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A NEW APPROACH

FOR FINDING WEAKER CONDITIONS

FOR THE CONVERGENCE OF NEWTON’S METHOD

Abstract. The Newton–Kantorovich hypothesis (15) has been used for a
long time as a sufficient condition for convergence of Newton’s method to
a locally unique solution of a nonlinear equation in a Banach space setting.
Recently in [3], [4] we showed that this hypothesis can always be replaced
by a condition weaker in general (see (18), (19) or (20)) whose verification
requires the same computational cost. Moreover, finer error bounds and at
least as precise information on the location of the solution can be obtained
this way. Here we show that we can further weaken conditions (18)–(20) and
still improve on the error bounds given in [3], [4] (see Remark 1(c)).

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on an open subset D of
a Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engi-
neering are solved by finding solutions of certain equations. For example,
dynamical systems are mathematically modeled by difference or differential
equations, and their solutions usually represent states of the systems. For
the sake of simplicity, assume that a time-invariant system is driven by the
equation ẋ = G(x) (for some suitable operator G), where x is the state. Then
the equilibrium states are determined by solving equation (1). Similar equa-
tions are used in the case of discrete systems. The unknowns of engineering
equations can be functions (difference, differential, and integral equations),
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vectors (systems of linear or nonlinear algebraic equations), or real or com-
plex numbers (single algebraic equations with single unknowns). Except in
special cases, the most commonly used solution methods are iterative—when
starting from one or several initial approximations a sequence is constructed
that converges to a solution of the equation. Iteration methods are also
applied for solving optimization problems. In such cases, the iteration se-
quences converge to an optimal solution of the problem at hand. Since all
of these methods have the same recursive structure, they can be introduced
and discussed in a general framework.

The most popular method for generating a sequence xn approximating
x∗ is undoubtedly Newton’s method given by

(2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0) (x0 ∈ D).

Here F ′(xn) denotes the Fréchet derivative of the operator F evaluated at
x = xn [2], [5], [8]. The geometric interpretation of Newton’s method is well
known if F is a real function. In such a case xn+1 is the point where the
line y − F (xn) = F ′(xn)(x − xn) tangent to the graph of F (x) at the point
(x, F (xn)) intersects the x-axis.

Consider the Lipschitz condition

(3) ‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ ℓ‖x − y‖

for all x, y ∈ D, and some ℓ ≥ 0, x0 ∈ D such that F ′(x0)
−1 ∈ L(Y, X), the

space of bounded linear operators from Y into X. Using (3) we can arrive
at the famous Newton–Kantorovich condition (14) which is sufficient for the
convergence of Newton’s method (2).

A survey of local and semilocal convergence results for Newton’s method
(2) can be found in [1], [2], [5], [6], [8], [10], [11], and the references there.

Recently in [3], [4] by using a combination of (3) and the center-Lipschitz

condition

(4) ‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ ℓ0‖x − x0‖ (x ∈ D),

we challenged (15) and showed that this hypothesis can always be replaced
by the weaker (18) or (19) or (20) whose verification requires the same
computational cost. Moreover finer error bounds on the distances ‖xn+1 −
xn‖, ‖xn − x∗‖ (n ≥ 0) and at least as precise information on the location
of the solution were given. Note that in general 0 ≤ ℓ0 ≤ ℓ and ℓ/ℓ0 can be
arbitrarily large [3].

Here we show that we can further weaken conditions (18)–(20) and still
improve on error bounds given in [3], [4] (see Remark 1(c)).

2. Semilocal convergence analysis for Newton’s method (2). It
is convenient to define a scalar iteration {tn} (n ≥ 0) for some given η ≥ 0,



ℓ0 ≥ 0, ℓ ≥ 0 by

(5) t0 = 0, t1 = η, tn+2 = tn+1 +
ℓ(tn+1 − tn)2

2(1 − ℓ0tn+1)
(n ≥ 0).

It plays a crucial role in the study of the convergence of Newton’s method
(2). It turns out that under certain conditions {tn} is a majorizing sequence
for {xn}.

If

(6) ℓ0tn < 1 for all n ≥ 0 (ℓ0 6= 0),

then it follows from (5) that {tn} is nondecreasing and bounded above by
ℓ−1
0 , and as such it converges to some t∗ ∈ [0, 1/ℓ0]. Below we provide con-

ditions which imply (6).
We need the following general result on majorizing sequences for New-

ton’s method (2).

Lemma 1. Assume there exist constants d ≥ 0, η ≥ 0, ℓ0 ≥ 0, ℓ ≥ 0, and

sequences 1 > an ≥ 0, bn ≥ 0, cn ≥ 0, dn, and dn ≥ 0 such that for

d0 = d0 = 0, d1 = d1 = η, an = ℓ0dn, bn =
1

1 − an

, cn = ℓbn,(7)

dn = t1 +
c1

2
(t1 − t0)

2 +
c2

2
(t2 − t1)

2 + · · · + cn−1

2
(tn−1 − tn−2)

2(8)

(n ≥ 2)

the following conditions hold for all n ≥ 0:

(9) dn ≤ dn ≤ d < ℓ−1
0 .

Then the sequence {tn} (n ≥ 0) generated by (5) is nondecreasing , bounded

above by ℓ−1
0 and converges to some t∗ ∈ [0, 1/ℓ0].

Moreover the following estimates hold :

(10) tn ≤ dn (n ≥ 0),

and

(11) tn+1 − tn =
cn

2
(tn − tn−1)

2 (n ≥ 1).

Proof. It suffices to show that the hypotheses of the lemma imply con-
dition (6). Indeed using (5), (7)–(9) we can have in turn for all n ≥ 2 (since
(6) holds for n = 0, 1 by the initial conditions):

tn+2 ≤ tn+1 +
cn+1

2
(tn+1 − tn)2(12)

≤ tn +
cn

2
(tn − tn−1)

2 +
cn+1

2
(tn+1 − tn)2

≤ · · · ≤ t1 +
c1

2
(t1 − t0)

2 + · · · + cn+1

2
(tn+1 − tn)2

= dn+2 ≤ dn+2,



which shows (10) for all n ≥ 0. That is, by (9) and (12) condition (6) holds.
Moreover by (5), (7) and (8) we obtain (11).

That completes the proof of Lemma 1.

We can provide some special choices of parameters and sequences defined
above.

Remark 1. (a) Assume

(13) ℓ0 = ℓ

for

(14) ‖F ′(x0)
−1F (x0)‖ ≤ η,

and

(15) h = 2ℓη ≤ 1.

Note that condition (14) is the famous Newton–Kantorovich hypothesis
which is sufficient for the convergence of Newton’s method (2) to x∗ [2],
[5], [6], [8], [11]. Define dn, d (n ≥ 0) by

(16) dn = η +
1

21
h21

−1η + · · · + 1

2n−1
h2n−1

−1η

and

(17) d =
1 −√

1 − 2ℓη

ℓ
.

Then it follows from the proof of the Newton–Kantorovich theorem that
an < 1. Moreover conditions (6) and (9) hold.

(b) Assume that the following conditions hold:

(18) hδ = (δℓ0 + ℓ)η ≤ δ for δ ∈ [0, 1]

or

(19) hδ ≤ δ,
2ℓ0η

2 − δ
≤ 1,

ℓ0δ
2

2 − δ
≤ ℓ for δ ∈ [0, 2)

or

(20) hδ ≤ δ, ℓ0η ≤ 1 − 1

2
δ for δ ∈ [δ0, 2)

where

(21) δ0 =
−ℓ/ℓ0 +

√

(ℓ/ℓ0)2 + 8ℓ/ℓ0

2
.

Then by Theorem 2 in [3, p. 311] condition (9) holds for

(22) dn = η +
δ

2
η + · · · +

(

δ

2

)n+1

η



and

(23) d =
2η

2 − δ
.

In [3], [4] we showed that in general conditions (18)–(20) are weaker
than (15). Set e.g. δ = 1 in (18).

Moreover if {sn} denotes the sequence {tn} when ℓ = ℓ0 we showed for
all n ≥ 0:

tn ≤ sn, tn+1−tn ≤ sn+1−sntn ≤ sn, t∗ ≤ s∗ = lim
n→∞

sn, t∗−tn ≤ s∗−sn.

Note that strict inequality holds in the first two bounds if ℓ0 < ℓ for all
n ≥ 1. Other possible choices exist (see, e.g., Lemma 2).

(c) So far we showed that if (15) and (18) or (19) or (20) hold then by
directly comparing the majorizing sequence {tn} with {sn} we see that the
former is finer (more precise) in case ℓ0 < ℓ. However if (15) is violated and
(18) or (19) or (20) hold then estimate (22) does not guarantee the qua-
dratic convergence of {tn}. Note that in this case we cannot even compare
the two majorizing sequences, since only the convergence of {tn} is guaran-
teed. In order to rectify this in Lemma 2 we provide conditions (see (24))
similar to (18)–(20) which however guarantee the quadratic convergence of
the majorizing sequence {tn}. Finally, note that the limit t∗ of the majoriz-
ing sequence {tn} is at least as small as the limit s∗ of {sn}. That is, the
information on the uniqueness ball of the solution x∗ is at least as precise
under our approach.

Remark 2. In case ℓ0 = 0 the convergence of (5) is guaranteed provided
that ℓη/2 ∈ [0, 1), since 0 ≤ tn+2 − tn+1 < tn − tn−1 for n ≥ 0.

Next we show how to find conditions for the convergence of the majoriz-
ing sequence {tn}.
Remark 3. Assume that there exist parameters ℓ0 > 0, ℓ > 0, η > 0,

a ≥ 1 such that

(24) pa = (ℓ + 2ℓ0a)η < 2.

Then

(25) I =

[

1,
1

ℓ0η
− ℓ

2ℓ0

]

6= ∅,

the function

(26) c = c(a) =
ℓ

2(1 − ℓ0aη)

is well defined on I, and

(27) 0 ≤ cη < 1.



Moreover assume that

(28) tn+1 ≤ aη for all n ≥ 0.

It then follows that

tn+2 − tn+1 =
ℓ

2(1 − ℓ0tn+1)
(tn+1 − tn)2 ≤ c(tn+1 − tn)2

and

(29) c(tn+2 − tn+1) ≤ [c(tn+1 − tn)]2 ≤ · · · ≤ (cη)2
n+1

.

Let

(30) d(a) = η +
1

c

[

(cη)2
1

+ · · · + (cη)2
n

+ · · ·
]

.

Then d is a well defined function for all a ∈ I. Finally, assume that there
exists β ∈ I such that

(31) d(β) ≤ βη.

It then follows that d(β) is an upper bound on the sequence {dn}. That is,

(32) tn ≤ dn ≤ d(β).

Consequently, under hypotheses (24) and (31) the sequence {tn} is non-
decreasing and bounded above by d(β) and as such it converges to some
t∗ ∈

[

η, 1/ℓ0

]

.
Using induction on n ≥ 0 we can show condition (6), and consequently

drop hypothesis (28). Indeed, (6) holds for n = 0, 1 by the initial conditions.
By (5) we have

(33) t2 − t1 ≤ c(β)(t1 − t0)
2,

(34) ℓ0t2 ≤ ℓ0[η + c(β)(t1 − t0)
2] ≤ ℓ0d(β) ≤ ℓ0βη < 1,

and since tn+1 − tn ≤ c(β)(tn − tn−1)
2, we get

ℓ0tn+1 ≤ ℓ0

[

η+c(β)(t1− t0)
2 + · · ·+(c(β)(tn− tn−1)

2
]

≤ ℓ0d(β) ≤ ℓ0βη < 1,

which completes the induction.
Hence we showed:

Lemma 2. Under the stated hypotheses:

(a) condition (6) holds;
(b) the sequence {tn} is nondecreasing and converges to some t∗ such

that

(35) tn ≤ t∗ ≤ 1

ℓ0
(ℓ0 6= 0)



(c) the following error bounds hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ c(β)(tn+1 − tn)2,(36)

0 ≤ t∗ − tn ≤ c(β)−1γn,(37)

γn = lim
k→∞

{

[c(β)η]2
n+k−1

+ · · · + [c(β)η]2
n}

(38)

≤ lim
k→∞

[c(β)η]2
n

[1 − (c(β)η)2k]

1 − [c(β)η]2
≤ [c(β)η]2

n

1 − [c(β)η]2
.

Remark 4. (a) The existence of β is guaranteed by the intermediate
value theorem provided there exist β0, β1 ∈ I with β0 < β1 such that

(39) f(β0)f(β1) < 0,

where the function f is given by

(40) f(a) = d(a) − aη.

Other existence conditions for finding zeros β of a scalar function f can be
found in the literature [2], [5], [6], [8], [9].

(b) It follows from (30) that condition (31) can be replaced by the
stronger but easier to check

(41) d0(β) ≤ βη

or

(42) d1(β) ≤ βη

where

d0(a) =
1

c(a)[1 − (c(a)η)2]
,(43)

d1(a) = η +
c(a)η2

1 − (c(a)η)2
.(44)

Below is the main semilocal convergence theorem for Newton’s method
(2) using Lipschitz condition (3), center-Lipschitz condition (4), and condi-
tion (6):

Theorem 1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.

Assume that conditions (3), (4), (6), (14) hold and

(45) U(x0, 1/ℓ0){x ∈ X | ‖x − x0‖ ≤ 1/ℓ0} ⊆ D for ℓ0 6= 0.

Then the sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well

defined , remains in U(x0, t
∗) for all n ≥ 0 and converges to a solution

x∗ ∈ U(x0, t
∗) of equation F (x) = 0. Moreover , the following error bounds



hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ ℓ‖xn+1 − xn‖2

2[1 − ℓ0‖xn+1 − x0‖]
≤ tn+2 − tn+1,(46)

‖xn − x∗‖ ≤ t∗ − tn,(47)

where the iteration {tn} (n ≥ 0) is given by (5). The solution x∗ is unique

in U(x0, t
∗) provided that

(48) ℓ0t
∗ < 1.

Furthermore, if there exists R > t∗ such that

(49) U(x0, R) ⊆ D

and

(50) ℓ0(t
∗ + R) ≤ 2,

then the solution x∗ is unique in U(x0, R).

Proof. Let us prove that

(51) ‖xk+1 − xk‖ ≤ tk+1 − tk

and

(52) U(xk+1, t
∗ − tk+1) ⊆ U(xk, t

∗ − tk)

for all k ≥ 0. For every z ∈ U(x1, t
∗ − t1),

(53) ‖z − x0‖ ≤ ‖z − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0

implies z ∈ U(x0, t
∗ − t0). Since also

‖x1 − x0‖ = ‖F ′(x0)
−1F (x0)‖ ≤ η = t1 − t0,

(51) and (52) hold for k = 0. Given they hold for n = 0, 1, . . . , k, then

‖xk+1 − x0‖ ≤
k+1
∑

i=1

‖xi − xi−1‖ ≤
k+1
∑

i=1

(ti − ti−1) = tk+1 − t0 = tk+1

and

‖xk + θ(xk+1 − xk) − x0‖ ≤ tk + θ(tk+1 − tk) < t∗, θ ∈ [0, 1].

Using (2) we obtain the approximation

F (xk+1) = F (xk+1) − F (xk) − F ′(xk)(xk+1 − xk)(54)

=

1\
0

[F ′(xk + θ(xk+1 − xk)) − F ′(xk)](xk+1 − xk) dθ



and by (3),

(55) ‖F ′(x0)
−1F (xk+1)‖

≤
1\
0

‖F ′(x0)
−1[F ′(xk + θ(xk+1 − xk)) − F ′(xk)]‖ dθ ‖xk+1 − xk‖

≤ ℓ

2
‖xk+1 − xk‖2 ≤ ℓ

2
(tk+1 − tk)

2.

It follows from (4) and (6) that

‖F ′(x0)
−1[F ′(xk+1) − F ′(x0)]‖ ≤ ℓ0‖xk+1 − x0‖ ≤ ℓ0tk+1 < 1,

and the Banach Lemma on invertible operators [8] shows that the inverse
F ′(xk+1)

−1 exists and

(56) ‖F ′(xk+1)
−1F ′(x0)‖ ≤ 1

1 − ℓ0‖xk+1 − x0‖
≤ 1

1 − ℓ0tk+1
.

Therefore, by (2), (5), (55) and (56) we obtain in turn

‖xk+2 − xk+1‖ = ‖F ′(xk+1)
−1F (xk+1)‖(57)

≤ ‖F ′(xk+1)
−1F ′(x0)‖ · ‖F ′(x0)

−1F (xk+1)‖

≤ ℓ‖xk+1 − xk‖2

2(1 − ℓ0‖xk+1 − x0‖)
≤ ℓ(tk+1 − tk)

2

2(1 − ℓ0tk+1)

= tk+2 − tk+1.

Thus for every z ∈ U(xk+2, t
∗ − tk+2) we have

‖z−xk+1‖ ≤ ‖z−xk+2‖+‖xk+2−xk+1‖ ≤ t∗−tk+2+tk+2−tk+1 = t∗−tk+1.

That is,

(58) z ∈ U(xk+1, t
∗ − tk+1).

Estimates (57) and (58) imply that (51) and (52) hold for n = k + 1. By
induction the proof of (51) and (52) is complete.

From (6), (51) and (52), {xn} (n ≥ 0) becomes a Cauchy sequence, and
as such it converges to some x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a closed set)

such that

(59) ‖x∗ − xk‖ ≤ t∗ − tk.

The combination of (56) and (57) yields F (x∗) = 0.



Finally, to show uniqueness let y∗ be a solution of the equation F (x) = 0
in U(x0, R). It follows from (4), the estimate

∥

∥

∥
F ′(x0)

−1
1\
0

[F ′(y∗ + θ(x∗ − y∗)) − F ′(x0)]
∥

∥

∥
dθ

≤ ℓ0

1\
0

‖y∗ + θ(x∗ − y∗) − x0‖ dθ

≤ ℓ0

1\
0

[θ‖x∗ − x0‖ + (1 − θ)‖y∗ − x0‖] dθ <
ℓ0

2
(t∗ + R) ≤ 1,

and the Banach Lemma on invertible operators that the linear operator

L =

1\
0

F ′(y∗ + θ(x∗ − y∗)) dθ

is invertible. Using the identity

0 = F (x∗) − F (y∗) = L(x∗ − y∗)

we deduce x∗ = y∗. That completes the proof of Theorem 1.

Remark 5. (a) 1/ℓ0 can be replaced by t∗ in condition (45).
(b) If ℓ0 = 0 condition (45) can be replaced by

(60) U(x0, t
∗) ⊆ D.

Hypothesis (6) is then replaced by

(61) ℓn/2 ∈ [0, 1)

(see also Remark 2), whereas condition (50) is not needed.

We complete this study with a simple numerical example.

Example 1. Let X = Y = R, x0 = −.6, D = [−1, 2], and define a
function F on D by

(62) F (x) =
1

3
x3 + .0897462.

Using (3), (4), (14) and (62) we obtain

η = .049295, ℓ0 = 3.8, ℓ = 11.1.

Condition (15) is violated, since

(63) h = 1.0954 > 1.

Therefore the Newton–Kantorovich theorem cannot guarantee that New-
ton’s method starting from x0 = −.6 converges to x∗ = −.645722284. Our
condition (24) for say β = 1.5 holds since

(64) pβ = 1.228305 < 2.



Moreover, we obtain

d(β) = .0711047 < .0739425 = βη,

which shows that (31) is satisfied. That is, our Theorem 1 guarantees the
convergence of Newton’s method to x∗.
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