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ON THE USE OF DIFFERENCE OF TWO PROPORTIONS

Abstract. Differences of two proportions occur most frequently in bio-
medical research. However, as far as published work is concerned, only ap-
proximations have been used to study the distribution of such differences.
In this note, we derive the exact probability distribution of the difference of
two proportions for seven flexible beta type distributions. The expressions
involve several well known special functions. The use of these results with
respect to known approximations is illustrated.

1. Introduction. Differences of two proportions arise in many areas
of the sciences, engineering and medicine. The need for the probabili-
ty distribution of the difference of two proportions arises especially when
one is interested in comparing the performances of two entities. Two
example are:

• Suppose that there are two drugs, say A and B, and that one wishes to
compare their efficiencies. The drugs are tested on a group of patients.
Let X1 denote the proportion of effectiveness for drug A. Let X2 de-
note the proportion of effectiveness for drug B. Then the probability
distribution of D = X1 −X2 can be used to study whether drug A is
more effective than drug B or vice versa.
• Suppose that there are two pesticides, say A and B, and that one

wishes to compare their efficiencies. The pesticides are tested on a field
of crops. Let X1 denote the proportion of effectiveness for pesticide A.
Let X2 denote the proportion of effectiveness for pesticide B. Then the
probability distribution of D = X1−X2 can be used to study whether
pesticide A is more effective than pesticide B or vice versa.
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The exact probability distribution of the difference of two proportions does
not appear to have been known in the literature. Various approximations
have been used for this distribution. We refer the readers to Radhakrishna
et al. (1992) and Newcombe (1998) for reviews of known approximation
methods. Two of the most commonly used approximations are the normal
approximation and the beta approximation. The normal approximation sug-
gests that D = X1−X2 follows a truncated normal distribution when X1 and
X2 are independent beta type random variables. The beta approximation
suggests that D = X1 −X2 follows a beta distribution.

In this note, we derive the exact probability distribution of the difference
of two proportions, i.e. the difference of two beta type random variables X1

and X2. We consider seven of the most known beta type distributions for
X1 and X2. For each distribution, we derive an exact analytical expression
for the probability density function (pdf) of the difference D = X1 − X2.
These derivations are given in Section 2. The exact results are compared to
the normal and beta approximations in Section 3. It turns out that these
approximations perform poorly.

2. Exact distributions of D = X1 −X2. In this section, we provide
seven theorems for the derivation of the pdf of D = X1 − X2. Theorem 1
considers the case that X1 and X2 have the standard beta distribution. The
remaining theorems consider various generalized beta distributions. Theo-
rems 2 and 3 consider the generalized beta distributions due to Libby and
Novick (1982) and McDonald (1984), respectively. Theorems 4 and 5 con-
sider the non-central and doubly non-central beta distributions. Theorems
6 and 7 consider the generalized beta distributions due to Gordy (1998) and
Armero and Bayarri (1994), respectively. The details of the derivation of
the pdf of D = X1−X2 are given for Theorem 1, but omitted for the other
theorems. The full details can be obtained from the author.

Theorem 1. Suppose X1 and X2 are independent beta random variables
given by the pdfs

(1) f1(x1) =
xa1−1

1 (1− x1)b1−1

B(a1, b1)
and

(2) f2(x2) =
xa2−1

2 (1− x2)b2−1

B(a2, b2)
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2 > 0, where B(·, ·) denotes
the beta function defined by

B(a, b) =
1�

0

wa−1(1− w)b−1dw.
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Then the pdf of the difference D = X1 −X2 can be expressed as

fD(d) = Γ (a1 + b1)Γ (a2 + b2)

×



Γ (a1 + b1)Γ (a2 + b2)(−d)a2−1(1 + d)a1+b2−1

Γ (b1)Γ (a2)Γ (a1 + b2)

× F1

(
a1, 1− b1, 1− a1, a1 + b2; 1 + d,

1 + d

d

)
if −1 ≤ d ≤ 0,

Γ (a1 + b1)Γ (a2 + b2)da1−1(1− d)a2+b1−1

Γ (b2)Γ (a1)Γ (a2 + b1)

× F1

(
a2, 1− b2, 1− a1, a2 + b1; 1− d, d− 1

d

)
if 0 ≤ d ≤ 1

for −1 ≤ d ≤ 1, where F1 denotes the Appell hypergeometric function of the
first kind defined by

F1(a, b, b′, c; z, ξ) =
∞∑
k=0

∞∑
l=0

(a)k+l(b)k(b′)lzkξl

(c)k+lk!l!
,

where (c)k = c(c+ 1) · · · (c+ k − 1) denotes the ascending factorial.

Proof. Since

fD(d) =



1+d�

0

f1(t)f2(t− d) dt if −1 ≤ d ≤ 0,

1−d�

0

f1(d+ t)f2(t) dt if 0 ≤ d ≤ 1,

one can write

(3) fD(d) =
Γ (a1 + b1)Γ (a2 + b2)
Γ (a1)Γ (a2)Γ (b1)Γ (b2)

J(d)

if −1 ≤ d ≤ 0, where

(4) J(d) =
1+d�

0

ta1−1(1− t)b1−1(t− d)a2−1(1 + d− t)b2−1 dt.

Setting w = t/(1 + d), (4) can be rewritten as

(5) J(d) = (−d)a2−1(1 + d)a1+b2−1K(d),

where

(6) K(d) =
1�

0

wa1−1(1−w)b2−1{1− (1 +d)w}b1−1

{
1− (1 + d)w

d

}a2−1

dw.
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Using equation (3.211) in Gradshteyn and Ryzhik (2000), one can express
(6) as

(7) K(d) = B(a1, b2)F1

(
a1, 1− b1, 1− a1, a1 + b2; 1 + d,

1 + d

d

)
.

Combining (3), (5) and (7) yields (3) for −1 ≤ d ≤ 0. The result for 0 ≤
d ≤ 1 can be established similarly.

Theorem 2. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) =
p1x

a1p1−1
1 {1− xp11 }b1−1

B(a1, b1)

and

f2(x2) =
p2x

a2p2−1
2 {1− xp22 }b2−1

B(a2, b2)
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, p1, p2 > 0, then the pdf of
D = X1 −X2 can be expressed as

fD(d) = Cda1p1+a2p2−1
∞∑
k=0

∞∑
l=0

A(k, l)dp1k+p2lIk,l(d)

for −1 ≤ d ≤ 1, where

Ik,l(d) =



B1/2(1− a1p1 − p1k − a2p2 − p2l, a2p2 + p2l)

−Bd/(1+3d)(1− a1p1 − p1k − a2p2 − p2l, a2p2 + p2l)

if −1 ≤ d ≤ 0,

B1−d(1− a1p1 − p1k − a2p2 − p2l, a2p2 + p2l) if 0 ≤ d ≤ 1,

A(k, l) =
(1− b1)k(1− b2)l

k!l!
, C =

p1p2

B(a1, b1)B(a2, b2)
,

where Bx(·, ·) denotes the incomplete beta function defined by

Bx(α, β) =
x�

0

tα−1(1− t)β−1 dt.

Theorem 3. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) =
λa1

1 x
a1−1
1 (1− x1)b1−1

B(a1, b1){1− (1− λ1)x1}a1+b1
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and

f2(x2) =
λa2

2 x
a2−1
2 (1− x2)b2−1

B(a2, b2){1− (1− λ2)x2}a2+b2
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, λ1, λ2 > 0, then the pdf of
D = X1 −X2 can be expressed as

fD(d) = C
∞∑
k=0

∞∑
l=0

A(k, l)Ik,l(d)

for −1 ≤ d ≤ 1, where

Ik,l(d) =



B(b2, a1 + k)(−d)a2+l−1(1 + d)a1+b2+k−1

× F1

(
a1 + k, 1− b1, 1− a2 − l, a1 + b2 + k; 1 + d,

1 + d

d

)
if −1 ≤ d ≤ 0,

B(b1, a2 + l)da1+k−1(1− d)a2+b1+l−1

× F1

(
a2 + l, 1− b2, 1− a1 − k, a2 + b1 + l; 1− d, d− 1

d

)
if 0 ≤ d ≤ 1,

A(k, l) =
(a1 + b1)k(a2 + b2)l(1− λ1)k(1− λ2)l

k!l!
,

C =
λa1

1 λ
a2
2

B(a1, b1)B(a2, b2)
.

Theorem 4. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) =
xa1−1

1 (1− x1)b1−1

Γ (b1)
exp
(
−λ1

2

) ∞∑
k=0

Γ (a1 + b1 + k)(λ1x1)k

Γ (a1 + k)2kk!

and

f2(x2) =
xa2−1

2 (1− x2)b2−1

Γ (b2)
exp
(
−λ2

2

) ∞∑
k=0

Γ (a2 + b2 + k)(λ2x2)k

Γ (a2 + k)2kk!
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, λ1, λ2 > 0, then the pdf of
D = X1 −X2 can be expressed as

fD(d) = exp
(
−λ1 + λ2

2

)
×
∞∑
k=0

∞∑
l=0

Γ (a1 + b1 + k)Γ (a2 + b2 + l)
λk1λ

l
2

2k+lk!l!
Ik,l(d)

for −1 ≤ d ≤ 1, where
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Ik,l(d) =



(−d)a2+l−1(1 + d)a1+b2+k−1

Γ (b1)Γ (a2 + l)Γ (a1 + b2 + k)

× F1

(
a1 + k, 1− b1, 1− a1 − l, a1 + b2 + k; 1 + d,

1 + d

d

)
if −1 ≤ d ≤ 0,

da1+k−1(1− d)a2+b1+l−1

Γ (b2)Γ (a1 + k)Γ (a2 + b1 + l)

× F1

(
a2 + l, 1− b2, 1− a1 − k, a2 + b1 + l; 1− d, d− 1

d

)
if 0 ≤ d ≤ 1.

Theorem 5. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) = xa1−1
1 (1− x1)b1−1 exp

(
−λ1 + µ1

2

)
×
∞∑
k=0

∞∑
l=0

Γ (a1 + b1 + k + l)(λ1x1)k{µ1(1− x1)}l

Γ (a1 + k)Γ (b1 + l)2k+lk!l!

and

f2(x2) = xa2−1
2 (1− x2)b2−1 exp

(
−λ2 + µ2

2

)
×
∞∑
k=0

∞∑
l=0

Γ (a2 + b2 + k + l)(λ2x2)k{µ2(1− x2)}l

Γ (a2 + k)Γ (b2 + l)2k+lk!l!
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, λ1, λ2, µ1 > 0, µ2 > 0, then
the pdf of D = X1 −X2 can be expressed as

fD(d) = C

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

A(k, l,m, n)Jk,l,m,n(d)

for −1 ≤ d ≤ 1, where

Jk,l,m,n(d)

=



(−d)a2+m−1(1 + d)a2+b2+k+n−1

Γ (a1 + b2 + k + n)Γ (a2 +m)Γ (b1 + l)

× F1

(
a1 + k, 1− b1− l, 1−a2−m, a1 + b2 + k + n; 1 + d,

1+d

d

)
if −1 ≤ d ≤ 0,

da1+k−1(1− d)a2+b1+l+m−1

Γ (a2 + b1 + l +m)Γ (a1 + k)Γ (b2 + n)

× F1

(
a2 +m, 1− b2−n, 1−a1−k, a2 + b1 + l +m; 1−d, d−1

d

)
,

if 0 ≤ d ≤ 1,
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A(k, l,m, n) =
λk1µ

l
1λ

m
2 µ

n
2Γ (a1 + b1 + k + l)Γ (a2 + b2 +m+ n)

2k+l+m+nk!l!m!n!
,

C = exp
(
−λ1 + µ1 + λ2 + µ2

2

)
.

Theorem 6. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) =
xa1−1

1 (1− x1)b1−1 exp(−γ1x1)
B(a1, b1) 1F1(a1; a1 + b1;−γ1)

and

f2(x2) =
xa2−1

2 (1− x2)b2−1 exp(−γ2x2)
B(a2, b2) 1F1(a2; a2 + b2;−γ2)

,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, γ1, γ2 > 0, where 1F1

denotes the confluent hypergeometric function defined by

1F1(α;β;x) =
∞∑
k=0

(α)k
(β)k

xk

k!
,

then the pdf of D = X1 −X2 can be expressed as

fD(d)

=



C(−d)a2−1(1 + d)a1+b2−1 exp(γ2d)
∞∑
k=0

(1− b1)k
k!

(1 + d)k

×B(a1 +k, b2)Φ1

(
a1 +k, 1−a2, a1 + b2 +k;

1+d

d
,−(γ1 +γ2)(1+d)

)
if −1 ≤ d ≤ 0,

Cda1−1(1− d)b1+a2−1 exp(−γ1d)
∞∑
k=0

(1− b2)k
k!

(1− d)k

×B(b1, a2 + k)Φ1

(
a2 +k, 1−a1, b1 +a2 +k;

d−1
d

,−(γ1 +γ2)(1−d)
)

if 0 ≤ d ≤ 1
for −1 ≤ d ≤ 1, where

1/C = B(a1, b1) 1F1(a1; a1 + b1;−γ1)B(a2, b2) 1F1(a2; a2 + b2;−γ2)

and Φ1 denotes the Appell hypergeometric series of the first kind defined by

Φ1(α, β, γ;x, y) =
∞∑
k=0

∞∑
l=0

(α)k+l(β)k
(γ)k+l

xkyl

k!l!
.

Theorem 7. If X1 and X2 are independent random variables given by
the pdfs

f1(x1) =
xa1−1

1 (1− x1)b1−1/(1 + z1x1)γ1

B(a1, b1) 2F1(γ1, a1; a1 + b1;−z1)
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and

f2(x2) =
xa2−1

2 (1− x2)b2−1/(1 + z2x2)γ2

B(a2, b2) 2F1(γ2, a2; a2 + b2;−z2)
,

respectively , for 0 < x1, x2 < 1 and a1, a2, b1, b2, γ1, γ2, z1, z2 > 0, where 2F1

denotes the Gauss hypergeometric function defined by

2F1(α, β; γ;x) =
∞∑
k=0

(α)k(β)k
(γ)k

xk

k!
,

then the pdf of D = X1 −X2 can be expressed as

(8) fD(d) = C

∞∑
k=0

∞∑
l=0

(−1)k+l(γ1)k(γ2)lzk1z
l
2

k!l!
Ik,l(d)

for −1 ≤ d ≤ 1, where

Ik,l(d) =



B(a1 + k, b2)(−d)a2+l−1(1 + d)a1+b2+k−1

× F1

(
a1 + k, 1− b1, 1− a2 − l, a1 + b2 + k; 1 + d,

1 + d

d

)
if −1 ≤ d ≤ 0,

B(b1, a2 + l)da1+k−1(1− d)a2+b1+l−1

× F1

(
a2 + l, 1− b2, 1− a1 − k, a2 + b1 + l; 1− d, d− 1

d

)
if 0 ≤ d ≤ 1,

1/C = B(a1, b1) 2F1(γ1, a1; a1 + b1;−z1)B(a2, b2) 2F1(γ2, a2; a2 + b2;−z2).

3. Discussion. We have derived analytical expressions for the pdf of the
difference of two proportios by considering seven flexible beta type distribu-
tions. The expressions involve the Appell hypergeometric function of the first
kind, the Appell hypergeometric series of the first kind, the confluent hyper-
geometric function, the Gauss hypergeometric function, and the incomplete
beta function. These functions are well known and well established in the
mathematics literature; see Lebedev (1972), Erdélyi et al. (1981), Prudnikov
et al. (1986) and Gradshteyn and Ryzhik (2000) for their detailed proper-
ties. In-built numerical routines for computing them are available in most
mathematical packages, e.g. Maple, Mathematica and Matlab.

We feel that the results in Section 2 can be of help in deriving an ex-
act approach for the various modelling problems that involve differences of
two proportions. Their use can be illustrated, for example, by comparing
the derived pdfs with the approximations mentioned in Section 1. Suppose
X1 and X2 are independent beta random variables with the pdfs specified
by (1) and (2), respectively. The beta approximation for D = X1 −X2 as-
sumes that D ≈ 2X − 1 with X taken to be a beta random variable with
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Fig. 1. The exact (solid curve), beta approximated (dashed curve) and normal approxi-
mated (dotted curve) pdfs of D = X1 −X2 for a1 = 0.9, b1 = 0.8, a2 = 0.7 and b2 = 0.5.
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Fig. 2. The exact (solid curve), beta approximated (dashed curve) and normal approxi-
mated (dotted curve) pdfs of D = X1 −X2 for a1 = 0.9, b1 = 0.8, a2 = 0.7 and b2 = 0.5.

parameters, say, a and b. These parameters can be determined by setting
E(X1)−E(X2) = 2E(X)− 1 and Var(X1) + Var(X2) = 4 Var(X), yielding
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Fig. 3. The exact (solid curve), beta approximated (dashed curve) and normal approxi-
mated (dotted curve) pdfs of D = X1 −X2 for a1 = 0.6, b1 = 0.8, a2 = 5 and b2 = 3.
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Fig. 4. The exact (solid curve), beta approximated (dashed curve) and normal approxi-
mated (dotted curve) pdfs of D = X1 −X2 for a1 = 0.3, b1 = 0.2, a2 = 5 and b2 = 3.

the solutions

a = D1

{
D1(1−D1)

D2
− 1
}
, b = (1−D1)

{
D1(1−D1)

D2
− 1
}
,
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where

D1 =
1
2

{
a1

a1 + b1
− a2

a2 + b2
+ 1
}
,

D2 =
1
4

{
a1b1

(a1 + b1)2(a1 + b1 + 1)
+

a2b2
(a2 + b2)2(a2 + b2 + 1)

}
.

The normal approximation for D = X1 − X2 assumes that D ≈ N(µ, σ2)
truncated over the interval [−1, 1]. The parameters µ and σ can be obtained
as the simultaneous solutions of the equations

1
Φ((1− µ)/σ)− Φ(−(1 + µ)/σ)

1�

−1

xφ

(
x− µ
σ

)
dx = D3,

1
Φ((1− µ)/σ)− Φ(−(1 + µ)/σ)

1�

−1

x2φ

(
x− µ
σ

)
dx = D4,

where

φ(x) =
1√
2π

exp
(
−x

2

2

)
,

Φ(x) =
x�

−∞
φ(y)dy,

D3 =
a1

a1 + b1
− a2

a2 + b2
,

D4 =
a1(a1 + 1)
a1 + b1

+
a2(a2 + 1)
a2 + b2

− 2a1a2

(a1 + b1)(a2 + b2)
.

The exact pdf of D=X1−X2 is given by (3) of Theorem 1. Figures 1, 2, 3
and 4 show how the exact and approximate pdfs compare for some chosen
values of a1, b1, a2 and b2. It is clear that both the approximations are very
poor. The normal approximation appears to perform better than the beta
approximation.
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