NOTE ON THE VARIANCE OF THE SUM OF GAUSSIAN FUNCTIONALS

Abstract. Let $\left(X_{i}, i=1,2, \ldots\right)$ be a Gaussian sequence with $X_{i} \in N(0,1)$ for each i and suppose its correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ is the matrix of some linear operator $R: l_{2} \rightarrow l_{2}$. Then for $f_{i} \in L^{2}(\mu), i=1,2, \ldots$, where μ is the standard normal distribution, we estimate the variation of the sum of the Gaussian functionals $f_{i}\left(X_{i}\right), i=1,2, \ldots$.

1. Introduction. Let (X, Y) be a Gaussian random vector such that $X, Y \in N(0,1)$ and $E(X Y)=\rho,(|\rho|<1)$. We denote by μ the normalized one-dimensional Gaussian measure, i.e.

$$
\mu(d x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) d x .
$$

In $L^{2}(\mu)$ we have the scalar product

$$
(f, g)_{\mu}=\int_{\mathbb{R}} f(x) g(x) \mu(d x) .
$$

Introducing a random variable $Z \in N(0,1)$ such that Z, Y are independent, we find that the Gaussian vectors (X, Y) and (U, Y) with $U=\rho Y+$ $\sqrt{1-\rho^{2}} Z$ have the same joint distribution. Thus, for $f, g \in L^{2}(\mu)$ we have

$$
\begin{equation*}
E(f(X) g(Y))=E(f(U) g(Y))=E\left(P_{\rho}(Y) g(Y)\right), \tag{1.1}
\end{equation*}
$$

where

$$
P_{\rho} f(y)=E(f(U) \mid Y=y)=\int_{\mathbb{R}} f\left(\rho y+\sqrt{1-\rho^{2}} z\right) d \mu(z), \quad y \in \mathbb{R},
$$

is called the Ornstein-Uhlenbeck operator. The Ornstein-Uhlenbeck operator has a representation in terms of orthonormal Hermite polynomials

[^0]Key words and phrases: Gebelein inequality, Ornstein-Uhlenbeck operator, Hermite polynomials.
$\left\{h_{n}\right\}_{n \geq 0} \subset L^{2}(\mu)$, namely

$$
\begin{equation*}
P_{\rho} f=\sum_{n=0}^{\infty} \rho^{n}\left(f, h_{n}\right)_{\mu} h_{n}, \quad f \in L^{2}(\mu) \tag{1.2}
\end{equation*}
$$

In particular,

$$
P_{\rho} h_{n}=\rho^{n} h_{n}, \quad n \geq 0
$$

From (1.2) we obtain Gebelein's inequality (see [G] and [DK]):
Proposition 1.1. If $f \in L^{2}$ and $(f, 1)_{\mu}=0$, then

$$
\begin{equation*}
\left\|P_{\rho} f\right\|_{2} \leq|\rho| \cdot\|f\|_{2} \tag{1.3}
\end{equation*}
$$

or equivalently for any $g \in L^{2}$ and f as above,

$$
\left|\left(P_{\rho} f, g\right)_{\mu}\right| \leq|\rho| \cdot\|f\|_{2} \cdot\|g\|_{2}
$$

In both inequalities we have equality if and only if $f(x)=c x$.
Consider a Gaussian sequence $\left(X_{i}, i=1,2, \ldots\right)$ of random variables with $X_{i} \in N(0,1)$ for each i. It is assumed that the correlation matrix $R=$ $\left(\rho_{i j}\right)_{i, j \geq 1}$, where $\rho_{i j}=E\left(X_{i} X_{j}\right), i, j=1,2, \ldots$, satisfies

$$
\begin{equation*}
C=\sup _{i \geq 1} \sum_{j \geq 1}\left|\rho_{i j}\right|<\infty \tag{1.4}
\end{equation*}
$$

It is evident that $C \geq 1$. The Frobenius Theorem (see HLP) implies that R is the matrix (in the standard basis) of a continuous linear operator (which we denote by the same letter) $R: l_{p} \rightarrow l_{p}$ for $1 \leq p \leq \infty$ with $\|R\| \leq C$. Hence, it is easily seen that for $C<2$ the linear operator R is invertible. Using Gebelein's inequality (1.3), one can prove (see [BC1], [BC2], [V])

Lemma 1.1. Let the Gaussian sequence $\left(X_{i}, i=1,2, \ldots\right)$ with $X_{i} \in$ $N(0,1)$ for each i satisfy the hypothesis (1.4) and let $\left(f_{i}, i=1,2, \ldots\right) \subset$ $L^{2}(\mu)$. Then for each $n \geq 1$ we have

$$
\begin{equation*}
(2-C) \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right) \leq \operatorname{Var}\left(\sum_{i=1}^{n} f_{i}\left(X_{i}\right)\right) \leq C \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right) \tag{1.5}
\end{equation*}
$$

For $C \geq 2$ the left inequality in 1.5 holds trivially. In fact, we can say more: an inequality of the form

$$
\begin{equation*}
M \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right) \leq \operatorname{Var}\left(\sum_{i=1}^{n} f_{i}\left(X_{i}\right)\right) \tag{1.6}
\end{equation*}
$$

where M is a positive constant, is not satisfied in general when $C \geq 2$.
Consider the following simple example: Let $\left(Y_{i}, i=1,2, \ldots\right) \subset N(0,1)$ be a sequence of independent Gaussian random variables. Let $a, b \in \mathbb{R}$ be such that $a^{2}+b^{2}=1$ and define
$X_{3 k-2}=-Y_{2 k}, \quad X_{3 k-1}=a Y_{2 k-1}-b Y_{2 k}, \quad X_{3 k}=a Y_{2 k-1}+b Y_{2 k}, \quad k \geq 1$.

Moreover, we put

$$
f_{3 k-2}(t)=2 b t, \quad f_{3 k-1}(t)=-t, \quad f_{3 k}(t)=t, \quad t \in \mathbb{R}, k \geq 1
$$

It is easy to check that

$$
C=\sup _{i \geq 1} \sum_{j \geq 1}\left|\rho_{i j}\right|=1+|b|+\max \left\{|b|,\left|1-2 b^{2}\right|\right\} \geq 2
$$

and

$$
\operatorname{Var}\left(\sum_{i=1}^{3 n} f_{i}\left(X_{i}\right)\right)=0 \quad \text { and } \quad \sum_{i=1}^{3 n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)>0, \quad n \geq 1\right.
$$

2. Main result. In this section we are going to prove the inequality (1.5) under a slightly weaker condition than (1.4). First let us introduce some notations. For a given correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$, we put

$$
R_{n}^{(m)}=\left(\rho_{i j}^{m}\right)_{1 \leq i, j \leq n}, \quad m, n \geq 1
$$

and let $\lambda_{n, 1}^{(m)}$ and $\lambda_{n, n}^{(m)}$ denote the least and the greatest of the eigenvalues of the matrix $R_{n}^{(m)}$. By the Schur lemma (see $[\mathrm{B}]$) the matrix $R_{n}^{(m)}$ is nonnegative definite. Hence, the eigenvalues $\lambda_{n, 1}^{(m)}$ are nonnegative. For the matrix $R_{n}=R_{n}^{(1)}$ we use the well known decomposition

$$
R_{n}=U_{n} D_{n} U_{n}^{T}
$$

where

$$
D_{n}=\left(\begin{array}{ccc}
\lambda_{n, 1}^{(1)} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n, n}^{(1)}
\end{array}\right)
$$

is a diagonal matrix with eigenvalues $\lambda_{n, i}^{(1)}, i=1, \ldots, n$, of R_{n} on the main diagonal. The matrix $U_{n}=\left(u_{n, i j}\right)_{1 \leq i, j \leq n}$ is an orthogonal matrix and T stands for transposition. It follows that

$$
\begin{equation*}
\rho_{i j}=\sum_{k=1}^{n} \lambda_{n, k}^{(1)} u_{n, i k} u_{n, j k}, \quad 1 \leq i, j \leq n \tag{2.1}
\end{equation*}
$$

Now we can state the following simple result.
Lemma 2.1. Fix $n \geq 1$. Then the least and the greatest eigenvalues of the matrix $R_{n}^{(m)}$ are monotonic with respect to m, i.e.

$$
\begin{equation*}
\lambda_{n, 1}^{(m+1)} \geq \lambda_{n, 1}^{(m)} \quad \text { and } \quad \lambda_{n, n}^{(m+1)} \leq \lambda_{n, n}^{(m)}, \quad \text { for } m=1,2, \ldots \tag{2.2}
\end{equation*}
$$

Proof. Since the matrix $R_{n}^{(m+1)}$ is symmetric, we have

$$
\begin{equation*}
\lambda_{n, 1}^{(m+1)}=\inf _{\|c\|=1}\left(R_{n}^{(m+1)} c, c\right)=\inf _{\|c\|=1} \sum_{i, j=1}^{n} \rho_{i j}^{m+1} c_{i} c_{j} \tag{2.3}
\end{equation*}
$$

where $c=\left(c_{1}, \ldots, c_{n}\right) \in l_{2}^{n}$ and l_{2}^{n} is the n-dimensional Euclidean space with the scalar product denoted here by (\cdot, \cdot). From $\sqrt{2.3}$ and 2.1 we conclude that for every $c=\left(c_{1}, \ldots, c_{n}\right) \in l_{2}^{n}$ with $\|c\|=1$ we have

$$
\begin{align*}
& \sum_{i, j=1}^{n} \rho_{i j}^{m+1} c_{i} c_{j}=\sum_{i, j=1}^{n} \rho_{i j}^{m} \rho_{i j} c_{i} c_{j} \tag{2.4}\\
& \quad=\sum_{i, j=1}^{n} \rho_{i j}^{m} \sum_{k=1}^{n} \lambda_{n, k}^{(1)} u_{n, i k} u_{n, j k} c_{i} c_{j}=\sum_{k=1}^{n} \lambda_{n, k}^{(1)}\left(\sum_{i, j=1}^{n} \rho_{i j}^{m} c_{i} u_{n, i k} c_{j} u_{n, j k}\right) \\
& \quad \geq \sum_{k=1}^{n} \lambda_{n, k}^{(1)} \sum_{i=1}^{n} c_{i}^{2} u_{n, i k}^{2} \inf _{\|b\|=1}\left(R_{n}^{(m)} b, b\right)=\lambda_{n, 1}^{(m)},
\end{align*}
$$

since

$$
\sum_{k=1}^{n} \lambda_{n, k}^{(1)} \sum_{i=1}^{n} c_{i}^{2} u_{n, i k}^{2}=\sum_{i=1}^{n} c_{i}^{2} \sum_{k=1}^{n} \lambda_{n, k}^{(1)} u_{n, i k}^{2}=1
$$

by (2.1). Taking the infimum in (2.4) over all $c=\left(c_{1}, \ldots, c_{n}\right) \in l_{2}^{n}$ with $\|c\|=1$ we obtain the first inequality of (2.2). The proof of the second one runs similarly.

We can now formulate our main result.
Theorem 2.1. Let $\left(X_{i}, i=1,2, \ldots\right)$ be a Gaussian sequence with $X_{i} \in$ $N(0,1)$ for each i and suppose its correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ is the matrix of some operator $R: l_{2} \rightarrow l_{2}$. Then for $f_{i} \in L^{2}(\mu), i=1,2, \ldots$, and for every $n \geq 1$ we have

$$
\begin{equation*}
\lambda_{\min } \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right) \leq \operatorname{Var}\left(\sum_{i=1}^{n} f_{i}\left(X_{i}\right)\right) \leq \lambda_{\max } \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right) \tag{2.5}
\end{equation*}
$$

where

$$
\lambda_{\min }=\inf _{\|x\|=1}(R x, x), \quad \lambda_{\max }=\sup _{\|x\|=1}(R x, x)
$$

REMARK. Let us point out that the assumption concerning the correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ of the sequence $\left(X_{i}, i=1,2, \ldots\right)$ is slightly weaker than the hypothesis (1.4). To see this, consider the following example: Let $\left(Y_{i}, i=1,2, \ldots\right) \subset N(0,1)$ be a sequence of independent Gaussian random
variables and define

$$
\begin{aligned}
& X_{1}=a Y_{1}+\sum_{j=2}^{\infty} Y_{j} / j, \quad \text { where } \quad a=\sqrt{2-\pi^{2} / 6} \\
& X_{i}=Y_{i} \quad \text { for } i \geq 2
\end{aligned}
$$

It follows immediately that the correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ of the sequence ($X_{i}, i=1,2, \ldots$) is the matrix of some linear operator $R: l_{2} \rightarrow l_{2}$ and the hypothesis (1.4) is not satisfied.

Proof of Theorem 1.1. First we prove the left inequality of 2.5). Without loss of generality we assume that $E\left(f_{i}\left(X_{i}\right)\right)=0, i=1,2, \ldots$ If $\lambda_{\min }=0$ then the inequality holds trivially. Assume that $\lambda_{\min } \neq 0$. Expanding each $f_{i}, i \geq 1$, with respect to the Hermite basis in $L^{2}(\mu)$ we obtain

$$
\begin{equation*}
f_{i}=\sum_{k=1}^{\infty} c_{i k} h_{k}, \quad\left\|f_{i}\right\|_{\mu}^{2}=\sum_{k=1}^{\infty} c_{i k}^{2}, \quad i=1,2, \ldots \tag{2.6}
\end{equation*}
$$

From (1.1) and (1.2) and the orthonormality of Hermite polynomials $\left\{h_{n}\right\}_{n \geq 1}$ $\subset L^{2}(\mu)$ it follows that

$$
\begin{equation*}
E\left[h_{n}\left(X_{i}\right) h_{m}\left(X_{j}\right)\right]=\rho_{i j}^{n} \delta_{m}^{n}, \quad n, m, i, j=1,2, \ldots, \tag{2.7}
\end{equation*}
$$

where δ_{m}^{n} is the Kronecker delta. Combining (2.6) with (2.7) and using Lemma 2.1 we get

$$
\begin{aligned}
& \operatorname{Var}\left(\sum_{i=1}^{n} f_{i}\left(X_{i}\right)\right)=E\left(\sum_{i=1}^{n} f_{i}\left(X_{i}\right)\right)^{2} \\
&=\lim _{N \rightarrow \infty} E\left(\sum_{i=1}^{n} \sum_{k=1}^{N} c_{i k} h_{k}\left(X_{i}\right)\right)^{2}=\lim _{N \rightarrow \infty} E\left(\sum_{k=1}^{N} \sum_{i=1}^{n} c_{i k} h_{k}\left(X_{i}\right)\right)^{2} \\
&=\lim _{N \rightarrow \infty} \sum_{k, l=1}^{N} E\left[\left(\sum_{i=1}^{n} c_{i k} h_{k}\left(X_{i}\right)\right)\left(\sum_{j=1}^{n} c_{j l} h_{l}\left(X_{j}\right)\right)\right] \\
&=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} E\left[\sum_{i=1}^{n} c_{i k} h_{k}\left(X_{i}\right)\right]^{2}=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \sum_{i, j=1}^{n} \rho_{i j}^{k} c_{i k} c_{j k} \\
& \geq \lim _{N \rightarrow \infty} \sum_{k=1}^{N} \lambda_{n, 1}^{(k)} \sum_{i=1}^{n} c_{i k}^{2} \geq \lim _{N \rightarrow \infty} \sum_{k=1}^{N} \lambda_{n, 1}^{(1)} \sum_{i=1}^{n} c_{i k}^{2} \\
& \geq \lambda_{\min } \sum_{i=1}^{n} \sum_{k=1}^{\infty} c_{i k}^{2}=\lambda_{\min } \sum_{i=1}^{n} E\left[f_{i}\left(X_{i}\right)\right]^{2}=\lambda_{\min } \sum_{i=1}^{n} \operatorname{Var}\left(f_{i}\left(X_{i}\right)\right)
\end{aligned}
$$

This proves the left inequality of 2.5 . The proof of the right one is similar.

Remark. Let us point out that under the assumptions of Theorem 2.1 the inequality 1.6 holds for all $f_{i} \in L^{2}(\mu), i=1,2, \ldots$, with a positive constant M if and only if the operator $R: l_{2} \rightarrow l_{2}$ is invertible.

Adapting now the methods from [BC1] and $[\mathrm{BC} 2]$ we can write the following two statements:

Lemma 2.2 (Borel-Cantelli Lemma). Let $\left(X_{i}, i=1,2, \ldots\right)$ be a Gaussian sequence with $X_{i} \in N(0,1)$ for $i \geq 1$ and suppose its correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ is the matrix of some linear operator $R: l_{2} \rightarrow l_{2}$. Then for every sequence of Borel sets $\left(A_{i}, i=1,2, \ldots\right)$ such that $\sum_{i=1}^{\infty} P\left\{X_{i} \in A_{i}\right\}=\infty$ we have $P\left\{X_{i} \in A_{i}\right.$ i.o. $\}=1$..

Theorem 2.2 (Strong Law of Large Numbers). Let ($X_{i}, i=1,2, \ldots$) be a Gaussian sequence with $X_{i} \in N(0,1)$ for $i \geq 1$ and suppose its correlation matrix $R=\left(\rho_{i j}\right)_{i, j \geq 1}$ is the matrix of some linear operator $R: l_{2} \rightarrow l_{2}$. Then for $f \in L^{1}(\mu)$ we have

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \xrightarrow[n \rightarrow \infty]{ } E f\left(X_{1}\right) \quad \text { a.s. }
$$

References

[B] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.
[BC1] M. Beśka and Z. Ciesielski, Ergodic type theorems for Gaussian systems, Proc. Steklov Inst. Math. 248 (2005), 35-40.
[BC2] -, -, Gebelein's inequality and its consequences, in Banach Center Publ. 72, Inst. Math., Polish Acad. Sci., 2006, 11-23.
[DK] H. Dym and H. P. McKean, Gaussian Processes, Function Theory and Inverse Spectral Problem, Academic Press, 1976.
[G] H. Gebelein, Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941), 364-379.
[HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1967.
[V] M. Veraar, Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion, Potential Anal. 30 (2009), 341-370.

Marek Beśka
Faculty of Applied Mathematics
Gdańsk University of Technology
Narutowicza 11/12
80-233 Gdańsk, Poland
E-mail: beska@mif.pg.gda.pl

[^0]: 2010 Mathematics Subject Classification: Primary 60E15; Secondary 60F15.

