.

Proof. The function g(u) of the potential system has the following ex-
pression:

g(u) = (1 +D)(1 + u) − (1 + 2D) +D(1 + u)−1.

Its derivatives are

g′(u) = (1 +D) −D(1 + u)−2,

g′′(u) = 2D(1 + u)−3,

g(3)(u) = −6D(1 + u)−4.

Thus, the Schaaf function is

S(g) = 20D2(1 + u)−6 + 18D(1 + u)−4[1 +D −D(1 + u)−2]

= 20D2(1 + u)−6 + 18D(D + 1)(1 + u)−4 − 18D2(1 + u)−6

= 2D2(1 + u)−6 + 18D(1 +D)(1 + u)−4

= 2D(1 + u)−6[D + 9(1 +D)(1 + u)2].

Hence, if D ≥ 0 then S(g) ≥ 0 and if D ≤ −1 then S(g) > 0.
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Notice that at u = 0 one gets S(g)(0) = 2D(10D+ 9). This vanishes for
D = −9/10. The value D = −9/10 belongs to the remaining interval [−1, 0],
which is not covered by Theorem 8.

Perhaps it could be possible to improve estimates of D in Theorem 8.

A calculation of the Rothe function R(g) brings after simplifying

R(g) = 2D((1 + u)−1 − 1)[D2(1 + u)−3 + (5D2 + 2D − 3)(1 + u)−2

− 3(1 +D)2(1 + u)−1 − 3(1 +D)2].

For D = −9/10 the Rothe function becomes

R(g) = −9

5
[(1 + u)−1 − 1]2[81(1 + u)−2 + 6(1 + u)−1 + 3],

which also does not permit one to conclude.

On the other hand, the period function can be represented as a power
series

T (ξ,D, F ) = 2π + p2(D,F )ξ2 + p4(D,F )ξ6 + · · · .
The Quadratic Period Coefficient Lemma (part (ii) of Lemma 3.1 of [C-J])
gives for Loud systems (LD,F ) the first two nonzero coefficients p2, p4:

p2(D,F ) =
π

12
[10d2 + 10DF −D + 4F 2 − 5F + 1] =

π

12
S(g)u=0,

p4(D,F ) =
π

1152
[1540D4 + 4040D3F + 1180D3 + 4692D2F 2 + 1992D2F

+ 453D2 + 2768DF 3 + 228DF 2 + 318DF − 2D

+ 784F 4 − 616F 3 − 63F 2 − 154F + 49].

For F = 1 one gets

p4(D, 1) =
70988

125
− 44296

25
F +

88308

25
F 2 − 15536

5
F 3 + 784F 4.

When D = −9/10 one obtains

p4

(

− 9

10
, 1

)

=
648

125
.

That means the system (L−9/10,1) has an increasing period near 0.

4. Appendix: General Loud system. This part is useful when we
wish to go further in the research of other monotonicity cases for the period
function and when we are interested in the conjecture of [C-J]. The following
calculations can also contribute to a certain classification of systems (LD,F )
beyond the quadratic systems. Recall the conjecture of [C-J]: λ3 = λ6 in the
Bautin form

(Bλ)

{

ẋ = −y − λ3x
2 + (2λ2 + λ5)xy + λ3y

2,

ẏ = x+ λ2x
2 + (2λ3 + λ4)xy − λ2y

2,
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and if the system is not isochronous, then the period function is globally
increasing.

Our results below may be viewed as a contribution to that conjecture.
For D,F ∈ R we get the Loud function

g(u) = (1 +D)(1 + Fu) − (1 + 2D)(1 + Fu)1−F−1

+D(1 + Fu)1−2F−1

.

This function permits us to transform the system (with a center at 0)

(LD,F )

{

ẋ = −y + xy,

ẏ = x+Dx2 + Fy2,

to the potential one
du

dt
= −y, dv

dt
= g(u)

with
x = 1 − (1 + Fu)−1/F ≡ φ(u),

y =
ẋ

x− 1
=

φ′(u)v

φ(u) − 1
.

This system also has a center at 0.

The function g has remarkable properties. Its derivatives are

g′(u) = (1 +D)F − (F − 1)(1 + 2D)(1 + Fu)−F−1

+D(−2 + F )(1 + Fu)−2F−1

,

g′′(u) = (F − 1)(1 + 2D)(1 + Fu)−1−F−1

− 2D(−2 + F )(1 + Fu)−1−2F−1

,

g(3)(u) = −(F 2 − 1)(1 + 2D)(1 + Fu)−2−F−1

+ 2D(F 2 − 4)(1 + Fu)−2F−1−2,

g(4)(u)

F + 1
= 2(1 + Fu)−(2F+1)/FF 2 − 4D(1 + Fu)−2(F+1)/FF 2

+ 4(1 + Fu)−(2F+1)/FF 2D − (1 + Fu)−(2F+1)/FF

− 2(1 + Fu)−(2F+1)/FDF − (1 + Fu)−(2F+1)/F

− 2(1 + Fu)−(2F+1)/FD + 16D(1 + Fu)−2(F+1)/F (1 + Fu)−1.

Notice that their values at 0 are

g′(0) = 1, g′′(0) = F − 1 + 2D, g(3)(0) = 1 − F 2 − 6D,

g(4)(0) = −(F 2 − 1)(1 + 2D)(−2 − F−1)F + 2D(F 2 − 4)(−2 − 2F−1)F

= (F + 1)(14D − 2DF + 2F 2 − F − 1).

A particular property of g is given by the following
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Lemma.

(a) If g′′(0) = g(3)(0) = 0 then the center 0 of the corresponding Loud

system is isochronous.

(b) If g(3)(0) = g(4)(0) = 0 then the period function of the corresponding

system is monotonic.

(c) If g′′(0) = g(4)(0) = 0 then g = g(u) is an odd function and the

period function of the corresponding system is monotonic.

Proof. Indeed, we may deduce from the above that

g′′(0) = F − 1 + 2D, g(3)(0) = 1 − F 2 − 6D,

g(4)(0) = (F + 1)(14D − 2DF + 2F 2 − F − 1),

g(4)(0) = (F + 1)[−7(F − 1) + F (F − 1) + (2F + 1)(F − 1)]

= 3(F + 1)(F − 1)(F − 2).

For case (a) one gets F = 1, D = 0. Case (b) implies F 2 − 4 = 0 and
D = −1/2. For F = 2, the center is isochronous. F = −2 is covered by
Theorem 6.

Concerning case (c) three subcases may occur:

(i) F = −1 implies D = 1.
(ii) F = 1 implies D = 0 and implies g′′′(0) = 0.
(iii) F = 2 implies D = −1/2 and implies g′′′(0) = 0.

We obtain the corresponding expressions of g:

g(u) =

{

u(1 − u)(1 + u) for (i),

u for (ii) and (iii),

which corresponds to the isochronous center established by Loud.

We now return to a general system (LD,F ) with a center. In order to
study monotonicity properties of the period function for the equation

u′′ + g(u) = 0

we need to know the Schaaf and Rothe functions.

The Schaaf function

S(g) = 5g′′2 − 3g′g(3)

has the following form:

S(g) = 5((F − 1)(1 + 2D)(1 + Fu)−1−F−1− 2D(−2 + F )(1 + Fu)−1−2F−1

)2

− 3((1 +D)F − (F − 1)(1 + 2D)(1 + Fu)−F−1

+D(−2 + F )(1 + Fu)−2F−1

) − ((F 2 − 1)(1 + 2D)(1 + Fu)−2−F−1

+ 2D(F 2 − 4)(1 + Fu)−2F−1−2).
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Then after developing, simplifying and substituting (1 + Fu)−1/F = x we
obtain

(1 + Fu)2x4S(g)

= 9DF 3x3 − 64F 2D2x− 4FD2x2 + 32F 2D2x2 − 32DF 2x− FDx2

+ 32DF 2x2 + 66FD2x+ 33FDx+ 18D2F 3x+ 9DF 3x− 9FDx3

− 18D2F 3x2 − 18DF 3x2 − 6FD2x3 + 6D2F 3x3 − 3Fx3 − 3F 3x2

+ 3F 3x3 − 20D2x− 7Fx2 + 8F 2x2 + 8D2x2 − 10Dx+ 8Dx2

− 56FD2 − 6D2F 3 + 32F 2D2 + 2x2 + 32D2.

Write now

(1 + Fu)2x4S(g) = v3x
3 + v2x

2 + v1x+ v0.

Then

v3 = 3F 3 − 9FD + 9DF 3 − 6FD2 + 6D2F 3 − 3F

= 3F (F − 1)(F + 1)(1 +D)(1 + 2D),

v2 = − 4FD − 18DF 3 − 4FD2 + 8D + 32F 2D2 − 3F 3 + 8D2 + 2

− 7F + 8F 2 + 32DF 2 − 18D2F 3

= (−4F + 32F 2 + 8 − 18F 3)D2 + (−4F + 32F 2 + 8 − 18F 3)D

− 7F − 3F 3 + 2 + 8F 2

= (−4F + 32F 2 + 8 − 18F 3)D2 + (−4F + 32F 2 + 8 − 18F 3)D

− (3F − 2)(F − 1)2,

v1 = − 20D2 + 18D2F 3 + 9DF 3 + 66FD2 − 32DF 2

− 64F 2D2 − 10D + 33FD

= D(9F − 5)(F − 1)(−2 + F )(1 + 2D),

v0 = − 6D2F 3 + 32F 2D2 + 32D2 − 56FD2

= − 2D2(−4 + 3F )(−2 + F )2.

Moreover, one gets

S(g)u=0 = 5g′′(0) − 3g′(0)g(3)(0) = v0 + v1 + v2 + v3

= 8F 2 − 10F + 20FD + 2 − 2D + 20D2.

The Rothe function is

R(g) = 3g′′(0)g′(u)2 − g′′(0)g(u)g′′(u) − 3g′′(u)

= 3(F − 1 + 2D)g′(u)2 − (F − 1 + 2D)g(u)g′′(u) − 3g′′(u)
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= (F − 1 + 2D)[3(F 2 + 2F 2D + F 2D2)x4

+ 3(−6F 2D + 6DF + 2F − 2F 2 + 4FD2 − 4F 2D2)x3

+ 3(−2F − 12DF + F 2 + 4D + 6F 2D2 + 6F 2D + 1 + 4D2 − 12FD2)x2

+ 3(6DF − 8D2 + 12FD2 − 4F 2D2 − 2F 2D − 4D)x− 10FD2 + 3F 2D2

+ 8D2 − (−1 + 3DF + F − 3D − 2D2 + 2FD2)x3 − (8D − 6FD2

+ 8D2 − F − 6DF + 1)x2 − (3DF − 5D − 10D2 + 6FD2)x]

− 3(F − 1)(1 + 2D)(1 + Fu)−1−1/F + 6D(F − 2)(1 + Fu)−1−2/F ,

where (1 + Fu)−1/F = x. We now write

R(g) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0

− 3(F − 1)(1 + 2D)(1 + Fu)−1−1/F + 6D(F − 2)(1 + Fu)−1−2/F ,

where the coefficients are

a4 = (F − 1 + 2D)(3F 2 + 6F 2D + 3F 2D2) = 3(F − 1 + 2D)F 2(1 +D)2,

a3 = (F − 1 + 2D)(1 + 15DF + 5F + 3D + 2D2 + 10FD2

− 18F 2D − 6F 2 − 12F 2D2)

= −(F − 1 + 2D)(6F + 1)(F − 1)(1 +D)(1 + 2D),

a2 = (F − 1 + 2D)(4D − 30FD2 + 4D2 − 5F − 30DF + 2 + 3F 2

+ 18F 2D2 + 18F 2D)

= (F − 1 + 2D)[2D(D + 1)(9F 2 − 15F + 2) + (F − 1)(3F + 5)],

a1 = (F − 1 + 2D)(15DF − 14D2 + 30FD2 − 12F 2D2 − 6F 2D − 7D)

= −(F − 1 + 2D)D(7 − 15F + 6F 2)(1 + 2D),

a0 = (F − 1 + 2D)(−10FD2 + 3F 2D2 + 8D2)

= (F − 1 + 2D)D2(3F − 4)(F − 2).
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