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NOTE ON THE VARIANCE OF THE SUM OF
GAUSSIAN FUNCTIONALS

Abstract. Let (Xi, i = 1, 2, . . .) be a Gaussian sequence withXi ∈ N(0, 1)
for each i and suppose its correlation matrix R = (ρij)i,j≥1 is the matrix of
some linear operator R : l2 → l2. Then for fi ∈ L2(µ), i = 1, 2, . . . , where µ
is the standard normal distribution, we estimate the variation of the sum of
the Gaussian functionals fi(Xi), i = 1, 2, . . . .

1. Introduction. Let (X,Y ) be a Gaussian random vector such that
X,Y ∈ N(0, 1) and E(XY ) = ρ, (|ρ| < 1). We denote by µ the normalized
one-dimensional Gaussian measure, i.e.

µ(dx) =
1√
2π

exp
(
−1

2
x2

)
dx.

In L2(µ) we have the scalar product

(f, g)µ =
�

R
f(x)g(x)µ(dx).

Introducing a random variable Z ∈ N(0, 1) such that Z, Y are indepen-
dent, we find that the Gaussian vectors (X,Y ) and (U, Y ) with U = ρY +√

1− ρ2 Z have the same joint distribution. Thus, for f, g ∈ L2(µ) we have

(1.1) E(f(X)g(Y )) = E(f(U)g(Y )) = E(Pρ(Y )g(Y )),

where

Pρf(y) = E(f(U) |Y = y) =
�

R
f(ρy +

√
1− ρ2 z) dµ(z), y ∈ R,

is called the Ornstein–Uhlenbeck operator. The Ornstein–Uhlenbeck oper-
ator has a representation in terms of orthonormal Hermite polynomials
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{hn}n≥0 ⊂ L2(µ), namely

(1.2) Pρf =
∞∑
n=0

ρn(f, hn)µ hn, f ∈ L2(µ).

In particular,
Pρhn = ρn hn, n ≥ 0.

From (1.2) we obtain Gebelein’s inequality (see [G] and [DK]):

Proposition 1.1. If f ∈ L2 and (f, 1)µ = 0, then

(1.3) ‖Pρf‖2 ≤ |ρ| · ‖f‖2,
or equivalently for any g ∈ L2 and f as above,

|(Pρf, g)µ| ≤ |ρ| · ‖f‖2 · ‖g‖2.
In both inequalities we have equality if and only if f(x) = cx.

Consider a Gaussian sequence (Xi, i = 1, 2, . . .) of random variables with
Xi ∈ N(0, 1) for each i. It is assumed that the correlation matrix R =
(ρij)i,j≥1, where ρij = E(XiXj), i, j = 1, 2, . . . , satisfies

(1.4) C = sup
i≥1

∑
j≥1

|ρij | <∞.

It is evident that C ≥ 1. The Frobenius Theorem (see [HLP]) implies that R
is the matrix (in the standard basis) of a continuous linear operator (which
we denote by the same letter) R : lp → lp for 1 ≤ p ≤ ∞ with ‖R‖ ≤ C.
Hence, it is easily seen that for C < 2 the linear operator R is invertible.
Using Gebelein’s inequality (1.3), one can prove (see [BC1], [BC2], [V])

Lemma 1.1. Let the Gaussian sequence (Xi, i = 1, 2, . . .) with Xi ∈
N(0, 1) for each i satisfy the hypothesis (1.4) and let (fi, i = 1, 2, . . .) ⊂
L2(µ). Then for each n ≥ 1 we have

(1.5) (2− C)
n∑
i=1

Var(fi(Xi)) ≤ Var
( n∑
i=1

fi(Xi)
)
≤ C

n∑
i=1

Var(fi(Xi)).

For C ≥ 2 the left inequality in (1.5) holds trivially. In fact, we can say
more: an inequality of the form

(1.6) M

n∑
i=1

Var(fi(Xi)) ≤ Var
( n∑
i=1

fi(Xi)
)
,

where M is a positive constant, is not satisfied in general when C ≥ 2.
Consider the following simple example: Let (Yi, i = 1, 2, . . .) ⊂ N(0, 1)

be a sequence of independent Gaussian random variables. Let a, b ∈ R be
such that a2 + b2 = 1 and define

X3k−2 = −Y2k, X3k−1 = a Y2k−1− bY2k, X3k = aY2k−1 + b Y2k, k ≥ 1.
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Moreover, we put

f3k−2(t) = 2bt, f3k−1(t) = −t, f3k(t) = t, t ∈ R, k ≥ 1.

It is easy to check that

C = sup
i≥1

∑
j≥1

|ρij | = 1 + |b|+ max{|b|, |1− 2b2|} ≥ 2

and

Var
( 3n∑
i=1

fi(Xi)
)

= 0 and
3n∑
i=1

Var(fi(Xi) > 0, n ≥ 1.

2. Main result. In this section we are going to prove the inequality
(1.5) under a slightly weaker condition than (1.4). First let us introduce
some notations. For a given correlation matrix R = (ρij)i,j≥1, we put

R(m)
n = (ρmij )1≤i,j≤n, m, n ≥ 1,

and let λ(m)
n,1 and λ(m)

n,n denote the least and the greatest of the eigenvalues of

the matrix R(m)
n . By the Schur lemma (see [B]) the matrix R(m)

n is nonneg-
ative definite. Hence, the eigenvalues λ(m)

n,1 are nonnegative. For the matrix

Rn = R
(1)
n we use the well known decomposition

Rn = UnDnU
T
n ,

where

Dn =


λ

(1)
n,1 0 0

0
. . . 0

0 0 λ
(1)
n,n


is a diagonal matrix with eigenvalues λ(1)

n,i , i = 1, . . . , n, of Rn on the main
diagonal. The matrix Un = (un,ij)1≤i,j≤n is an orthogonal matrix and T
stands for transposition. It follows that

(2.1) ρij =
n∑
k=1

λ
(1)
n,kun,ikun,jk, 1 ≤ i, j ≤ n.

Now we can state the following simple result.

Lemma 2.1. Fix n ≥ 1. Then the least and the greatest eigenvalues of
the matrix R(m)

n are monotonic with respect to m, i.e.

(2.2) λ
(m+1)
n,1 ≥ λ(m)

n,1 and λ(m+1)
n,n ≤ λ(m)

n,n , for m = 1, 2, . . . .
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Proof. Since the matrix R(m+1)
n is symmetric, we have

(2.3) λ
(m+1)
n,1 = inf

‖c‖=1
(R(m+1)

n c, c) = inf
‖c‖=1

n∑
i,j=1

ρm+1
ij cicj ,

where c = (c1, . . . , cn) ∈ ln2 and ln2 is the n-dimensional Euclidean space with
the scalar product denoted here by (·, ·). From (2.3) and (2.1) we conclude
that for every c = (c1, . . . , cn) ∈ ln2 with ‖c‖ = 1 we have

(2.4)
n∑

i,j=1

ρm+1
ij cicj =

n∑
i,j=1

ρmijρijcicj

=
n∑

i,j=1

ρmij

n∑
k=1

λ
(1)
n,kun,ikun,jkcicj =

n∑
k=1

λ
(1)
n,k

( n∑
i,j=1

ρmij ciun,ikcjun,jk

)
≥

n∑
k=1

λ
(1)
n,k

n∑
i=1

c2iu
2
n,ik inf

‖b‖=1
(R(m)

n b, b) = λ
(m)
n,1 ,

since
n∑
k=1

λ
(1)
n,k

n∑
i=1

c2iu
2
n,ik =

n∑
i=1

c2i

n∑
k=1

λ
(1)
n,ku

2
n,ik = 1

by (2.1). Taking the infimum in (2.4) over all c = (c1, . . . , cn) ∈ ln2 with
‖c‖ = 1 we obtain the first inequality of (2.2). The proof of the second one
runs similarly.

We can now formulate our main result.

Theorem 2.1. Let (Xi, i = 1, 2, . . .) be a Gaussian sequence with Xi ∈
N(0, 1) for each i and suppose its correlation matrix R = (ρij)i,j≥1 is the
matrix of some operator R : l2 → l2. Then for fi ∈ L2(µ), i = 1, 2, . . . , and
for every n ≥ 1 we have

(2.5) λmin

n∑
i=1

Var(fi(Xi)) ≤ Var
( n∑
i=1

fi(Xi)
)
≤ λmax

n∑
i=1

Var(fi(Xi)),

where

λmin = inf
‖x‖=1

(Rx, x), λmax = sup
‖x‖=1

(Rx, x).

Remark. Let us point out that the assumption concerning the correla-
tion matrix R = (ρij)i,j≥1 of the sequence (Xi, i = 1, 2, . . .) is slightly weaker
than the hypothesis (1.4). To see this, consider the following example: Let
(Yi, i = 1, 2, . . .) ⊂ N(0, 1) be a sequence of independent Gaussian random
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variables and define

X1 = aY1 +
∞∑
j=2

Yj/j, where a =
√

2− π2/6,

Xi = Yi for i ≥ 2.

It follows immediately that the correlation matrix R = (ρij)i,j≥1 of the
sequence (Xi, i = 1, 2, . . .) is the matrix of some linear operator R : l2 → l2
and the hypothesis (1.4) is not satisfied.

Proof of Theorem 1.1. First we prove the left inequality of (2.5). Without
loss of generality we assume that E(fi(Xi)) = 0, i = 1, 2, . . . . If λmin = 0
then the inequality holds trivially. Assume that λmin 6= 0. Expanding each
fi, i ≥ 1, with respect to the Hermite basis in L2(µ) we obtain

(2.6) fi =
∞∑
k=1

cikhk, ‖fi‖2µ =
∞∑
k=1

c2ik, i = 1, 2, . . . .

From (1.1) and (1.2) and the orthonormality of Hermite polynomials {hn}n≥1

⊂ L2(µ) it follows that

(2.7) E[hn(Xi)hm(Xj)] = ρnijδ
n
m, n,m, i, j = 1, 2, . . . ,

where δnm is the Kronecker delta. Combining (2.6) with (2.7) and using
Lemma 2.1 we get

Var
( n∑
i=1

fi(Xi)
)

= E
( n∑
i=1

fi(Xi)
)2

= lim
N→∞

E
( n∑
i=1

N∑
k=1

cikhk(Xi)
)2

= lim
N→∞

E
( N∑
k=1

n∑
i=1

cikhk(Xi)
)2

= lim
N→∞

N∑
k,l=1

E
[( n∑

i=1

cikhk(Xi)
)( n∑

j=1

cjlhl(Xj)
)]

= lim
N→∞

N∑
k=1

E
[ n∑
i=1

cikhk(Xi)
]2

= lim
N→∞

N∑
k=1

n∑
i,j=1

ρkijcikcjk

≥ lim
N→∞

N∑
k=1

λ
(k)
n,1

n∑
i=1

c2ik ≥ lim
N→∞

N∑
k=1

λ
(1)
n,1

n∑
i=1

c2ik

≥ λmin

n∑
i=1

∞∑
k=1

c2ik = λmin

n∑
i=1

E
[
fi(Xi)

]2 = λmin

n∑
i=1

Var(fi(Xi)).

This proves the left inequality of (2.5). The proof of the right one is similar.
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Remark. Let us point out that under the assumptions of Theorem 2.1
the inequality (1.6) holds for all fi ∈ L2(µ), i = 1, 2, . . . , with a positive
constant M if and only if the operator R : l2 → l2 is invertible.

Adapting now the methods from [BC1] and [BC2] we can write the fol-
lowing two statements:

Lemma 2.2 (Borel–Cantelli Lemma). Let (Xi, i = 1, 2, . . .) be a Gaus-
sian sequence with Xi ∈ N(0, 1) for i ≥ 1 and suppose its correlation matrix
R = (ρij)i,j≥1 is the matrix of some linear operator R : l2 → l2. Then for ev-
ery sequence of Borel sets (Ai, i = 1, 2, . . . ) such that

∑∞
i=1 P{Xi ∈ Ai} =∞

we have P{Xi ∈ Ai i.o.} = 1.

Theorem 2.2 (Strong Law of Large Numbers). Let (Xi, i = 1, 2, . . .) be
a Gaussian sequence with Xi ∈ N(0, 1) for i ≥ 1 and suppose its correlation
matrix R = (ρij)i,j≥1 is the matrix of some linear operator R : l2 → l2. Then
for f ∈ L1(µ) we have

1
n

n∑
i=1

f(Xi) −−−→
n→∞

Ef(X1) a.s.
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