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ON UNIFORM TAIL EXPANSIONS
OF BIVARIATE COPULAS

Abstract. The theory of copulas provides a useful tool for modelling de-
pendence in risk management. The goal of this paper is to describe the tail
behaviour of bivariate copulas and its role in modelling extreme events. We
say that a bivariate copula has a uniform lower tail expansion if near the ori-
gin it can be approximated by a homogeneous function L(u, v) of degree 1;
and it is said to have a uniform upper tail expansion if the associated survival
copula has a lower tail expansion. In this paper we (1) introduce the notion
of the uniform tail expansion of a bivariate copula; (2) describe the main
properties of the leading part L(u, v) like two-monotonicity or concavity; (3)
determine the set of all possible leading parts L(u, v); (4) compute the lead-
ing parts of the uniform tail expansions for the most popular copulas like
gaussian, archimedean or BEV; (5) apply uniform tail expansions in estimat-
ing the extreme risk of a portfolio consisting of long positions in risky assets.

1. Introduction. The theory of copulas provides a useful tool for mod-
elling dependence in risk management. The goal of this paper is to describe
the tail behaviour of bivariate copulas and its role in modelling extreme
events. We discuss possible applications, taking as an example a portfolio
consisting of two risky assets.

We recall that a function C : [0, 1]2 → [0, 1] is called a copula (see [6]) if

∀u, v ∈ [0, 1] C(0, v) = 0, C(u, 0) = 0;

∀u, v ∈ [0, 1] C(1, v) = v, C(u, 1) = u;

∀u1, u2, v1, v2 ∈ [0, 1], u1 ≤ u2, v1 ≤ v2,

C(u1, v2) + C(u2, v1) ≤ C(u1, v1) + C(u2, v2).
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The functions with the last property are called two-nondecreasing. Every
copula is nondecreasing with respect to each variable, continuous (and even
Lipschitz).

Let X and Y be two random variables defined on the same probability
space (Ω,M,P). Their joint cumulative distribution FXY can be described
using an appropriate bivariate copula CXY (see [6, Th. 2.4.1]):

FXY(x, y) = CXY(FX (x), FY(y)),

where FX , FY are the cumulative distributions of X and Y. Note that strictly
increasing transformations of the random variables X and Y do not affect
the copula. Indeed, if

X ′ = f(X ), Y ′ = g(Y),

where f and g are strictly increasing (and so invertible), then

FX ′Y ′(x, y) = FXY(f−1(x), g−1(y)) = C(FX (f−1(x)), FY(g−1(y)))

= C(FX ′(x), FY ′(y)).

Therefore if one is interested in tail dependence of random variables rather
than in their individual distribution, then the proper choice is to study the
copula, the more so since the copula is uniquely determined at every point
(u, v) such that the equations FX (x) = u and FY(y) = v have solutions.

For every copula C we have a dual, so-called survival copula Ĉ, defined
by

Ĉ(u, v) = C(1− u, 1− v) + u+ v − 1.

Note that if C describes the joint distribution of X and Y, then Ĉ does the
same for −X and −Y.

Furthermore, in certain cases the copula CXY is the joint cumulative
distribution of some random variables defined on the same probability space
as X and Y. Indeed, let P and Q be the random variables defined by

P = FX (X ), Q = FY(Y).

Proposition 1. If the cumulative distributions FX , FY are continuous
then:

(i) P and Q have uniform distributions on [0, 1].
(ii) The copula CXY is uniquely determined.
(iii) The two-dimensional cumulative distribution FPQ coincides with

the copula CXY .

Proof. We prove (iii) (the first two items are obvious). We choose p, q
such that 0 ≤ p, q ≤ 1. Since FX and FY are continuous, there exist x, y
such that

p = FX (x), q = FY(y).
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Hence

FPQ(p, q) = P(P ≤ p ∧ Q ≤ q) = P(FX (X ) ≤ FX (x) ∧ FY(Y) ≤ FY(y))

= P(X ≤ x ∧ Y ≤ y) = CXY (FX (x), FY(y)) = CXY(p, q).

In order to study extreme events we have to deal with the tail behaviour
of a copula. We say that a bivariate copula has a uniform lower tail expan-
sion if near the origin it can be uniformly approximated by a homogeneous
function of degree 1. In more detail:

Definition. We say that a copula C : [0, 1]2 → [0, 1] has a lower tail
expansion if there exists a homogeneous function L : R2

+ → R of degree 1,
i.e.

∀t ≥ 0 L(tu, tv) = tL(u, v),

and a bounded function R : [0, 1]2 → R with

lim
(u,v)→(0,0)

R(u, v) = 0

such that

∀u, v ∈ [0, 1] C(u, v) = L(u, v) +R(u, v)(u+ v).

Furthermore, we say that C has a uniform upper tail expansion if the asso-
ciated survival copula Ĉ has a lower tail expansion.

The function L will be called the leading part of the expansion. When
L ≡ 0 we shall say that the expansion is trivial.

Our conditions are a bit stronger than the ones introduced by P. Em-
brechts ([1]) and other authors, but still they are satisfied by nearly all
copulas studied in the literature.

There are also other ways of introducing the leading part L. For example
one may adopt the definition with the “strong” derivative.

Lemma 1. A copula C : [0, 1]2 → [0, 1] has a lower tail expansion iff
there exists a homogeneous function L : R2

+ → R of degree 1 such that

lim
(u,v)→(0,0)+

|C(u, v)− C(0, 0)− L(u, v)|
‖(u, v)‖ = 0.

Furthermore the value of L can be determined as a limit along a ray.

Lemma 2.

L(u, v) = lim
t→0+

C(tu, tv)
t

for u, v ≥ 0.

Proof. We have
C(tu, tv)

t
=
L(tu, tv) +R(tu, tv)(tu+ tv)

t

=
tL(u, v) + tR(tu, tv)(u+ v)

t
= L(u, v) +R(tu, tv)(u+ v)→ L(u, v).
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In the following parts of the paper we:

• describe the main properties of uniform tail expansions and determine
the set of all possible leading parts L(u, v);
• compute the leading parts of the uniform tail expansions for the most

popular copulas like gaussian, archimedean or BEV;
• apply uniform tail expansions in estimating the extreme risk of a port-

folio consisting of long positions in risky assets.

2. Properties of the leading part L. Let L(u, v) be a leading part
of the uniform lower expansion of a given copula C(u, v).

Theorem 1. L(u, v) is nonnegative, two-nondecreasing and bounded by
the smaller of its arguments:

0 ≤ L(u, v) ≤ min(u, v),

u1 ≤ u2, v1 ≤ v2 ⇒ L(u1, v2) + L(u2, v1) ≤ L(u1, v1) + L(u2, v2).

This follows directly from Lemma 2 (cf. [4, Th. 1]).
From the above theorem and the homogeneity of L we obtain its further

properties:

Corollary 1. Let u, u1, u2, v, v1, v2 ≥ 0. Then:

(i) L(0, v) = L(u, 0) = 0.
(ii) If u1 ≤ u2 then 0 ≤ L(u2, v) − L(u1, v) ≤ u2 − u1 and if v1 ≤ v2

then 0 ≤ L(u, v2)− L(u, v1) ≤ v2 − v1.
(iii) L(u, v) is continuous.
(iv) The function

l : [0, 1]→ R, l(α) = L(α, 1− α),

is concave and continuous.
(v) L(u, v) is superadditive:

L(u1 + u2, v1 + v2) ≥ L(u1, v1) + L(u2, v2).

(vi) L(u, v) is concave:

∀λ1, λ2 ≥ 0, λ1 + λ2 = 1

L(λ1u1 + λ2u2, λ1v1 + λ2v2) ≥ λ1L(u1, v1) + λ2L(u2, v2).

Proof. The first three properties are straightforward (see [4, Cor. 1]).
(iv) Since L is continuous, so is l(α) = L(α, 1 − α). The concavity of

l follows from the fact that L is two-nondecreasing. Indeed, let 0 < α1 <
α2 < 1. Since 1− α2 < 1− α1, we have

L(α1, 1− α2) + L(α2, 1− α1) ≥ L(α1, 1− α1) + L(α2, 1− α2).
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Let

α3 =
α1

1− α2 + α1
, α4 =

α2

1− α1 + α2
, %3 = 1− α2 + α1, %4 = 1− α1 + α2.

Then the above inequality can be written as

%3l(α3) + %4l(α4) ≥ l(α1) + l(α2).

Here
%3 + %4 = 2, %3α3 + %4α4 = α1 + α2.

Moreover α3 and α4 lie between α1 and α2. Thus at least one of the points
(α3, l(α3)), (α4, l(α4)) lies above or on the chord joining (α1, l(α1)) and
(α2, l(α2)).

We shall show that for any −1 < β1 < β2 < 1 the graph of l lies above
or on the chord joining (β1, l(β1)) and (β2, l(β2)). Let Z ⊂ [β1, β2] consist of
those β such that (β, l(β)) lies over the chord. Then Z is closed (because l is
continuous), nonempty (because β1 and β2 belong to it) and dense (because
between any two points from Z there is a third one), therefore Z is the
whole interval [β1, β2]. Since l is continuous, this finishes the proof of the
concavity for the whole domain [0, 1].

(v) Assume that u1 + v1 > 0 and u2 + v2 > 0. Let

α1 =
u1

v1 + u1
, α2 =

u2

v2 + u2
.

Then
L(ui, vi) = (ui + vi)l(αi) for i = 1, 2,

and

L(u1 + u2, v1 + v2)

= (u1 + u2 + v1 + v2)l
(

u1 + v1

u1 + u2 + v1 + v2
α1 +

u2 + v2

u1 + u2 + v1 + v2
α2

)

≥ (u1 + u2 + v1 + v2)
(

u1 + v1

u1 + u2 + v1 + v2
l(α1) +

u2 + v2

u1 + u2 + v1 + v2
l(α2)

)

= (u1 + v1)l(α1) + (u2 + v2)l(α2) = L(u1, v1) + L(u2, v2).

(vi) is a direct consequence of (v). Indeed, let λ1, λ2 ≥ 0 and λ1 +λ2 = 1.
Then

L(λ1u1 + λ2u2, λ1v1 + λ2v2) ≥ L(λ1u1, λ1v1) + L(λ2u2, λ2v2)

= λ1L(u1, v1) + λ2L(u2, v2).

For another proof of concavity of L, based on its differential properties,
the reader is referred to [4, Th. 2]. As a matter of fact for homogeneous
functions of degree 1 the concavity and two-monotonicity are closely related.
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Proposition 2. Let L : R2
+ → R be homogeneous of degree 1, concave

and continuous. Then L is two-nondecreasing.

Proof. Let 0 ≤ v1 ≤ v2 and 0 ≤ u1 ≤ u2. We have to show that

L(u1, v1) + L(u2, v2)− L(u1, v2)− L(u2, v1) ≥ 0.

Since L is continuous, it is enough to consider the case u1 > 0. Note that
since L is concave and continuous, the same is true for

l : [0, 1]→ R, l(α) = L(α, 1− α).

Since L is homogeneous of degree 1, we have

L(u1, v1) + L(u2, v2)− L(u1, v2)− L(u2, v1)

= (u1 + v1)l
(

u1

u1 + v1

)
+ (u2 + v2)l

(
u2

u2 + v2

)

− (u1 + v2)l
(

u1

u1 + v2

)
− (u2 + v1)l

(
u2

u2 + v1

)

= (u1 + u2 + v1 + v2)
(
l1

(
u1 + u2

u1 + u2 + v1 + v2

)
− l2

(
u1 + u2

u1 + u2 + v1 + v2

))
.

Here l1 and l2 are linear functions whose graphs contain chords joining points
on the graph of l:

l1

(
u1

u1 + v1

)
= l

(
u1

u1 + v1

)
, l1

(
u2

u2 + v2

)
= l

(
u2

u2 + v2

)
,

l2

(
u1

u1 + v2

)
= l

(
u1

u1 + v2

)
, l2

(
u2

u2 + v1

)
= l

(
u2

u2 + v1

)
.

Note that since v1 ≤ v2 and 0 < u1 ≤ u2, we have
u1

u1 + v2
≤ u1

u1 + v1
=

1
1 + v1/u1

≤ 1
1 + v1/u2

=
u2

u2 + v1
,

u1

u1 + v2
=

1
1 + v2/u1

≤ 1
1 + v2/u2

=
u2

u2 + v2
≤ u2

u2 + v1
.

Therefore the first chord lies above the second one and

(u1 + u2 + v1 + v2)
(
l1

(
u1 + u2

u1 + u2 + v1 + v2

)
− l2

(
u1 + u2

u1 + u2 + v1 + v2

))
≥ 0,

which finishes the proof.

2.1. Copulas with prescribed leading part L. In this section we shall show
that Theorem 1 completely describes all possible leading parts.

Theorem 2. Let L : R2
+ → R be homogeneous of degree 1, two-nonde-

creasing and such that

∀u, v 0 ≤ L(u, v) ≤ min(u, v).
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Then the function

C(u, v) = max(L(u, v), u+ v − 1)

restricted to the unit square [0, 1]2 is a copula.

The proof is based on checking all possibilities (compare [4, Th. 3]).
Note that for any L which is nonnegative, and for 0 ≤ u+ v ≤ 1,

C(u, v) = max(L(u, v), u+ v − 1) = L(u, v).

Thus L is not only the lower tail approximation of C but the tail itself.
The above theorem together with Proposition 2 and Corollary 1 gives us

the following:

Corollary 2. There is a bijection between

• leading parts L of uniform tail expansions and
• concave functions l : [0, 1]→ R which satisfy

0 ≤ l(α) ≤ min(α, 1− α).

The bijection is given by the formula

l(α) = L(α, 1− α).

The above results remain valid for pairs of tails and pairs of functions.

Theorem 3. Any two two-nondecreasing functions Li : R2
+ → R, i =

1, 2, homogeneous of degree 1 and such that

0 ≤ Li(u, v) ≤ min(u, v),

are the leading parts of the lower and upper tail expansions of some copula.

Proof. We shall apply the patchwork technique (cf. [6]). For i = 1, 2 let

Ci(u, v) = max(Li(u, v), u+ v − 1).

Then the function C : [0, 1]2 → [0, 1] defined by

C(u, v) =





C1(2u, 2v)/2 for 0 ≤ u, v ≤ 1/2,

u for 0 ≤ u ≤ 1/2 < v,

v for 0 ≤ v ≤ 1/2 < u,

(2u+ 2v − 2 + C2(2− 2u, 2− 2v))/2 for 1/2 < u, v ≤ 1,

is a copula. Indeed, for the lower left corner we apply the measure induced
by C1, for the upper right one the measure induced by Ĉ2, and for the
remaining two the null measure.
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Therefore for u+ v < 1/2,

C(u, v) =
C1(2u, 2v)

2
= L1(u, v), Ĉ(u, v) =

C2(2u, 2v)
2

= L2(u, v).

3. Examples of trivial expansions. Assume that X and Y are inde-
pendent. Then

C(u, v) = uv.

In this case L(u, v) = 0 and R(u, v) = uv/(u+ v). Hence the expansion of
the lower tail is trivial. The same is valid for the survival copula. Hence the
expansion of the upper tail is also trivial.

Let now X and Y have the same standard normal distribution N(0, 1)
and normal joint distribution. Then their copula

CN (u, v) = FXY(F−1(u), F−1(v)),

where F is the distribution function of the standard normal distribution
(N(0, 1)), is called gaussian.

Proposition 3. The gaussian copula CN has trivial expansions of both
tails.

The proof of the lower tail case (see [4, Lemma 1]) is based on the fact
that the shifted quadrant (−∞, x0]× (−∞, y0] is contained in the halfplane
{(x, y) : x + y ≤ x0 + y0} and on an estimation of the tail of the standard
normal distribution (see [3, p. 119]). The upper tail case is quite similar.

Remark 1. The above result shows that the phenomenon of nontriv-
ial tail expansions does not exist in the “world ruled by the paradigm of
normality of all distributions”.

4. Simple examples of nontrivial expansions. Assume that Y = X .
Then

C(u, v) = min(u, v).

In this case L(u, v) = min(u, v) and R(u, v) = 0. The same is true for the
survival copula. Note that the above remains true if we only assume that Y
and X are comonotonic.
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The above copula has a singular support (the diagonal {(t, t) : t ∈ [0, 1]}).
Other examples of singular support copulas are given by

Cpq(u, v) = max((%− 1) min(u/p, v/q), u+ v − 1),

where p+ q = % > 1, 0 < p, q ≤ 1. The support consists of one, two or three
segments, each with uniform distribution of mass.

-

6

"
"
""

B
BB

b
b
bb

1

1

p

q

Except the case p = q = 1 the upper tail has a trivial expansion. But the
lower tail always has a nonzero leading part:

L(u, v) = (%− 1) min(u/p, v/q), % = p+ q,

l(ϕ) =
(

1− 1
%

)
min

(
ϕ

ψ
,

1− ϕ
1− ψ

)
, ψ =

p

%
.

5. Archimedean and quasi-archimedean copulas

5.1. Definitions. Let ϕ : [0, 1]→ [0,∞] be a convex, strictly decreasing
continuous function with ϕ(1) = 0 and ϕ(0) = ϕ0 ≤ ∞. Then the function

C : [0, 1]2 → [0, 1], C(u, v) = ϕ−1(min(ϕ0, ϕ(u) + ϕ(v))),

is a copula (see [6, Th. 4.1.4]). Such copulas are called archimedean.
We extend this notion by setting

Cϕ,H(u, v) = ϕ−1(min(ϕ0, ϕ(u) + ϕ(v)−H(ϕ(u), ϕ(v)))),

where H : R2
+ → R is homogeneous of degree 1, two-nondecreasing and such

that
∀u, v 0 ≤ H(u, v) ≤ min(u, v).

Theorem 4. Cϕ,H is a copula.

Proof. We have

H(ϕ(u), ϕ(v)) ≤ min(ϕ(u), ϕ(v)) ≤ ϕ(u) + ϕ(v).

Hence Cϕ,H is well defined. Moreover

Cϕ,H(0, v) = ϕ−1(min(ϕ0, ϕ(0) + ϕ(v)−H(ϕ(0), ϕ(v))))

= ϕ−1(min(ϕ0, ϕ0 + ϕ(v)−H(ϕ0, ϕ(v)))) = ϕ−1(ϕ0) = 0,

Cϕ,H(1, v) = ϕ−1(min(ϕ0, ϕ(1) + ϕ(v)−H(ϕ(1), ϕ(v))))

= ϕ−1(min(ϕ0, 0 + ϕ(v)−H(0, ϕ(v)))) = ϕ−1(min(ϕ0, ϕ(v)))

= ϕ−1(ϕ(v)) = v.

Analogously, Cϕ,H(u, 0) = 0 and Cϕ,H(u, 1) = u.
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Next we show that Cϕ,H is two-nondecreasing. Let u1 ≤ u2 and v1 ≤ v2.
We put

x1 = ϕ(u1) + ϕ(v1)−H(ϕ(u1), ϕ(v1)),

x2 = ϕ(u1) + ϕ(v2)−H(ϕ(u1), ϕ(v2)),

x3 = ϕ(u2) + ϕ(v1)−H(ϕ(u2), ϕ(v1)),

x4 = ϕ(u2) + ϕ(v2)−H(ϕ(u2), ϕ(v2)).

Since ϕ is decreasing and H satisfies the Lipschitz condition (see Corol-
lary 1), we have

x1 ≥ x2 ≥ x4, x1 ≥ x3 ≥ x4.

Since H is two-nondecreasing, we have

x1 − x2 ≤ x3 − x4.

The function ψ(x) = ϕ−1(min(ϕ0, x)) is convex nonincreasing. The interval
[x2, x1] is shorter than [x4, x3] and lies to the right of it, therefore

ψ(x4)− ψ(x3) ≥ ψ(x2)− ψ(x1).

Hence

Cϕ,H(u2, v2)− Cϕ,H(u2, v1) = ψ(x4)− ψ(x3) ≥ ψ(x2)− ψ(x1)

= Cϕ,H(u1, v2)− Cϕ,H(u1, v1),

which finishes the proof.

We call the copula Cϕ,H quasi-archimedean. Note that the class of quasi-
archimedean copulas contains among others the bivariate extreme value
(BEV) copulas investigated for example in [2].

Remark 2. If H(u, v) = min(u, v) then for any ϕ,

Cϕ,H(u, v) = ϕ−1(min(ϕ0, ϕ(u) + ϕ(v)−min(ϕ(u), ϕ(v))))

= ϕ−1(min(ϕ0,max(ϕ(u), ϕ(v)))) = ϕ−1(max(ϕ(u), ϕ(v))) = min(u, v).

Hence the tail expansions do not depend on ϕ. Both leading parts are equal
to min(u, v).

5.2. Elasticity. We recall that the elasticity of a differentiable positive
real-valued function f is defined by

Exf(x) =
xf ′(x)
f(x)

.

Lemma 3. Let f : (0, ε)→(0,∞) be differentiable with elasticity bounded
by d0 and d1:

∀x ∈ (0, ε) d0 ≤ Exf(x) ≤ d1.

If d0 6= −∞ then

∀x ∈ (0, ε) ∀t ∈ (0, 1] td0f(x) ≥ f(tx).
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If d1 6=∞ then

∀x ∈ (0, ε) ∀t ∈ (0, 1] td1f(x) ≤ f(tx).

Proof. The proof is based on the following observation. For a given con-
stant d we consider the composite function F (t, x) = t−df(tx), 1 ≥ t > 0,
ε > x > 0. Then

∂ ln(F (t, x))
∂t

=
∂

∂t
(−d ln(t) + ln(f(tx))) = −d

t
+
xf ′(tx)
f(tx)

=
1
t
(Exf(tx)− d).

Hence if d ≥ sup{Exf(x)} then F is decreasing in t and for t < 1 we get

f(tx) ≥ tdf(x).

Analogously, if d ≤ inf{Exf(x)} then F is increasing in t and for t ≤ 1 we
get

f(tx) ≤ tdf(x).

5.3. Tail expansions of quasi-archimedean copulas. In this subsection we
assume that H(u, v) < min(u, v) for some u, v. We shall show that then the
lower (resp. upper) tail expansion of the quasi-archimedean copula depends
on the limit elasticity of ϕ(x) (resp. ϕ(1− x)) at 0,

Ex(0) = lim
x→0+

xϕ′(x)
ϕ(x)

, Ex(1) = lim
x→0+

−xϕ′(1− x)
ϕ(1− x)

.

The only exception concerns the lower tail expansion. Namely if ϕ0
is finite then Cϕ,H(u, v) vanishes in some neighbourhood of the origin, so
L(u, v) = 0.

Theorem 5. If the limit Ex(1) exists then the quasi-archimedean copula
Cϕ,H has a uniform upper tail expansion. Moreover , if Ex(1) = d <∞, then

L(u, v) = u+ v − d
√
ud + vd −H(ud, vd),

and if Ex(1) =∞, then
L(u, v) = min(u, v).

Proof. Note that since ϕ(1 − x) is increasing and convex, d cannot be
smaller than 1. Hence for any d0 and d1 such that 0 < d0 < d < d1, we can
find ε such that for x ∈ (0, ε) and s ∈ (0, 1),

sd1ϕ(1− x) < ϕ(1− sx) < sd0ϕ(1− x),

s1/d0(1− ϕ−1(x)) < 1− ϕ−1(sx) < s1/d1(1− ϕ−1(x)).

Therefore we have the following upper bound for t close to 0 and u+ v < 1:
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Ĉϕ,H(tu, tv) = ϕ−1(ϕ(1−tu)+ϕ(1−tv)−H(ϕ(1−tu), ϕ(1−tv)))+tu+tv−1

≤ ϕ−1(ud1ϕ(1− t) + vd1ϕ(1− t)−H(ud0 , vd0)ϕ(1− t)) + tu+ tv − 1

≤ d0
√
ud1 + vd1 −H(ud0, vd0)(1− ϕ−1(ϕ(1− t))) + tu+ tv

= t(u+ v − d0
√
ud1 + vd1 −H(ud0 , vd0)).

Analogously we get the lower bound

Ĉϕ,H(tu, tv) ≥ t(u+ v − d1
√
ud0 + vd0 −H(ud1 , vd1)).

Thus we have

u+ v − d1
√
ud0 + vd0 −H(ud1 , vd1)

≤ Ĉϕ,H(tu, tv)
t

≤ u+ v − d0
√
ud1 + vd1 −H(ud0 , vd0).

Passing to the limit as t→ 0 and d0, d1 → d we get

L(u, v) = u+ v − d
√
ud + vd −H(ud, vd).

If Ex(1) = ∞ then for any d0 > 0 we can find ε < 1 such that for
x ∈ (0, ε),

1− ϕ−1(2x) < d0
√

2(1− ϕ−1(x)).

Therefore we have the following lower bound for t close to 0 and u+ v < 1:

Ĉϕ,H(tu, tv) = ϕ−1(ϕ(1− tu) + ϕ(1− tv)−H(ϕ(1− tu), ϕ(1− tv)))

+ tu+ tv − 1

≥ ϕ−1(2 max(ϕ(1− tu), ϕ(1− tv))) + tu+ tv − 1

≥ − d0
√

2(1−min(1− tu, 1− tv)) + tu+ tv

= t(u+ v − d0
√

2 max(u, v)).

The upper bound is obvious:

Ĉϕ,H(tu, tv) ≤ min(tu, tv) = tmin(u, v).

Thus we have

u+ v − d0
√

2 max(u, v) ≤ Ĉϕ,H(tu, tv)
t

≤ min(u, v).

Passing to the limit as d0 →∞ we get L(u, v) = min(u, v).

Theorem 6. If the limit Ex(0) exists then the quasi-archimedean copula
Cϕ,H has a uniform lower tail expansion. Moreover if Ex(0)=−d, 0<d<∞
then

L(u, v) =
uv

d
√
ud + vd −H(ud, vd)

;

if Ex(0) = −∞, then L(u, v) = min(u, v); and if Ex(0) = 0, then L(u, v) = 0.
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Proof. Note that since ϕ(x) is decreasing and convex, −d cannot be
positive. If d is finite and nonzero then for any d0 and d1 such that 0 < d0 <
d < d1, we can find ε such that for x ∈ (0, ε), y > ε−1 and s ∈ (0, 1),

s−d0ϕ(x) < ϕ(sx) < s−d1ϕ(x), s1/d0ϕ−1(y) < ϕ−1(s−1y) < s1/d1ϕ−1(y).

Therefore we have the following lower bound for t close to 0 and u+ v < 1:

Cϕ,H(tu, tv) = ϕ−1(ϕ(tu) + ϕ(tv)−H(ϕ(tu), ϕ(tv)))

≤ ϕ−1(u−d0ϕ(t) + v−d0ϕ(t)−H(u−d1 , v−d1)ϕ(t))

≤ −d1
√
u−d0 + v−d0 −H(u−d1 , v−d1)ϕ−1(ϕ(t))

= t −d1
√
u−d0 + v−d0 −H(u−d1, v−d1).

Analogously we get the lower bound

Cϕ,H(tu, tv) ≥ t −d0
√
u−d1 + v−d1 −H(u−d0 , v−d0).

Thus we have
−d1
√
u−d0 + v−d0 −H(u−d1, v−d1)

≥ Cϕ,H(tu, tv)
t

≥ −d0
√
u−d1 + v−d1 −H(u−d0 , v−d0).

Passing to the limit we get

L(u, v) = −d
√
u−d + v−d −H(u−d, v−d) =

uv
d
√
ud + vd −H(ud, vd)

.

If Ex(0) = −∞ then for any d0 > 0 we can find ε < 1 such that for
x ∈ (0, ε),

ϕ−1(2x) > −d0
√

2ϕ−1(x).

Therefore we have the following lower bound for t close to 0 and u+ v < 1:

Cϕ,H(tu, tv) = ϕ−1(ϕ(tu) + ϕ(tv)−H(ϕ(tu), ϕ(tv)))

≥ ϕ−1(2 max(ϕ(tu), ϕ(tv)))

≥ −d0
√

2 min(tu, tv) = t
−d0
√

2 min(u, v).

The upper bound is obvious:

Cϕ,H(tu, tv) ≤ min(tu, tv) = tmin(u, v).

Thus we have

−d0
√

2 min(u, v) ≤ Cϕ,H(tu, tv)
t

≤ min(u, v).

Passing to the limit as d0 →∞ we get L(u, v) = min(u, v).
If Ex(0) = 0 then for any d1 > 0 we can find ε such that for x ∈ (0, ε),

y > ε−1 and s ∈ (0, 1),

ϕ(x) < ϕ(sx) < s−d1ϕ(x), ϕ−1(s−1y) < s1/d1ϕ−1(y).
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Therefore we have the following upper bound for t close to 0 and u+ v < 1:

Cϕ,H(tu, tv) = ϕ−1(ϕ(tu) + ϕ(tv)−H(ϕ(tu), ϕ(tv)))

≤ ϕ−1(ϕ(t) + ϕ(t)−H(ϕ(t)u−d1, ϕ(t)v−d1))

= ϕ−1(ϕ(t)(2−H(u−d1 , v−d1)))

≤ t −d1
√

2−H(u−d1 , v−d1).

Thus we have

0 ≤ Cϕ,H(tu, tv)
t

≤ −d1
√

2−H(u−d1 , v−d1).

Passing to the limit as d1 → 0+ we get L(u, v) = 0.

Note that the above assumptions are satisfied by all one-parameter fam-
ilies of archimedean copulas listed in [6, pp. 94–97]. Therefore all of them
have uniform tail expansions. Below we list the corresponding 23 families of
ϕ’s, restrictions on d, and the values of Ex(1) and Ex(0) (when ϕ(0) =∞).

ϕ(x) = 1
d (x−d − 1), d ∈ [−1, 0) Ex(1) = 1, ϕ(0) <∞

ϕ(x) = 1
d (x−d − 1), d ∈ (0,∞) Ex(1) = 1, Ex(0) = −d

ϕ(x) = (1− x)d, d ∈ [1,∞) Ex(1) = d, ϕ(0) <∞
ϕ(x) = ln 1−d(1−x)

x , d ∈ [−1, 1) Ex(1) = 1, Ex(0) = 0

ϕ(x) = (− lnx)d, d ∈ [1,∞) Ex(1) = d, Ex(0) = 0

ϕ(x) = − ln e−dx−1
e−d−1 , d ∈ (−∞,∞) \ {0} Ex(1) = 1, Ex(0) = 0

ϕ(x) = − ln(1− (1− x)d), d ∈ [1,∞) Ex(1) = d, Ex(0) = 0

ϕ(x) = − ln(dx+ 1− d), d ∈ (0, 1) Ex(1) = 1, ϕ(0) <∞
ϕ(x) = 1−x

1+(d−1)x , d ∈ [1,∞) Ex(1) = 1, ϕ(0) <∞
ϕ(x) = ln(1− d ln(x)), d ∈ (0, 1] Ex(1) = 1, Ex(0) = 0

ϕ(x) = ln(2x−d − 1), d ∈ (0, 1] Ex(1) = 1, Ex(0) = 0

ϕ(x) = ln(2− xd), d ∈ (0, 1
2 ] Ex(1) = 1, ϕ(0) <∞

ϕ(x) = (1/x− 1)d, d ∈ [1,∞) Ex(1) = d, Ex(0) = −d
ϕ(x) = (1− ln(x))d − 1, d ∈ (0,∞) Ex(1) = 1, Ex(0) = 0

ϕ(x) = (x−1/d − 1)d, d ∈ [1,∞) Ex(1) = d, Ex(0) = −d
ϕ(x) = (1− x1/d)d, d ∈ [1,∞) Ex(1) = d, ϕ(0) <∞
ϕ(x) = (d/x+ 1)(1− x), d ∈ (0,∞) Ex(1) = 1, Ex(0) = −1

ϕ(x) = − ln (1+x)−d−1
2−d−1 , d ∈ (−∞,∞) \ {0} Ex(1) = 1, Ex(0) = 0

ϕ(x) = exp( d
x−1 ), d ∈ [2,∞) Ex(1) =∞, ϕ(0) <∞

ϕ(x) = exp(d/x)− ed, d ∈ (0,∞) Ex(1) = 1, Ex(0) = −∞
ϕ(x) = exp(x−d)− e, d ∈ (0,∞) Ex(1) = 1, Ex(0) = −∞
ϕ(x) = 1− (1− (1− x)d)1/d, d ∈ [1,∞) Ex(1) = d, ϕ(0) <∞
ϕ(x) = arcsin(1− xd), d ∈ (0, 1] Ex(1) = 1, ϕ(0) <∞
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5.4. Examples. Let ϕ(x) = (− ln(x))d, where d ∈ [1,∞). Then

lim
x→0
Exϕ(x) = 0, lim

x→0
Exϕ(1− x) = d.

Hence the Gumbel–Hougaard copulas

C(u, v) = exp(− d
√

(− ln(u))d + (− ln(v))d)

have the lower leading part equal to 0 and the upper one equal to

u+ v − d
√
ud + vd.

Similarly the BEV (bivariate extreme value) copulas

C(u, v) = exp(ln(u) + ln(v) +H(− ln(u),− ln(v))),

if H(x, y) 6≡ min(x, y), have the lower leading part equal to 0 and the upper
one equal to H(u, v).

In the exceptional case, H(x, y) = min(x, y), C(u, v) = min(u, v). Hence
in this case both leading forms equal min(u, v).

6. Applications: Measuring the extreme risk of two long posi-
tions. We shall focus on the following simple case. An investor has in his
portfolio two risky assets which are highly dependent. Let ωi be the amount
of money invested in the ith asset. The investor fixes a security level c,
0 < c < 1. In order to determine the risk associated with his investment he
wants to estimate the following quantities:

• the probability that the value of the portfolio after a certain period of
time is smaller than c(ω1 + ω2);
• the conditional probability that the value of one asset will be smaller

than c times its initial value, under the condition that this happens
for the other asset;
• the conditional probability that the value of both assets will be smaller

than c times their initial values, under the condition that this happens
for one of them;
• the conditional probability that the drop of the value of one asset will

be greater than that of the other under the condition that the value
of the other asset will be smaller than c times its initial value.

Let Si,0 and Si,1 be the prices at the beginning and at the end of the
period. So the final value of the investment equals

W1 = ω1
S1,1

S1,0
+ ω2

S2,1

S2,0
.

We assume that the returns of both assets are heavy tailed, with the same
tail index α > 0 (cf. [5, 9.3]), that is,

P(ln(Si,1)− ln(Si,0) < z) ≈ ai(−z)−α for z � 0,
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and their joint distribution is determined by a copula C having a uniform
lower tail expansion with nonzero leading part L.

Let c, 0 < c < 1, be a benchmark, let

F (c) = P(W1 < c(ω1 + ω2)),

and let U(c) and V (c) be the probabilities that the value of respectively the
first or second asset drops below c:

U(c) = P
(
S1,1

S1,0
< c

)
, V (c) = P

(
S2,1

S2,0
< c

)
.

Obviously, for small c,

U(c) ≈ a1(− ln(c))−α, V (c) ≈ a2(− ln(c))−α.

Lemma 4. For ω1, ω2 > 0 and sufficiently small c we have the estimate

F (c) ≈ (− ln(c))−αL(a1, a2).

Proof. To get the lower estimate, let z = ln c. Then

F (c) = P(W ≤ c(ω1 + ω2)) ≥ P
(
S1,1

S1,0
≤ c ∧ S2,1

S2,0
≤ c
)

≈ C(a1(−z)−α, a2(−z)−α) ≈ L(a1(−z)−α, a2(−z)−α)

= L(a1, a2)(−z)−α.

For the upper estimate, let ω = ln
(min(ω1,ω2)

ω1+ω2

)
and z < ω. Then

P(W ≤ c(ω1 + ω2)) ≤ P
(
S1,1

S1,0
≤ c ω1 + ω2

ω1
∧ S2,1

S2,0
≤ c ω1 + ω2

ω2

)

≤ P
(
S1,1

S1,0
≤ c ω1 + ω2

min(ω1, ω2)
∧ S2,1

S2,0
≤ c ω1 + ω2

min(ω1, ω2)

)

≈ C(a1(−z + ω)−α, a2(−z + ω)−α) ≈ L(a1(−z + ω)−α, a2(−z + ω)−α)

= L(a1, a2)(−z + ω)−α ≈ L(a1, a2)(−z)−α
(

1− α ω

(−z)
+ · · ·

)

≈ L(a1, a2)(−z)−α.

Note that since L(a1, a2) ≤ min(a1, a2) we get:

Corollary 3. “Asymptotically”, diversification of a portfolio does not
increase the risk.

The answers to the next two questions from the above list follow from
the classical formula for the conditional probability:

P
(
S1,1

S1,0
≤ c

∣∣∣∣
S2,1

S2,0
≤ c
)

=
P
(S1,1
S1,0
≤ c ∧ S2,1

S2,0
≤ c
)

P
(S2,1
S2,0
≤ c
) =

C(U(c), V (c))
V (c)

.
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So for sufficiently small c,

P
(
S1,1

S1,0
≤ c

∣∣∣∣
S2,1

S2,0
≤ c
)
≈ L(U(c), V (c))

V (c)
= L

(
U(c)
V (c)

, 1
)
≈ L

(
a1

a2
, 1
)
.

In the same way we show that

P
(
S2,1

S2,0
≤ c

∣∣∣∣
S1,1

S1,0
≤ c
)
≈ L(U(c), V (c))

U(c)
= L

(
1,
V (c)
U(c)

)
≈ L

(
1,
a2

a1

)
.

The formula for the probability of two drops below the benchmark is
only a bit more complicated:

P2|1 = P
(
S1,1

S1,0
≤ c ∧ S2,1

S2,0
≤ c

∣∣∣∣
S1,1

S1,0
≤ c ∨ S2,1

S2,0
≤ c
)

=
P
(S1,1
S1,0
≤ c ∧ S2,1

S2,0
≤ c
)

P
(S1,1
S1,0
≤ c ∨ S2,1

S2,0
≤ c
) =

C(U(c), V (c))
U(c) + V (c)− C(U(c), V (c))

.

Therefore for sufficiently small c,

P2|1 ≈
L(U(c), V (c))

U(c) + V (c)− L(U(c), V (c))
≈ L(a1, a2)
a1 + a2 − L(a1, a2)

.

Corollary 4. For sufficiently small c the above conditional probabili-
ties do not depend on c.

The conditional probability that the drop of the value of the first asset
will be greater than that of the second under the condition that the value
of the second asset will be smaller than c times its initial value equals (for
differentiable L(u, v))

P1<2|2 ≈
∂L

∂v
(a1, a2),

and the conditional probability that the drop of the value of the second asset
will be greater than that of the first under the condition that the value of
the first asset will be smaller than c times its initial value equals

P2<1|1 ≈
∂L

∂u
(a1, a2).

The following lemma is the crucial point of the estimation.

Lemma 5. Let µ be a measure induced by L(u, v). Then

µ1 = µ(4((0, 0); (0, q); (p, q)) = q
∂L

∂v
(p, q),

µ2 = µ(4((0, 0); (p, 0); (p, q)) = p
∂L

∂u
(p, q).
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-

6

�
�
��

p

q

Proof. We have

µ1 =
q�

0

pv/q�

0

∂2L

∂u∂v
(u, v) du dv =

q�

0

∂L

∂v

(
pv

q
, v

)
dv.

Since L is homogeneous of degree 1, its first derivatives are homogeneous of
degree 0 and

∂L

∂v

(
pv

q
, v

)
=
∂L

∂v
(p, q).

Therefore

µ1 =
q�

0

∂L

∂v
(p, q) dv = q

∂L

∂v
(p, q).

In the same way we get the formula for µ2.

Proof of approximations. By the lemma we have the following approxi-
mations:

P
(
S1,1

S1,0
≤ S2,1

S2,0
≤ c
)

= P
(
a1a2

(
− ln

(
S1,1

S1,0

))−α
≤ a1a2

(
− ln

(
S2,1

S2,0

))−α
≤ a1a2(− ln(c))−α

)

≈ P
(
a2U

(
S1,1

S1,0

)
≤ a1V

(
S2,1

S2,0

)
≤ a1a2(− ln(c))−α

)

≈ µ(4((0, 0); (0, a2(− ln(c))−α); (a1(− ln(c))−α, a2(− ln(c))−α))

= a2(− ln(c))−α
∂L

∂v
(a1(− ln(c))−α, a2(− ln(c))−α)

= a2(− ln(c))−α
∂L

∂v
(a1, a2).

Therefore

P1<2|2 = P
(
S1,1

S1,0
≤ S2,1

S2,0

∣∣∣∣
S2,1

S2,0
≤ c
)

=
P
(S1,1
S1,0
≤ S2,1

S2,0
≤ c
)

P
(S2,1
S2,0
≤ c
)

≈ a2(− ln(c))−α ∂L∂v (a1, a2)
a2(− ln(c))−α

=
∂L

∂v
(a1, a2).

In the same way we get the approximation of P2<1|1.
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