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ON THE STRUCTURE OF FLOWS THROUGH
PIPE-LIKE DOMAINS

SATISFYING A GEOMETRICAL CONSTRAINT

Abstract. We study solutions of the steady Navier–Stokes equations in a
bounded 2D domain with the slip boundary conditions admitting flow across
the boundary. We show conditions guaranteeing uniqueness of the solution.
Next, we examine the structure of the solution considering an approximation
given by a natural linearization. Suitable error estimates are also obtained.

1. Introduction. In this note we analyze a model of two-dimensional
flows of viscous incompressible fluids through bounded domains with non-
trivial flows across the boundary. The motion is governed by the steady
Navier–Stokes equations

(1.1)
v · ∇v − ν∆v +∇p = F in Ω,

div v = 0 in Ω,

where v = (v1, v2) is the velocity of the fluid, p the pressure, ν the constant
positive viscous coefficient, F the external force, and Ω a simply connected
domain where our motion is studied.

We supplement (1.1) with the slip boundary conditions involving friction

(1.2)
n ·T(v, p) · τ + fv · τ = 0 on ∂Ω,

n · v = d on ∂Ω,

where n and τ are the normal and tangent vectors to ∂Ω; f describes the
friction between the fluid and the boundary, it is nonnegative, in general
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nonconstant; and T(·, ·) is the stress tensor of Newtonian fluids, i.e.

(1.3) T(v, p) = νD(v)− p Id = {ν(vi,j + vj,i)− pδij}i,j=1,2.

The function d describes the inflow and outflow across the boundary.
This type of boundary conditions may be treated as an alternative to

the standard Dirichlet boundary data

(1.4) u = D on ∂Ω.

The existing theory for problem (1.1), (1.4) in general domains for
nonzero data D yields existence of solutions only for small magnitudes of
fluxes given by boundary data. For arbitrarily large data we are able to find
solutions only for problems in simply connected domains [3, 4, Chap.VIII, 6].
The difficulty is connected with applications of the energy method which
seems to be a natural way for the Dirichlet problem. In this approach there
is a need to construct an extension of the boundary data, say D, such that

(1.5) divD = 0, D|∂Ω = D.

Moreover, the greatest obstacle to applying the energy method comes from
the requirement that the field D must satisfy the estimate

(1.6)
∣∣∣

�

Ω

u · ∇Du dx
∣∣∣ ≤ δ‖u‖H1

0 (Ω)

for a small δ and for all u ∈ H1
0 (Ω). The smallness of δ is determined by the

magnitude of the viscosity. For arbitrary D we can find the field D only for
a simply connected domain.

To see the crucial role of inequality (1.6) we modify (1.1) by decomposing
the velocity as

(1.7) v = D + u.

Then from (1.1) we get

(1.8)
v · ∇u− ν∆u+∇p = F − u · ∇D − D · ∇D + ν∆D in Ω,

div u = 0 in Ω.

By (1.7) the new unknown function has good properties at the boundary,
i.e.

(1.9) u|∂Ω = 0.

To obtain an energy estimate for (1.8) we need to bound the second term
of the r.h.s. of (1.8)1. Here we apply (1.6) remembering that Ω is simply
connected and the field D can be constructed.

The uniqueness of solutions for the Dirichlet problem is ensured only
for small D. This is a consequence of the energy approach which does not
involve the geometrical properties of the domain Ω.
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The inadequacy of the method for the Dirichlet problem (1.1), (1.4)
follows from the modification of the original system. Due to the general
properties of the energy technique we need to have homogeneous boundary
data, so we introduce the field D and consider the function u instead of v.
But this change leads to the appearance of a bad term −u · ∇D in equation
(1.8)1 which is a consequence of subtraction. The system loses its physical
structure.

That is the motivation for a new approach to this issue. The technique
should be based on the original equations and we have to avoid any subtrac-
tions for nonlinear systems. In this paper we present such a technique, but
only for the slip boundary conditions (1.2). Moreover we will have to assume
an extra property of the domain and smallness of the effective friction f/ν.
But as a result we obtain an a priori estimate for the solutions to prob-
lem (1.1), (1.2) without any bound on the boundary data d and external
force F . The restriction on Ω is completely independent of the magnitude
of the flow. And the a priori bound has a linear form just as the standard
energy estimate for homogeneous boundary data.

Our approach takes into account the geometrical features of the domain,
hence the uniqueness conditions will depend on the properties of Ω, not only
on the magnitude of the data.

A key idea is a reformulation of problem (1.1), (1.2). A crucial role will
be played by the vorticity of the velocity,

(1.10) α = rot v = v2
,1 − v1

,2.

Note that our method works only in two space dimensions, since the vorticity
is then a scalar function and in three dimensions it is a vector.

Taking the rotation of (1.1)1 we obtain a scalar equation

(1.11) v · ∇α− ν∆α = rotF in Ω.

This follows from the fact that

(1.12) rot(v · ∇v) = v · ∇α,
but only in our case, since in general 3-D we have

(1.13) rot(v · ∇v) = v · ∇ rot v − rot v · ∇v.
We need to add a boundary condition to (1.11). Here we apply an interesting
feature of the slip boundary conditions. From (1.2) we compute the Dirichlet
datum for the vorticity as follows:

(1.14) α = (2χ− f/ν)v · τ − 2d,s on ∂Ω,

where χ is the curvature of Ω and s is the arc length parameter on ∂Ω.
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To close system (1.11), (1.14) we add the following elliptic problem for
the velocity:

(1.15)

rot v = α in Ω,

div v = 0 in Ω,

n · v = d on ∂Ω.

It is obvious that the coupled system (1.11), (1.14), (1.15) is equivalent
to the original one (1.1), (1.2). It will turn out to be more suitable for our
analysis.

The main advantage of this approach is the a priori estimate. Problem
(1.11), (1.14) admits a sort of maximum principle.

Multiply (1.11) by

(1.16) (α− k∗)+ = max{α− k∗, 0},
where

(1.17) k∗ = sup
x∈∂Ω

(2χ− f/ν)v · τ − 2d,s.

By definition (1.16) the function (α− k∗)+ is zero on the boundary, hence

(1.18)
�

Ω

1
2
v ·∇(α−k∗)+ dx+ν

�

Ω

|∇(α−k∗)+|2 dx = −
�

Ω

F ·∇⊥(α−k∗)+,

which implies

(1.19) ‖∇(α− k∗)+‖L2(Ω) ≤
1
ν
‖F‖L2(Ω).

The same bound is obtained for

(1.20) (α− k∗)− = min{α− k∗, 0}
with

(1.21) k∗ = inf
x∈∂Ω

(2χ− f/ν)v · τ − 2d,s,

i.e.

(1.22) ‖∇(α− k∗)−‖L2(Ω) ≤
1
ν
‖F‖L2(Ω).

This leads to the following decomposition of the vorticity:

(1.23) α = αL∞ + αH1
0
,

where

(1.24)

(1.25)

αL∞ ∈ L∞(Ω), ‖αL∞‖L∞(Ω) ≤ max{k∗, k∗},

αH1
0
∈ H1

0 (Ω), ‖∇αH1
0
‖L2(Ω) ≤

1
ν
‖F‖L2(Ω).
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This way we obtain an L∞(Ω) +H1
0 (Ω) estimate for α:

‖α‖L∞(Ω)+H1
0 (Ω) ≤ ‖2χ− f/ν‖L∞(∂Ω)‖v‖C(∂Ω)(1.26)

+ c‖d‖W 1
∞(∂Ω) +

1
ν
‖F‖L2(Ω).

which follows from (1.24) and (1.25).
Next, the standard theory of elliptic operators yields the following bound

for the solutions of (1.15):

(1.27) ‖v‖C(Ω) ≤ A(Ω)‖α‖L∞(Ω)+H1
0 (Ω) + c‖d‖W 1

∞(Ω).

Estimates (1.26) and (1.27) lead to the main a priori bound

(1.28) ‖v‖C(Ω) + ‖α‖L∞(Ω)+H1
0 (Ω)

≤ B(1− A(Ω)‖2χ− f/ν‖L∞(∂Ω))
−1(‖d‖W 1

∞(Ω) + ν−1‖F‖L2(Ω)),

provided the following condition is valid:

(1.29) GC = A(Ω)‖2χ− f/ν‖L∞(∂Ω) < 1.

The above constraint is a geometrical restriction on the shape of the
domain. Since f/ν is nonnegative and may be chosen independently of the
domain, to satisfy (1.29) we only need to control the negative part of the
curvature. Hence the domain must satisfy

(1.30) A(Ω) inf
x∈∂Ω

min{χ, 0} > −1.

Then we are able to find f and ν such that (1.29) is satisfied.
The constant A(Ω) is optimal and depends only on the geometrical fea-

tures of Ω. In general A(Ω) ∼ H, where

H = min
φ∈[0,π)

hφ,(1.31)

hφ = max
y1∈R

λ1{(y1, y2) ∈ Ω : y2 ∈ R},(1.32)

where λ1 is the one-dimensional Lebesgue measure and y is the coordinate
system obtained from the original x-coordinates by rotation through angle φ.

The bound obtained yields the following existence result.

Theorem A. Let 0 < a < 1, F ∈ L2(Ω) and d ∈W 1
∞(∂Ω). If

(1.33) A(Ω)‖2χ− f/ν‖L∞(∂Ω) < 1,

then there exists at least one solution to problem (1.1), (1.2) such that

(1.34) v ∈ Ca(Ω), rot v ∈ L∞(Ω) +H1
0 (Ω),

and the following estimate is valid :

(1.35) ‖v‖Ca(Ω) + ‖(rot v)L∞‖L∞(Ω) + ‖(rot v)H1
0
‖H1

0 (Ω)

≤ B(‖d‖W 1
∞(∂Ω) + ν−1‖F‖L2(Ω)) = S0,
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where rot v = (rot v)L∞ + (rot v)H1
0
, (rot v)L∞ ∈ L∞(Ω), (rot v)H1

0
∈ H1

0 (Ω)
and B is independent of ν.

We skip the proof of Theorem A, since it follows from the a priori bound
(1.28) proved at the beginning. The resulting regularity of the solutions
guarantees existence by a standard application of the Leray–Schauder fixed
point theorem. A similar proof can be found in [5, Theorem 3.1].

As an alternative to this assumption, for bounded d, we may assume the
existence of a vector field D such that

n · D|∂Ω = d, divD = 0, rotD = 0,(1.36)

D ∈W 1
∞(Ω) ∩W 1

∞(∂Ω).(1.37)

The construction of such a field is given in Section 4.
One of the aims of the present note is to find conditions which imply

uniqueness of the solutions.
In Section 3 we prove the following theorem.

Theorem B. Let the assumptions of Theorem A be satisfied and suppose
that either

(1.38) A(Ω)
(
S0

ν
(|Ω|1/2 +H) + ‖2χ− f/ν‖L∞(∂Ω)

)
< 1

or

(1.39)
B2

2(1 +H)2

ν
(B2

1‖d‖L∞(∂Ω) + S0) < 1.

Then the system (1.1)–(1.2) admits only one solution.

A comparison of these two conditions shows that the standard energy
approach neglects the influence of the features of the domain. (1.39) implies
that S0 and ‖d‖L∞ have to be small. Condition (1.38) takes into account
the quantities h and |Ω| as well as condition (1.33) and admits large data
(provided H and |Ω| are small).

A natural consequence of the uniqueness result is an analysis of the
structure of solutions. Since their norms are relatively small we want to find
their series expansion. In Section 4 we prove the following result.

Theorem C. Let S0 be sufficiently small. Then the solutions of problem
(1.1)–(1.2) have the form

(1.40) v = u0 + u1 + · · ·+ uN + u

for any N ∈ N, where ul is a solution of a linear system which depends only
on ul−1, . . . , u0 and the data; moreover

(1.41) ‖ul‖Ca(Ω) ≤ Ξ l
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for l = 0, . . . , N , and

(1.42) ‖u‖Ca(Ω) ≤ BΞN+1,

where Ξ = B0S0 and B0 depends on the constants of the problem.

Corollary. The solution given by Theorem C can be expressed by the
following series:

(1.43) v =
∞∑

l=0

ul.

This follows from the estimates of Theorem C and the fact that Ξ < 1.
The key element of Theorem C is the bound (1.41). Our method makes

it possible to obtain information in Hölder class. Of course, this can be done,
since we already have Theorem A with bound (1.31). Thus, Theorem C is
a consequence of Theorems A and B. Applying the standard energy ap-
proach we would obtain a weaker result with poorer information about the
approximation error.

2. Notation. Throughout the paper we use the standard notation [7].
By Lp(Ω) we denote the Lebesgue space of p-integrable functions with the
norm

‖f‖Lp(Ω) =
( �

Ω

|f(x)|p dx
)1/p

for 1 ≤ p <∞,(2.1)

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)| for p =∞.(2.2)

By Ca(Ω) we denote the space of Hölder continuous functions with the norm

(2.3) ‖f‖Ca(Ω) = sup
x∈Ω
|f(x)|+ sup

x,y∈Ω; x6=y

|f(x)− f(y)|
|x− y|a .

Moreover X + Y , for X,Y Banach spaces, denotes the space

(2.4) X + Y = {z = x+ y : x ∈ X and y ∈ Y }
with the norm

(2.5) ‖z‖X+Y = inf{‖x‖X + ‖y‖Y : x+ y = z}.
The following auxiliary results are well known [1, 2, 7].

Lemma 2.1. Let ∂Ω ∈ C2 and u ∈W 1
p (Ω). Then the trace

(2.6) ũ = u|∂Ω
is well defined as a function in W

1−1/p
p (∂Ω) and

(2.7) ‖ũ‖
W

1−1/p
p (∂Ω) ≤ c‖u‖W 1

p (Ω).
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Lemma 2.2 (Korn inequality). Let u ∈ H1(Ω) with div u = 0 and
n · u|∂Ω = 0. Then

(2.8) ‖u‖H1(Ω) ≤ c‖D(u)‖L2(Ω).

Lemma 2.3. Let b ∈W 2−1/p
p (∂Ω). Then the solution of the problem

(2.9)
∆ϕ = 0 in Ω,

ϕ = b on ∂Ω

satisfies

(2.10) ‖ϕ‖W 2
p (Ω) ≤ c‖b‖W 2−1/p

p (∂Ω).

3. Proof of Theorem B. In this section we prove Theorem B. The
two conditions (1.38) and (1.39) follow from two different approaches to the
uniqueness issue. The first is based on the analysis of the coupled system
(1.11), (1.14), (1.15).

Take two solutions of problem (1.1), say v1 and v2. They satisfy

(3.1)

vi · ∇αi − ν∆αi = rot F in Ω,

αi = (2χ− f/ν)vi · τ − 2d,s on ∂Ω,

rot vi = αi in Ω,

div vi = 0 in Ω,

n · vi = d on ∂Ω,

for i = 1, 2. Set

(3.2) V = v1 − v2, R = α1 − α2.

Subtracting (3.1) for i = 1 and i = 2 we get

(3.3)

v1 · ∇R− ν∆R = −V · ∇α2 in Ω,

R = (2χ− f/ν)V · τ on ∂Ω,

rotV = R in Ω,

div V = 0 in Ω,

n · V = 0 on ∂Ω.

We repeat the estimations (1.16)–(1.28) to obtain a condition controlling
the uniqueness. Let

(3.4) K∗ = sup
x∈∂Ω

(2χ− f/ν)V · τ.

Multiply (3.3)1 by

(3.5) (R−K∗)+ = max{R−K∗, 0},
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then integrate over Ω to get

(3.6) ν
�

Ω

|∇(R−K∗)+|2 dx ≤
∣∣∣

�

Ω

V · ∇α2(R−K∗)+ dx
∣∣∣.

By Theorem A we know that

(3.7) α2 = α2
L∞ + α2

H1
0
,

where α2
L∞ ∈ L∞(Ω) and α2

H1
0
∈ H1

0 (Ω). Then

(3.8)
�

Ω

V · ∇α2(R−K∗)+ dx

= −
�

Ω

V · ∇(R−K∗)+α
2
L∞ dx+

�

Ω

V · ∇α2
H1

0
(R−K∗)+ dx.

The first term is bounded as follows:

(3.9) ‖V α2
L∞‖L2(Ω)‖∇(R−K∗)+‖L2(Ω)

≤ S0|Ω|1/2‖V ‖L∞(Ω)‖∇(R−K∗)+‖L2(Ω).

The second is handled in the following way:

(3.10) ‖V · ∇α2
H1

0
‖L2(Ω)‖(R−K∗)+‖L2(Ω)

≤ S0H‖V ‖L∞(Ω)‖∇(R−K∗)+‖L2(Ω).

Thus, we get

(3.11) ‖∇(R−K∗)+‖L2(Ω) ≤
S0

ν
(|Ω|1/2 +H)‖V ‖L∞(Ω).

The same bound is obtained for

(3.12) (R−K∗)− = min{R−K∗, 0}
with

(3.13) K∗ = inf
x∈∂Ω

(2χ− f/ν)V · τ.

Thus

(3.14) ‖∇(R−K∗)−‖L2(Ω) ≤
S0

ν
(|Ω|1/2 +H)‖V ‖L∞(Ω).

Next, we find an estimate for the solution of (3.3)3,4,5, analogous
to (1.27):

(3.15) ‖V ‖C(Ω) ≤ A(Ω)

· (‖∇(R−K∗)−‖L2(Ω) + ‖∇(R−K∗)+‖L2(Ω) + max{|K∗|, |K∗|})‖V ‖C(Ω).

Applying (3.4), (3.11), (3.13) and (3.14), we get

(3.16) ‖V ‖C(Ω) ≤ A(Ω)
(
S0

ν
(|Ω|1/2 +H) + ‖2χ− f/ν‖L∞(∂Ω)

)
‖V ‖C(Ω).
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Thus V is zero if

(3.17) A(Ω)
(
S0

ν
(|Ω|1/2 +H) + ‖2χ− f/ν‖L∞(∂Ω)

)
< 1,

which is (1.38).
Note that the above condition depends on |Ω|. It is possible to remove

this dependence by localization of problem (3.3). The next result provides
different information, independent of |Ω|. It follows by applying the standard
energy method.

Using the same notation as for (3.3), from (1.1) and (1.2) we get

(3.18)

v1 · ∇V − ν∆V +∇P = −V · ∇v2 in Ω,

div V = 0 in Ω,

n ·T(V, P ) · τ + fV · τ = 0 on ∂Ω,

n · V = 0 on ∂Ω.

Multiplying (3.18)1 by V , remembering that

(3.19) −ν∆V +∇P = −div T(V, P ),

we get

(3.20)
�

Ω

v1∇V V dx+ν
�

Ω

|D(V )|2 dx+
�

∂Ω

f(V ·τ)2 dσ = −
�

Ω

V ·∇v2V dx,

hence

(3.21) ν
�

Ω

|D(V )|2 dx+
�

∂Ω

f(V ·τ)2 dσ ≤
�

∂Ω

|d| |V |2 dσ+
�

Ω

|v2| |V | |∇V | dx.

The first term of the r.h.s. of (3.21) can be estimated as follows:

(3.22)
�

∂Ω

|d| |V |2dσ ≤ ‖d‖L∞(∂Ω)‖V ‖2L2(∂Ω) ≤ B2
1‖d‖L∞(∂Ω)‖V ‖2H1(Ω),

where the constant B1 comes from the trace theorem (see Lemma 2.1).
By Lemma 2.2 we get

(3.23)
�

∂Ω

|d| |V |2dσ ≤ B2
1B

2
2(1 +H)2‖d‖L∞(∂Ω)‖D(V )‖2L2(Ω).

The second term is estimated as follows:

(3.24)
�

Ω

|v2| |V | |∇V |dx ≤ B2
2(1 +H)2S0‖D(V )‖2L2(Ω).

Thus, we get

(3.25) ‖D(V )‖2L2(Ω) ≤
B2

2(1 +H)2

ν
(B2

1‖d‖L∞(∂Ω) + S0)‖D(V )‖L2(Ω).
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This yields the uniqueness of solutions if

(3.26)
B2

2(1 +H)2

ν
(B2

1‖d‖L∞(∂Ω) + S0) < 1,

which is (1.39).

4. Expansion of the solution. In this section we investigate the struc-
ture of the unique solutions. By Theorem B, we restrict our attention to
small data.

The first component of the expansion of the velocity will be a vector D,
defined as a solution to the problem

(4.1)

rotD = 0 in Ω,

divD = 0 in Ω,

n · D = d on ∂Ω.

Lemma 4.1. Let d ∈ W 1
∞(∂Ω). Then there exists a unique solution of

problem (4.1) such that D ∈W 1
p (Ω) for any 2 < p <∞ and

(4.2) ‖D‖W 1
p (Ω) ≤ c(Ω, p)‖d‖W 1

∞(∂Ω).

In particular , if 0 < a < 1− 2/p, then

(4.3) ‖D‖Ca(Ω) ≤ c(Ω, p)‖d‖W 1
∞(∂Ω).

Proof. Since our domain is simply connected, by (4.1)2 and the Poincaré
Lemma there exists a scalar function (stream function) ϕ0 such that

(4.4) D = (−∂x2ϕ0, ∂x1ϕ0).

By (4.1)3 and (4.4) we get

(4.5) n · D =
d

ds
ϕ0 = 0,

where s is the arc length parameter of the curve ∂Ω. Since ϕ0 is defined up
to a constant we obtain the elliptic problem

(4.6)
∆ϕ0 = 0 in Ω,

ϕ0|∂Ω = b on ∂Ω,

where

(4.7) b(s) =
s�

s0

d(t) dt

for a fixed point s0 ∈ ∂Ω and b(s0) = 0.
By the assumptions,

(4.8) b ∈W 2
∞(∂Ω), ‖b‖W 2

∞(∂Ω) ≤ c‖d‖W 1
∞(∂Ω).
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Problem (4.6) is ill posed in the L∞-space. Therefore we embed W 2
∞(∂Ω)

into W 2
p (∂Ω) for sufficiently large finite p (2 < p < ∞). Moreover, to

avoid unnecessary complications we embed W 2
p (∂Ω) into the trace space

W
2−1/p
p (∂Ω), i.e.

(4.9) W 2
p (∂Ω) ⊂W 2−1/p

p (∂Ω), ‖b‖
W

2−1/p
p (∂Ω) ≤ c‖b‖W 2

p (∂Ω).

Then the standard theory [1, 2] for the Laplace operator (Lemma 2.3) yields

(4.10) ‖ϕ0‖W 2
p (Ω) ≤ c(Ω)‖d‖

W
2−1/p
p (∂Ω).

Then from definition (4.4) and the imbedding theorems we get (4.2) and
(4.3). Lemma 4.1 is proved.

Next, we study the behavior of the vorticity. Linearization of the vorticity
problem yields

(4.11)
−ν∆α0 = rotF in Ω,

α0|∂Ω = −2d,s on ∂Ω.

Lemma 4.2. Let F ∈ L2(Ω) and d,s ∈ L∞(∂Ω). Then there exists a
unique solution of problem (4.11) such that

(4.12) α0 ∈ L∞(Ω) +H1
0 (Ω)

and

(4.13) ‖α0‖L∞(Ω)+H1
0 (Ω) ≤ c

(
‖d,s‖L∞(∂Ω) +

1
ν
‖F‖L2(Ω)

)
.

Proof. To obtain (4.13) we repeat the method used for (1.26). Multiply
(4.11)1 by

(4.14) (α0 − k∗)+ = max{α0 − k∗, 0}
with

(4.15) k∗ = sup
x∈∂Ω

−2d,s

and integrate over Ω to get

(4.16) ‖∇(α0 − k∗)+‖L2(Ω) ≤
1
ν
‖F‖L2(Ω).

The same holds for the negative part of α0 with k∗ = infx∈∂Ω −2d,s. This
way we get (4.13). Lemma 4.2 is proved.

As we see, the term α0 gives a new term to the velocity expansion of the
same order as D. Hence again we study the velocity problem. Examine the
system

(4.17)

rotu0 = α0 in Ω,

div u0 = 0 in Ω,

n · u0 = 0 on ∂Ω.
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Lemma 4.3. Let α0 be as in Lemma 4.2. Then there exists a unique
solution to problem (4.17) such that u0 ∈ Ca(Ω) and

(4.18) ‖u0‖Ca(Ω) ≤ c‖α0‖L∞(Ω)+H1
0 (Ω).

To prove the above result it is enough to repeat the proof of Lemma 4.1,
remembering that H1

0 (Ω) ⊂ Lp(Ω) for any p <∞ if dim Ω = 2.

We now decompose the velocity using D and u0 as follows:

(4.19) v = D + u0 + u,

and the vorticity as

(4.20) α = α0 + β.

Lemma 4.4. Let D, u0 and α0 be as in Lemmas 4.1–4.3. Then

(4.21)
‖v − (D + u0)‖Ca(Ω) ≤ S2‖α0‖L∞(Ω)+H1

0 (Ω),

‖α− α0‖L∞(Ω)+H1
0 (Ω) ≤ S2‖α0‖L∞(Ω)+H1

0 (Ω).

Proof. Subtraction of (1.11), (1.14) and (4.11) gives

(4.22)
v · ∇β − ν∆β = −v · ∇α0 in Ω,

β = (2χ− f/ν)u · τ on ∂Ω.

We handle problem (4.22) just as in the uniqueness issue to obtain the bound

(4.23) ‖β‖L∞(Ω)+H1
0 (Ω)

≤ S1‖α0‖L∞(Ω)+H1
0 (Ω) + ‖2χ− f/ν‖L∞(∂Ω)‖u‖C(Ω).

To get information about the velocity, note that the perturbation u satisfies

(4.24)

rotu = β in Ω,

div u = 0 in Ω,

n · u = 0 on ∂Ω.

Using Lemma 4.3 we conclude that

(4.25) ‖u‖Ca(Ω) ≤ A(Ω)‖β‖L∞(Ω)+H1
0 (Ω).

Thus we get

(4.26) ‖β‖L∞(Ω)+H1
0 (Ω)

≤ (1− A(Ω)‖2χ− f/ν‖L∞(∂Ω))
−1S1‖α0‖L∞(Ω)+H1

0 (Ω)

and

(4.27) ‖u‖Ca(Ω)

≤ A(Ω)(1−A(Ω)‖2χ− f/ν‖L∞(∂Ω))
−1S1‖α0‖L∞(Ω)+H1

0 (Ω).

Lemma 4.4 is proved.
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Next, we want to construct a higher order approximation of the solutions.
Set

(4.28)
v = vk + u = u0 + u1 + · · ·+ uk + u,

α = αk + β = β0 + β1 + · · ·+ βk + β,

where u0 = D+u0 and β0 is defined by Lemma 4.4, and uk and β for k ≥ 1
are solutions to the following problem:

(4.29)

vk−1 · ∇βk − ν∆βk = −uk−1 · ∇αk−1 in Ω,

βk = (2χ− f/ν)uk · τ on ∂Ω,

rotuk = βk in Ω,

div uk = 0 in Ω,

n · uk = 0 on ∂Ω.

Lemma 4.5. The solutions of (4.29) satisfy

(4.30)
‖uk‖Ca(Ω) + ‖βk‖L∞(Ω)+H1

0 (Ω) ≤ Ξk,
‖v − vk‖Ca(Ω) + ‖α− αk‖L∞(Ω)+H1

0 (Ω) ≤ BΞk+1.

Proof. Just as for (1.26), we find estimates for βk and vk:

(4.31) ‖βk‖L∞(Ω)+H1
0 (Ω) ≤ B‖uk−1αk−1‖L2(Ω) ≤ Ξk−1BS0.

Hence

(4.32) ‖uk‖Ca(Ω) ≤ AΞk−1BS0.

From (4.31) and (4.32) we deduce (4.30)1.
To show bounds on the errors note that summing systems (4.29) over

k = 0, 1, . . . ,m we get

(4.33)

vm−1 · ∇αm − ν∆αm = 0 in Ω,

αm = (2χ− f/ν)vm · τ − 2d,s on ∂Ω,

rot vm = αm in Ω,

div vm = 0 in Ω,

n · vm = d on ∂Ω.

Then subtracting (1.11), (1.14) and (1.15) from (4.33) we obtain

(4.34)

vm−1 · ∇β − ν∆β = −u · ∇α− um · ∇α in Ω,

β = (2χ− f/ν)u · τ on ∂Ω,

rotu = β in Ω,

div u = 0 in Ω,

n · u = 0 on ∂Ω.



Flows through pipe-like domains 471

Estimating solutions of (4.34) we obtain

(4.35) ‖β‖L∞(Ω)+H1
0 (Ω) ≤ ‖2χ− f/ν‖L∞(∂Ω)‖u‖C(Ω) +B‖um · ∇α‖L2(Ω);

but again

(4.36) ‖u‖C(Ω) ≤ A(Ω)‖β‖L∞(Ω)+H1
0 (Ω),

which implies (since A(Ω)‖2χ− f/ν‖L∞(∂Ω) < 1)

(4.37) ‖β‖L∞(Ω)+H1
0 (Ω) ≤ B‖um · ∇α‖L2(Ω).

Thus

(4.38) ‖β‖L∞(Ω)+H1
0 (Ω) ≤ BΞm‖∇α‖L2(Ω).

Solving (4.34)3,4,5 we get

(4.39) ‖u‖Ca(Ω) ≤ BΞm+1.

Theorem C is proved.
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