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STUDY OF A CONTACT PROBLEM WITH NORMAL
COMPLIANCE AND NONLOCAL FRICTION

Abstract. We consider a static frictional contact between a nonlinear
elastic body and a foundation. The contact is modelled by a normal compli-
ance condition such that the penetration is restricted with unilateral con-
straint and associated to the nonlocal friction law. We derive a variational
formulation and prove its unique weak solvability if the friction coefficient
is sufficiently small. Moreover, we prove the continuous dependence of the
solution on the contact conditions. Also we study the finite element approx-
imation of the problem and obtain an error estimate.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. A first attempt to study contact
problems within the framework of variational inequalities was made in [8].
Unilateral contact models occupy an important place in the theory of vari-
ational inequalities and their approximation by finite element methods (see
[9, 13]). Numerical studies of the Signorini contact problem were made in
[1, 2, 3, 12]. In particular, in [12] we can find a detailed analysis of elastic
contact problems together with a numerical approach.

In this work, our goal is the analysis and numerical approximation of a
frictional and unilateral contact problem in nonlinear elasticity. We assume
that the contact is modelled by a normal compliance condition similar to the
one in [11], so that the penetration is restricted with unilateral constraint
and associated to the nonlocal friction law. Now, we want to point out the
physical interest of the model studied here. Indeed, before the reference [11]
appeared, it was well known that no restriction with unilateral constraint
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was done on the penetration in compliance models. However, according again
to this reference, the method presented here considers a compliance model in
which the compliance term does not necessarily represent an important per-
turbation of the original problem without contact. This will help us to study
the models where a strictly limited penetration occurs by means of a limit
procedure to the Signorini contact problem. Recall that a numerical study of
a static frictional contact problem with normal compliance for elastic mate-
rials was made in [10, 15]. The novelty in the present paper is that we extend
the results in [5, 15] to the case when the elasticity operator is nonlinear,
strongly monotone and Lipschitz continuous. We suppose that the displace-
ment field is of class H2 (the standard Sobolev space of degree 2) and we
deduce an O(h3/4) error estimate where h > 0 stands for the discretization
parameter.

The paper is structured as follows. In Section 2 the mechanical problem
(Problem P1) is formulated, some notation is presented and the variational
formulation is established. In Section 3 we give an existence and uniqueness
result under a smallness hypothesis on the friction coefficient. In Section 4
we prove a continuous dependence result. Finally, in Section 5 we study the
finite element approximation of the displacement variational formulation.
We establish the convergence of the finite element method and derive an
error estimate under a regularity assumption on the solution.

2. Variational formulation. Consider an elastic body occupying a
bounded Lipschitzian domain Ω ⊂ Rd (d = 2, 3). The boundary Γ of
Ω is partitioned into three measurable parts, Γ = Γ 1 ∪ Γ 2 ∪ Γ 3, where
Γi, i = 1, 2, 3, are disjoint open sets and meas(Γ1) > 0. The body is
subjected to volume forces of density φ1, prescribed zero displacements
and tractions φ2 on the parts Γ1 and Γ2, respectively. On Γ3 the body
is in unilateral contact with a foundation following a nonlocal friction
law [7, 14].

Under these conditions, the classical formulation of the mechanical prob-
lem is the following.

Problem P1. Find a displacement field u : Ω → Rd such that

σ = Fε(u) in Ω,(2.1)

div σ + φ1 = 0 in Ω,(2.2)

u = 0 on Γ1,(2.3)

σν = φ2 on Γ2,(2.4)

uν ≤ g, σν + p(uν) ≤ 0, (σν + p(uν))(uν − g) = 0 on Γ3,(2.5)
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|στ | ≤ µ|Rσν |
|στ | < µ|Rσν | ⇒ uτ = 0

|στ | = µ|Rσν | ⇒ ∃λ ≥ 0, στ = −λuτ

 on Γ3.(2.6)

Here (2.1) is the elastic constitutive law in which σ denotes the stress
tensor, ε(u) is the small strain and F is a given nonlinear function. Next,
(2.2) represents the equilibrium equation while (2.3) and (2.4) are the dis-
placement and traction boundary conditions, respectively, in which ν de-
notes the unit outward normal vector on Γ and σν represents the Cauchy
stress vector. Conditions (2.6) represent the nonlocal Coulomb friction law
where µ denotes the friction coefficient.

We now want to explain the physical meaning of the unilateral condi-
tions (2.5), which are of our main interest. Here σν denotes the normal
stress, uν is the normal displacement, g ≥ 0 is given and p is a Lipschitz
continuous increasing function. Indeed, if uν < 0, i.e. if there is separation
between the body and the foundation, then (2.5) combined with hypotheses
(2.10) below on the function p shows that the reaction of the foundation
vanishes (since σν = 0). If 0 ≤ uν < g then −σν = p(uν), which means
that the reaction of the foundation is uniquely determined by the normal
displacement. If uν = g then −σν ≥ p(g) and σν is not uniquely determined.
We note that when g = 0, condition (2.5) becomes the classical Signorini
contact condition without a gap,

uν ≤ 0, σν ≤ 0, σνuν = 0,

and when g > 0 and p = 0, (2.5) is the Signorini contact condition with a
gap,

uν ≤ g, σν ≤ 0, σν(uν − g) = 0.

The last two conditions are used to model the contact with a perfectly rigid
foundation.

In the study of Problem P1 we shall adopt the following notation and
hypotheses:

We denote by Sd the space of second-order symmetric tensors on Rd

(d = 2, 3), while ‘.’ and | · | will represent the inner product and Euclidean
norm on Sd and Rd, respectively, i.e.

u.v = uivi, |v| = (v.v)1/2, ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2, ∀σ, τ ∈ Sd.

Here and below, the indices i and j run between 1 and d, and the summation
convention over repeated indices is adopted.
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To proceed with the variational formulation, we need some function
spaces:

H = (L2(Ω))d, Q = {τ = (τij); τij = τji ∈ L2(Ω)},
H1 = (H1(Ω))d.

H,Q are Hilbert spaces equipped with the respective inner products

(u, v)H =
�

Ω

uivi dx, (σ, τ)Q =
�

Ω

σijτij dx.

The linearized strain tensor is defined as

ε(v) = (εij(v)) =
(

1
2

(vi,j + vj,i)
)

∀v ∈ H1.

For every v ∈ H1 we also write v for the trace of v on Γ , and we denote by
vν and vτ the normal and the tangential components of v on the boundary
Γ given by vν = v.ν, vτ = v − vνν. Similarly, σν and στ denote the normal
and the tangential traces of a function σ ∈ Q1 = {τ ∈ Q : div τ ∈ H}. If σ
is a regular function, then σν = (σν).ν, στ = σν − σνν, and the following
Green’s formula holds:

〈σ, ε(v)〉Q + (div σ, v)H =
�

Γ

σν.v da ∀v ∈ H1.

Next let V be the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 on Γ1}

and define the set of admissible displacement fields by

K = {v ∈ V ; vν ≤ g a.e. on Γ3}.

Since meas(Γ1) > 0, the following Korn inequality holds [8]:

(2.7) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V
with the inner product given by

(u, v)V = 〈ε(u), ε(v)〉Q
and let ‖ · ‖V be the associated norm. It follows from (2.7) that the norms
‖·‖H1 and ‖·‖V are equivalent and (V, ‖·‖V ) is a real Hilbert space. Moreover,
by Sobolev’s trace theorem, there exists a constant dΩ > 0 depending only
on Ω, Γ1 and Γ3 such that

(2.8) ‖v‖
(L2(Γ3))d

≤ dΩ‖v‖V ∀v ∈ V.

In the study of the mechanical problem P1, we assume that the operator
of elasticity F satisfies
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(2.9)



(a) F : Ω × Sd → Sd.
(b) There exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2|
for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω.

(c) There exists m > 0 such that
(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2

for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω.
(d) The mapping x 7→ F (x, ε) is Lebesgue measurable on Ω,

for all ε ∈ Sd.
(e) The mapping x 7→ F (x, 0) belongs to Q.

An example of a nonlinear elasticity operator F is given by

F (ξ) = Eξ +
1
λ

(ξ − PUξ) ∀ξ ∈ Sd,

where λ > 0; E : Sd → Sd is a fourth order symmetric and positive definite
tensor; U denotes a nonempty closed convex set in Sd; and PU represents
the projection mapping.

We also assume as in [11] that the normal compliance function p satisfies

(2.10)



(a) p : ]−∞, g]→ R;
(b) there exists Lp > 0 such that
|p(r1)− p(r2)| ≤ Lp|r1 − r2| for all r1, r2 ≤ g;

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 for all r1, r2 ≤ g;
(d) p(r) = 0 for all r < 0.

The forces and the tractions are assumed to satisfy

(2.11) φ1 ∈ H, φ2 ∈ (L2(Γ2))d,

and we denote by f the element of V given by

(f, v)V = (φ1, v)H + (φ2, v)(L2(Γ2))d ∀v ∈ V.

We suppose that the friction coefficient µ satisfies

(2.12) µ ∈ L∞(Γ3), µ ≥ 0 a.e. on Γ3

and

(2.13) R : H−1/2(Γ )→ L2(Γ3) is a linear continuous mapping (see [5]),

where H−1/2(Γ ) is the dual of H1/2(Γ ). Next, we define

W = {v ∈ H1; div σ(v) ∈ H}.

Let jc : V × V → R, jµ : W × V → R and j : (V ∩W ) × V → R be the



48 A. Touzaline

functionals

jc(v, w) =
�

Γ3

p(vν)wν da, jµ(v, w) =
�

Γ3

µ|Rσν(v)| |wτ | da,

j(v, w) = jc(v, w) + jµ(v, w).

We note that if v ∈W then σ(v) ∈ Q1 and σν(v) ∈ H−1/2(Γ ). Thus, jµ(v, ·)
makes sense.

Now, in order to establish the weak formulation of Problem P1, we as-
sume u is a smooth function satisfying (2.1)–(2.6). Let v ∈ V and multiply
the equilibrium of forces (2.2) by v − u, integrate the result over Ω and use
Green’s formula to obtain�

Ω

σ(ε(v)− ε(u)) dx =
�

Ω

φ1.(v − u) dx+
�

Γ

σν.(v − u) da.

Taking into account the boundary conditions (2.3) and v = 0 on Γ1, we get�

Γ

σν.(v − u) da =
�

Γ2

φ2.(v − u) da+
�

Γ3

σν.(v − u) da.

Moreover, �

Γ3

σν.(v − u) da =
�

Γ3

σν(vν − uν) da+
�

Γ3

στ .(vτ − uτ ) da.

But from the frictional contact conditions (2.6) we have

στ .(vτ − uτ ) + µ|Rσν(u)|(|vτ | − |uτ |) ≥ 0 ∀vτ
and we see that�

Γ3

σν(vν − uν) da =
�

Γ3

(σν + p(uν))(vν − uν) da−
�

Γ3

p(uν)(vν − uν) da.

Then we deduce that the function u satisfies the inequality

(2.14) 〈Fε(u), ε(v − u)〉Q + j(u, v)− j(u, u)

≥ (f, v − u)V +
�

Γ3

(σν + p(uν))(vν − uν) da ∀v ∈ V.

On the other hand,�

Γ3

(σν +p(uν)(vν−uν) da=
�

Γ3

(σν +p(uν))((vν−g)− (uν−g)) da

=
�

Γ3

(σν +p(uν))(vν−g) da−
�

Γ3

(σν +p(uν)(uν−g) da.

Then using the contact conditions (2.5) yields�

Γ3

(σν + p(uν)(vν − g) da ≥ 0 ∀v ∈ K
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and �

Γ3

(σν + p(uν))(uν − g) da = 0.

Hence we deduce that

(2.15)
�

Γ3

(σν + p(uν))(vν − uν) da ≥ 0 ∀v ∈ K.

Combining now (2.14) and (2.15) we obtain the following variational formu-
lation of the mechanical problem P1.

Problem P2. Find a displacement field u ∈ K ∩W such that

(2.16) 〈Fε(u), ε(v − u)〉Q + j(u, v)− j(u, u) ≥ (f, v − u)V ∀v ∈ K.

3. Existence and uniqueness of solution. The main result of this
section is the existence and uniqueness of solution for the weak formula-
tion P2.

Theorem 3.1. Let (2.9)–(2.13) hold. Then there exists a constant µ0 > 0
such that Problem P2 has a unique solution if

‖µ‖L∞(Γ3) < µ0.

The proof will be carried out in several steps. It is based on fixed point
arguments. Let g ∈ C+ where C+ is a nonempty closed subset of L2(Γ3)
defined as

C+ = {s ∈ L2(Γ3); s ≥ 0 a.e. on Γ3}
and let jg : V → R be the functional given by

jg(v) =
�

Γ3

µg|vτ | da ∀v ∈ V.

We now consider the following contact problem with given friction.

Problem Pg. Find ug ∈ K such that

(3.1) 〈Fε(ug), ε(v − ug)〉Q + jg(v)− jg(ug) ≥ (f, v − ug)V ∀v ∈ K.
We prove the following lemma.

Lemma 3.2. For any g ∈ C+, Problem Pg has a unique solution.

Proof. Let A : V → V be the operator given by (Au, v)V = 〈Fε(u),
ε(v)〉Q + jc(u, v) for all u, v ∈ V . We use (2.8), (2.9)(b),(c), (2.10)(b)(c) to
show that A is strongly monotone and Lipschitz continuous. The functional
jg : V → R is a continuous seminorm; since K is a nonempty closed convex
subset of V , it follows from the theory of elliptic variational inequalities
(see [4]) that the inequality (3.1) has a unique solution.
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We now consider the mapping T : C+ → C+ defined as

(3.2) T (g) = |Rσν(ug)|.
Lemma 3.3. There exists a constant µ0 > 0 such that T admits a unique

fixed point g∗ and ug∗ is a unique solution of Problem P2.

Proof. Let g1, g2 ∈ C+. Using (3.2) we have

(3.3) ‖T (g1)− T (g2)‖L2(Γ3) ≤ ‖R(σν(ug1)− σν(ug2))‖L2(Γ3).

Thus, by (2.13) and Green’s formula, there exists a constant c0 > 0 such
that

(3.4) ‖R(σν(ug1)− σν(ug2))‖L2(Γ3) ≤ c0M‖ug1 − ug2‖V .
We take v = ug2 in the inequality equivalent to (3.1) with g = g1, and
v = ug1 in the inequality equivalent to (3.1) with g = g2, and add the
results to obtain

(3.5) 〈Fε(ug1)− Fε(ug2), ε(ug1)− ε(ug2)〉Q
+

�

Γ3

(p(ug2ν )− p(ug1ν ))(ug2ν − ug1ν ) da

≤
�

Γ3

µ(g1 − g2)(|ug2τ | − |ug1τ |) da.

Keeping in mind (2.10)(c), we have�

Γ3

(p(ug2ν )− p(ug1ν ))(ug2ν − ug1ν ) da ≥ 0

and therefore from (3.5) we deduce that

‖ug1 − ug2‖V ≤ ‖µ‖L∞(Γ3)
dΩ
m
‖g1 − g2‖L2(Γ3).

Hence using (3.4), we get

‖R(σν(ug1)− σν(ug2))‖L2(Γ3) ≤ c0M‖µ‖L∞(Γ3)
dΩ
m
‖g1 − g2‖L2(Γ3)

and so by (3.2),

‖T (g1)− T (g2)‖L2(Γ3) ≤ c0M‖µ‖L∞(Γ3)
dΩ
m
‖g1 − g2‖L2(Γ3).

Let now
µ0 = m/c0MdΩ.

Then for ‖µ‖L∞(Γ3) < µ0, the mapping T is a contraction, so it admits a
unique fixed point g∗, and ug∗ is a unique solution to (2.16).

Next denote ug∗ = u.

Remark 3.4. As ug ∈W for all g ∈ C+, we have u ∈W.
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4. Continuous dependence. Next, we investigate the behaviour of
the weak solution to Problem P1 with respect to perturbations of the nor-
mal compliance function p. For every α ≥ 0, let pα be a perturbation of
p which satisfies (2.10) with Lipschitz constant Lαp . Let us also introduce
the functionals jα, which are obtained by replacing p by pα in j. We now
consider the following problem.

Problem Pα. For every α ≥ 0, find a displacement field uα ∈ K ∩W
such that

(4.1) 〈Fε(uα), ε(v−uα)〉Q+j(uα, v)−j(uα, uα) ≥ (f, v−uα)V ∀v ∈ K.

Using Theorem 3.1 we deduce that for each α ≥ 0 Problem Pα has
a unique solution uα for ‖µ‖L∞(Γ3) < µ0. Suppose now that the contact
function pα satisfies the following assumption:

There exists a function ϕ : R+ → R+ such that

(4.2)

{
(a) |pα(r)− p(r)| ≤ ϕ(α)|r| ∀r ≤ g,
(b) lim

α→0
ϕ(α) = 0.

Theorem 4.1. Under the assumption (4.2) we have

(4.3) uα → u strongly in V as α→ 0.

Proof. Let α ≥ 0. From (2.16) and (4.1) we get

(4.4) 〈Fε(uα)− Fε(u), ε(uα − u)〉Q
≤ j(u, uα)− j(u, u) + jα(uα, u)− jα(uα, uα).

We have

(4.5) j(u, uα)− j(u, u) + jα(uα, u)− jα(uα, uα)

= (jc(u, uα)− jc(u, u)) + (jαc (uα, u)− jαc (uα, uα))

+ (jµ(u, uα)− jµ(u, u)) + (jαµ (uα, u)− jαµ (uα, uα))

=
�

Γ3

(p(uν)−p(uαν ))(uαν −uν) da+
�

Γ3

(p(uαν )−pα(uαν ))(uαν −uν) da

+
�

Γ3

µ(|Rσν(u)| − |Rσν(uα)|)(|uατ | − |uτ |) da.

Then by (2.10)(c) and (4.5), it follows from (4.4) that

〈Fε(uα)−Fε(u), ε(uα−u)〉Q ≤
�

Γ3

(p(uαν )− pα(uαν ))(uαν − uν) da

+
�

Γ3

µ(|Rσν(u)|− |Rσν(uα)|)(|uατ |− |uτ |) da.
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Using now (4.2)(a), we estimate the first term of the right hand side as

(4.6)
�

Γ3

(p(uαν )− pα(uαν ))(uαν − uν) da ≤ d2
Ωϕ(α)‖uα‖V ‖uα − u‖V ,

while by (2.8) and (2.13) the other term is estimated as

(4.7)
�

Γ3

µ(|Rσν(u)| − |Rσν(uα)|)(|uατ | − |uτ |) da

≤ ‖µ‖L∞(Γ3)Mc0dΩ‖u− uα‖2V .

Hence using (2.9)(c), it follows from (4.6) and (4.7) that

m‖uα − u‖2V ≤ d2
Ωϕ(α)‖uα‖V ‖uα − u‖V + ‖µ‖L∞(Γ3)Mc0dΩ‖u− uα‖2V .

This implies

(4.8) (m− ‖µ‖L∞(Γ3)Mc0dΩ)‖uα − u‖V ≤ d2
Ω

ϕ(α)‖f‖V
m

.

As
m− ‖µ‖L∞(Γ3)Mc0dΩ > 0,

by going to the limit in (4.8) using (4.2)(b), one obtains (4.3).

5. Finite element approximation. In this section we study the finite
element approximation of the variational problem P1. Let h→ 0+ and let Ω
be a polygonal domain in R2. Then the boundary Γ consists of line segments.
We also assume that the sets Γ 1 ∩ Γ 2, Γ 1 ∩ Γ 3 and Γ 2 ∩ Γ 3 contain only a
finite number of points. Write

Γ 3 =
I⋃
i=1

Γ 3,i

with each Γ 3,i being a line segment. We define the finite-element space

Vh = {vh ∈ V ∩ (C0(Ω))2; vh|T ∈ [P1(T )]2, ∀T ∈ Th}
where Th is a regular triangulation on Ω (see [5]) such that Ω =

⋃
T∈Th T and

P1(T ) denotes the set of all polynomials of global degree less than or equal
to one with the definition domain T . We suppose that each triangulation is
compatible with the boundary decomposition Γ = Γ 1 ∪ Γ 2 ∪ Γ 3; that is,
each point where the boundary condition changes is a node of a set T . Now,
before we establish the error estimate for the finite element approximation,
we need the following standard interpolation error estimates (see [6]):

(5.1)
‖πhv − v‖V ≤ c1h‖v‖(H2(Ω))2 ,

‖πhv − v‖(L2(Γ3))2 ≤ c1h
3/2‖v‖(H2(Ω))2 ,

for every v ∈ V ∩ (H2(Ω))2, where πhv denotes the Vh-interpolant of the
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function v. We define the nonempty closed convex set Kh by

Kh = {vh ∈ Vh; vhν ≤ g a.e. on Γ3}.
We remark that Kh ⊂ K and formulate the discrete problem as

Problem Ph. Find uh ∈ Kh such that

(5.2) 〈Fε(uh), ε(vh − uh)〉Q + j(uh, vh)− j(uh, uh)
≥ (f, vh − uh)V ∀vh ∈ Kh.

Under the assumptions of Theorem 3.1, the discrete inequality (5.2) has
a unique solution uh ∈ Kh for ‖µ‖L∞(Γ3) < µ0. Now, to obtain an error
estimate, we need to make an additional hypothesis on the regularity of
solution. Namely, assume

(5.3) u ∈ (H2(Ω))2 ∩K.
Then we have the following proposition.

Theorem 5.1. Suppose that the conditions (5.1) and (5.3) hold and that
‖µ‖L∞(Γ3) < µ0. Then

(5.4) ‖u− uh‖V ≤ ch3/4‖u‖(H2(Ω))2 ,

where c is a positive constant independent of h.

Proof. Taking v = uh in (2.16) and vh = πhu in (5.2) we obtain

(5.5) m‖u− uh‖2V ≤ 〈Fε(u)− Fε(uh), ε(u− uh)〉Q
≤ 〈Fε(uh)−Fε(u), ε(πhu−u)〉Q + 〈Fε(u), ε(πhu−u)〉Q− (f, πhu−u)V

+ j(u, uh) + j(uh, πhu)− j(uh, uh)− j(u, πhu) + j(u, πhu)− j(u, u).

We have

(5.6) |〈Fε(uh)− Fε(u), ε(πhu− u)〉Q| ≤M‖u− uh‖V ‖u− πhu‖V .
Taking into account (5.3) and using Green’s formula, we get

(5.7) 〈Fε(u), ε(πhu− u)〉Q − (f, πhu− u)V =
�

Γ3

σ(u)ν.(πhu− u) da

≤ ‖σ.ν‖L2(Γ )‖πhu− u‖(L2(Γ3))2 ≤ c2‖u‖(H2(Ω))2‖πhu− u‖(L2(Γ3))2.

As

j(u, πhu)− j(u, u) = (jc(u, πhu)− jc(u, u)) + (jµ(u, πhu)− jµ(u, u)),

by (2.8) and (2.10)(b), we deduce that

(5.8) jc(u, πhu)− jc(u, u) ≤ ‖p(uν)‖L2(Γ3)‖πhu− u‖L2(Γ3)2

≤ Lp‖uν‖L2(Γ3)‖πhu−u‖(L2(Γ3))2 ≤ c3‖u‖(H2(Ω))2‖πhu−u‖(L2(Γ3))2 .
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Following the same reasoning as previously we also have

(5.9) (jµ(u, πhu)− jµ(u, u)) ≤ c4‖u‖(H2(Ω))2‖πhu− u‖(L2(Γ3))2 .

Now since

j(u, uh) + j(uh, πhu)− j(uh, uh)− j(u, πhu)

= jc(u, uh) + jc(uh, πhu)− jc(uh, uh)− jc(u, πhu)
+ jµ(u, uh) + jµ(uh, πhu)− jµ(uh, uh)− jµ(u, πhu),

using (2.8), (2.10)(b) and (2.10)(c) one obtains

(5.10) jc(u, uh) + jc(uh, πhu)− jc(uh, uh)− jc(u, πhu)

≤ Lpd2
Ω‖u− uh‖V ‖u− πhu‖V

and

(5.11) jµ(u, uh) + jµ(uh, πhu)− jµ(uh, uh)− jµ(u, πhu)

≤ ‖µ‖L∞(Γ3)c0MdΩ‖u− uh‖2V .
Substitution of (5.6)–(5.11) in (5.5) yields

(5.12) (m− ‖µ‖L∞(Γ3)c0MdΩ)‖u− uh‖2V
≤ (M + Lpd

2
Ω)‖u− πhu‖V ‖u− uh‖V + c5‖u‖(H2(Ω))2‖πhu− u‖(L2(Γ3))2 .

Using Young’s inequality

ab ≤ δa2

2
+
b2

2δ
∀δ > 0,∀a, b ∈ R,

and having in mind that µ0 = m/c0MdΩ, for

δ <
(µ0 − ‖µ‖L∞(Γ3))c0MdΩ

M + Lpd2
Ω

we deduce from (5.12) that

(5.13)
µ0 − ‖µ‖L∞(Γ3)

2
‖u− uh‖2V

≤ c6‖u− πhu‖2V + c5‖u‖(H2(Ω))2‖πhu− u‖(L2(Γ3))2.

Therefore, from (5.13) and (5.1), the estimate (5.4) follows.
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