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OPTIMIZATION OF CONSUMPTION WITH PARTIAL
OBSERVATION—JENSEN INEQUALITY METHOD

Abstract. A solution to a model of optimal consumption with partial
observation considered in [LØS00] is presented. The approach is based on
the Jensen inequality and does not require application of the filtering equa-
tion.

1. Introduction. We present a simplified solution of a generalized prob-
lem of optimal consumption in a dynamic setting with terminal conditions
for the state process, related to the one considered in [LØS00] and origi-
nated in [M73] (in the case of complete observation and absence of state
constraints). As in [LØS00], the problem is formulated in bayesian form
where the unknown parameter is a random variable with known distribu-
tion. The model remains linear but replacement of the method based on
the Kalman filter and stochastic maximum principle (see [YZ99]) by a sim-
pler one—using the Jensen inequality and Pontryagin principle—allows us
to extend the result of [LØS00] in three directions:

• the unobservable parameter is a process (not only a random variable),
• the observable parameters are not constant,
• a class of utility functions is considered.
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2. The main result. Let (R,F , {Ft}t∈[0,T ],P) be a probability space
with filtration, satisfying the usual conditions (see [YZ99]). By {W (t)}t∈[0,T ]
we denote an {Ft}t∈[0,T ]-adapted Brownian motion process.

We consider an investor continuously consuming part of the value of
a given portfolio and reinvesting the rest on the market. We assume that
the theoretical value {X(c)

t }t∈[0,T ] of the investment portfolio with consump-
tion which is observed by the investor is {Ft}t∈[0,T ]-adapted and follows a
stochastic differential equation of the form

dX(c)(t) = (A(t)X(c)(t) +B(t)µ(t) + g(t)− c(t))dt(1)

+D(t)dW (t),

where X(c)(0) = x0 ∈ R, A,B, g,D ∈ C([0, T ];R) and {µ(t)}t∈[0,T ] is an
{Ft}t∈[0,T ]-adapted process of unobserved parameter from L1(0, T ;R) and
µE : [0, T ] → R given by µE(t) = Eµ(t) is continuous. The notation is
consistent with [YZ99]. Partial observability means that the investor is only
observing the filtration {Gt}t∈[0,T ] generated by the process X, which is not
equivalent to observing the filtration {Ft}t∈[0,T ] for the trajectories of µ(t)
are unknown. In this paper we do not consider the optimal investment prob-
lem. We restrict ourselves to finding an optimal consumption maximizing a
given utility function.

The investor can freely choose the intensity of consumption, i.e. he
chooses a process from the family

(2) A = {c : R× [0, T ]→ R+ | (i) c is {Gt}t∈[0,T ]-adapted,

(ii) c ∈ L1
G(0, T ;R) ∩ L2

G(0, T ;R),

(iii) cE : [0, T ]→ R+ and cE(t) = Ec(t) is continuous,

(iv) E[Xc(T )] = xT }
for a given xT > 0. It is required that admissible consumption should guar-
antee the expected terminal value of portfolio. The problem is to maximize
the measure of satisfaction of accumulated, discounted consumption. This
means that for a given utility function u : R+ → R+ with u′ > 0, u′′ < 0 we
are interested in solving the following problem:

Problem 2.1. Find a process c∗ ∈ A satisfying

J(c∗) = sup{J(c) : c ∈ A},(3)

where for given δ > 0 and γ ∈ (0, 1) the functional J : A → R is defined by

J(c) = E
[ T�

0

e−δtu(c(t)) dt
]
.(4)
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Theorem 2.1. Under the above assumptions the optimal consumption
process c∗ for Problem 2.1 solves the following deterministic problem:

Find the intensity of consumption c : [0, T ] → R, which is a continuous
deterministic function of time such that x(c)(T ) = xT , where x(c) solves

ẋ(c)(t) = A(t)x(c)(t) +B(t)E[µ(t)] + g(t)− c(t), x(c)(0) = x0,(5)

and maximizes the functional J defined by (4).

(i) Optimal intensity of consumption c∗ exists in the case of utility applied
by [LØS00], i.e. assuming that u(c) = cγ/γ for given γ ∈ (0, 1), if

x0e
−χ(T ) − xT +

T�

0

k(t)e−(χ(T )−χ(t)) dt ≥ 0(6)

for

χ(t) ∆=
t�

0

A(s) ds, k(t) ∆= B(t)E[µ(t)] + g(t)

and is given explicitly by

c∗(t) = (λ1e
−(χ(T )−χ(t))+δt)1/(γ−1),(7)

where

λ1 =
(
x0e
−χ(T ) + � T0 k(t)e−(χ(T )−χ(t)) dt− xT

� T0 e−(χ(T )−χ(t))+δt dt

)γ−1

.(8)

(ii) More generally , provided that inequality (6) holds, an optimal in-
tensity of consumption c∗ exists if the utility function u has the inverse

multiplicativity property , i.e. there exists I : R+ → R+ defined by I(x) ∆=
(u′)−1(x) such that

∃κ ∈ R ∀x, y > 0 I(xy) = κI(x)I(y).(9)

Then

c∗(t) = κI(λ1)I(e−(χ(T )−χ(t))+δt)(10)

and

λ1 = u′
(
x0e
−χ(T ) + � T0 k(t)e−(χ(T )−χ(t)) dt− xT

κ � T0 I(e−(χ(T )−χ(t))+δt)e−(χ(T )−χ(t)) dt

)
.(11)

Proof. We use the Jensen inequality and the Pontryagin maximum prin-
ciple.

First we show that in the nonempty set of solutions of Problem 2.1 there
is a deterministic function of time. By the Jensen inequality (see [KS97, The-



420 G. Hałaj

orem 2, §5.7]), for c ∈ A we have

E
T�

0

e−δt
c(t)γ

γ
dt =

T�

0

E
[
e−δt

c(t)γ

γ

]
dt ≤

T�

0

e−δt
[Ec(t)]γ

γ
dt.(12)

Then if c(t) ∈ A is a solution, we can write c = Ec(t) + c0(t), where c0(t)
is random, different from 0 on a set of positive measure and Ec0(t) = 0. So
if J is maximized and we take as control the function Ec(t) instead of the
process c(t) the value of the functional does not decrease. That is what was
claimed.

On the other hand, there exists a unique solution of (1) for every c ∈ A
(conclusion from [YZ99, Chapter 2, Theorem 5.2]) because of the regularity
conditions (see [YZ99, Chapter 1, §6.4]) of the drift term b : [0, T ] × R ×
R+ × R→ R,

b(t, x, c, ω) ∆= A(t)x+ µ(t, ω)B(t) + g(t)− c,
and c ∈ L2

G(0, T ;R). But µE ∈ C([0, T ];R). Since D is deterministic and
square integrable the process � D(s) dW (s) is a martingale (e.g. being an
Itô integral). Integrating (1), taking expectation E and applying the Fubini
Theorem (see [KS97]) to the integral

E
[ t�

0

B(s)µ(s) ds
]

we conclude that c∗ has to satisfy (5).
To finish the proof we have to show (i) and (ii). Because part (i) is

a special case of (ii) we only consider the case of (ii) and prove (10). It
is easy to show that the utility function (u(c) = cγ/γ) satisfies (9). We
use the Pontryagin Principle (see [YZ99, Chapter 3, Theorem 2.1]). The
Hamiltonian for this optimization problem is

H(t, x, c, p) = p(A(t)x+B(t)E[µ(t)] + g(t)− c) + e−δtu(c(t))

and H is maximized with respect to c if

− p(t) + e−δtu′(c(t)) = 0.(13)

On the other hand, the adjoint equation of the Maximum Principle leads to
{
ṗ(t) = A(t)p(t),

p(T ) = λ1,

that is,

∀t ∈ [0, T ], p(t) = λ1e
− � Tt A(s) ds.(14)

Combining (13) and (14), and applying the assumed property (9) of the



Optimization of consumption 421

function I (well-defined since u′′ < 0) we obtain

c∗(t) = I(λ1e
� Tt A(s) ds+δt) = κI(λ1)I(e � Tt A(s) ds+δt).

To find λ1 we use (5) integrated over [0, T ] and the terminal condition
EXc∗(T ) = xT as follows:

xT = x0e
− � Tt A(s) ds +

T�

0

(B(t)E[µ(t)] + g(t)− c∗(t))e− � Tt A(τ) dτ dt,

xT = x0e
−χ(T ) +

T�

0

k(t)e−(χ(T )−χ(τ)) dt

− κI(λ1)
T�

0

I(eχ(T )−χ(t))+δt)e−χ(T )−χ(t)) dt,

which after transformations leads to (11). The assumption (6) ensures that
λ1 is nonnegative, which is required by the transversality condition (see
[YZ99, Chapter 3, Theorem 6.1, Equation (6.6)]).

Remark 2.1. The inverse multiplicativity property is not very restric-
tive (see [C91]). The utilities u(c) = ln c and u(c) = cγ/γ have this property.

Remark 2.2. The result of Theorem 2.1 extends the class of problems
from [LØS00] that do not have the certainty equivalence property. It should
be emphasized that the way of solving the problem avoids partial observ-
ability difficulties. Existence of the unique solution to (5) requires stronger
assumptions on the parameters of (1) than those made in [LØS00]. However,
in both cases, the optimal solution is deterministic and continuous.

On the other hand, broad applicability of such an approach is doubtful;
examples considered in [H03], however simple and more realistic, cannot be
reduced to the deterministic case in that way.
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