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FROM ISOTONIC BANACH FUNCTIONALS
TO COHERENT RISK MEASURES

Abstract. Coherent risk measures [ADEH], introduced to study both
market and nonmarket risks, have four characteristic properties that lead
to the term “coherent” present in their name. Coherent risk measures re-
garded as functionals on the space L∞(Ω,F ,P) have been extensively stud-
ied [De] with respect to these four properties. In this paper we introduce
CRM functionals, defined as isotonic Banach functionals [Al], and use them
to characterize coherent risk measures on the space L∞(Ω,F ,P) as order
opposites of CRM functionals. The characterization involves only three ax-
ioms and leaves room for a larger class of functionals that can be related to
a larger class of possible risks. We show that every CRM functional, when
restricted to constant functions, is represented by a convex real function
on R which is linear for nonnegative and nonpositive arguments separately.
Next, we show that those CRM functionals which are extensions of the map
R 3 t 7→ βt ∈ R, with β > 0, are represented as maxima over a set of
positive linear extensions.

1. Introduction. Let (Ω,F ,P) denote a fixed probability space, and
L∞(Ω,F ,P) be the Banach space of all (equivalence classes of) real-valued
bounded measurable functions with the essential supremum norm, denoted
by ‖ · ‖∞. Its (topological) dual is the Banach space ba(Ω,F ,P) of all real-
valued finitely additive measures µ on the measurable space (Ω,F) with the
property that P(A) = 0 implies µ(A) = 0. The norm of any µ in this space
is given by its total variation [YH], [Al], [Gr], [Bo]. For brevity, we will refer
to these spaces as L∞(P) or just L∞, and respectively ba(P) or just ba. A
coherent risk measure [De] is a map % : L∞(Ω,F ,P)→ R that satisfies the
following four conditions:
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(1.1) If X ≥ 0 then %(X) ≤ 0 for all X ∈ L∞(P).
(1.2) %(X + Y ) ≤ %(X) + %(Y ) for all X,Y ∈ L∞(P).
(1.3) %(λX) = λ%(X) for all λ ≥ 0 and all X ∈ L∞(P).
(1.4) %(X + α) = %(X)− α for all X ∈ L∞(P) and all scalars α ∈ R.

We are going to characterize coherent risk measures in terms of isotonic
Banach functionals and extensions of positive linear functionals, and in order
to do so we shall require the following definitions.

Definition 1.1. Given a map F : L∞(P)→ R, we say that a real-valued
function ϕ : R→ R is a scalar base of F if

(SBF) ϕ(α) = F (α1) for all α ∈ R,
where 1 denotes the constant function equal to 1 for every ω ∈ Ω.

Definition 1.2. Given two maps κ, λ : L∞(P) → R, we say that λ is
the order opposite of κ if

(1.5) λ(X) = κ(−X) for all X ∈ L∞(P).

Corollary 1.1. The map λ is the order opposite of κ iff κ is the order
opposite of λ.

The identity (SBF) means that the function ϕ is the restriction of the
functional F to the subspace of constant functions in L∞(P). It will turn
out that coherent risk measures are determined to a large degree by scalar
bases of their order opposites.

Proposition 1.1. Let % : L∞(P) → R be a coherent risk measure and
L% be its order opposite. Then the functional L% satisfies the following four
conditions:

(1.1′) If X ≤ 0 then L%(X) ≤ 0 for all X ∈ L∞(P).
(1.2′) L%(X+Y ) ≤ L%(X)+L%(Y ) for all X,Y ∈ L∞(P) (subadditivity).
(1.3′) L%(λX) = λL%(X) for all λ ≥ 0 and all X ∈ L∞(P) (positive

homogeneity).
(1.4′) L%(X + α) = L%(X) + α for all X ∈ L∞(P) and all scalars α ∈ R.

Proof. Obvious.

Proposition 1.2. Let L : L∞(P) → R satisfy conditions (1.1′)–(1.4′)
and %L be its order opposite. Then the functional %L is a coherent risk mea-
sure.

Proof. Obvious.

Proposition 1.3. Let L : L∞(P) → R be a functional that satisfies
conditions (1.1′)–(1.4′). Then

(1.6) L(0) = 0.
(1.7) L(α) = α for any constant function α.



Coherent risk measures 429

(1.8) L(X − L(X)) = 0.
(1.9) 0 ≤ X implies 0 ≤ L(X).
(1.10) X ≤ Y implies L(X) ≤ L(Y ).
(1.11) α ≤ X ≤ β implies α ≤ L(X) ≤ β.
(1.12) |L(X − Y )| ≤ ‖X − Y ‖∞.
(1.13) |L(X)− L(Y )| ≤ ‖X − Y ‖∞.

Proof. First, (1.6) follows from (1.3′) with λ set to 0; (1.7) follows from
(1.4′) and (1.6); (1.8) follows from (1.7) and (1.4′); (1.9) follows from the
fact that 0 ≤ X implies −X ≤ 0 and that 0 = L(X−X) ≤ L(X)+L(−X) ≤
L(X).

Regarding (1.10), clearly X ≤ Y implies X − Y ≤ 0, and so

(1.14) L(X) = L((X − Y ) + Y ) ≤ L(X − Y ) + L(Y ) ≤ L(Y ).

The property (1.11) follows directly from (1.10); (1.12) follows from (1.11)
and the fact that

−‖X‖∞ ≤ X ≤ ‖X‖∞ and − ‖X‖∞ ≤ −X ≤ ‖X‖∞, P-a.e.

Similarly, by (1.14), we have

L(X)− L(Y ) ≤ L(X − Y ) ≤ ‖X − Y ‖∞,
L(Y )− L(X) ≤ L(Y −X) ≤ ‖X − Y ‖∞.

Therefore, (1.13) also holds.

The properties (1.6)–(1.13) have their counterparts for coherent risk mea-
sures. It follows from the above that we can characterize coherent risk mea-
sures in terms of functionals that satisfy conditions (1.1′)–(1.4′) and of their
order opposites, and vice versa. Both types of functionals are subadditive
and positively homogeneous, that is, both are Banach functionals [Al, p. 92].
Both types are convex, norm continuous, and linear on constant functions.
The main difference is that coherent risk measures map the cone of positive
elements into its opposite, while their order inverses preserve the order, that
is, they are isotonic [Al, p. 503]. Since the positive (linear) functionals have
already proven to be a valid tool for exploring duality problems involving
partially ordered spaces, we choose their nonlinear counterpart as a tool to
explore the general properties of coherent risk measures.

2. Isotonic Banach functionals. We can characterize the function-
als that satisfy the conditions (1.1′)–(1.4′) with a somewhat simpler set of
conditions.

Theorem 2.1. A map L : L∞(Ω,F ,P) → R satisfies (1.1′)–(1.4′) iff it
satisfies the following three conditions:

(CRM1) If X ≤ Y then L(X) ≤ L(Y ), for all X,Y ∈ L∞(P).
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(CRM2) L(αX + βY ) ≤ αL(X) + βL(Y ) for all X,Y ∈ L∞(P) and
α, β ≥ 0.

(CRM3) L(−1) = −1 = −L(1).

Proof. First, we show that (CRM2) alone implies L(0) = 0. Setting α =
β = 0 in (CRM2), we get L(0) ≤ 0. On the other hand, setting α = β = 1
and X = Y = 0 in (CRM2), we get L(0) = L(0 + 0) ≤ L(0) + L(0), so that
0 ≤ L(0). Therefore,

(2.1) L(0) = 0 if L satisfies (CRM2).

Now, assume that L satisfies (1.1′)–(1.4′). Note that X ≤ Y implies
X − Y ≤ 0, so that

L(X) = L(X − Y + Y ) ≤ L(X − Y ) + L(Y ) ≤ L(Y ).

Thus (CMR1) holds. (CMR2) follows directly from (1.2′) and (1.3′). Setting
X = 0 in (1.4′) and using (2.1) we get (CRM3).

Conversely, assume that L satisfies (CRM1)–(CRM3). Then condition
(1.1′) follows directly from (CRM1). Setting α = β = 1 in (CRM2) we get
(1.2′).

To get (1.3′) we consider two cases. First, let λ = 0. Then, by (2.1), we
obtain

L(0 ·X) = L(0) = 0 = 0 · L(X),

that is, (1.3′) holds for λ = 0. Second, let λ > 0. Then, setting α = λ and
β = 0 in (CRM2), we get

L(λX) ≤ λL(X).

On the other hand,

L(X) = L[(1/λ)λX] ≤ (1/λ)L(λX) ≤ (1/λ)λL(X) = L(X)

so that L(X) = (1/λ)L(λX). Therefore (1.3′) holds for all λ ≥ 0.
Now, it remains to show that (1.4′) holds. Clearly, by (CRM3) and (1.3′),

for arbitrary α ∈ R we have L(α) = α. Next, for every X ∈ L∞(P) and
constant function α,

L(X + α) ≤ L(X) + L(α) = L(X) + α.

On the other hand,

L(X) + α = L[(X + α)− α] + α ≤ L(X + α) + L(−α) + α = L(X + α).

Therefore, L(X + α) = L(X) + α, that is, (1.4′) holds. This completes the
proof.

Corollary 2.1. A map L : L∞(P) → R satisfies (CRM2) iff it is a
Banach functional.
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The condition (CRM1) means that the functional L is isotonic [Al,
p. 503]. The condition (CRM2) means that it is positively sublinear, or
a Banach functional, and (CRM3) assigns specific values to the constant
functions 1 and −1, respectively.

Following the above characterization, we adopt the following definition.

Definition 2.1. A map L : L∞(P) → R is a CRM functional if it
satisfies the following conditions:

(IS) If X ≤ Y then L(X) ≤ L(Y ), for all X,Y ∈ L∞(P) (isotonicity).
(BA1) L(X + Y ) ≤ L(X) + L(Y ) for all X,Y ∈ L∞(P) (subadditivity).
(BA2) L(λX) = λL(X) for all λ ≥ 0 and all X ∈ L∞(P) (positive homo-

geneity).

Corollary 2.2. A map L : L∞(P) → R is a CRM functional iff it
satisfies the conditions (CRM1) and (CRM2).

Proposition 2.1. Let L : L∞(P) → R be a CRM functional and ϕ its
scalar base. Then there are two nonnegative constants β+ and β− such that
β+ ≥ β− and

(2.2) ϕ(t) =
{
β+t if t ≥ 0,
β−t if t ≤ 0.

Proof. By (BA2), ϕ(t) = tϕ(1) for t ≥ 0. Set β+ = ϕ(1) = L(1) ≥ 0,
as 1 ≥ 0. Similarly, ϕ(t) = |t|ϕ(−1) for t ≤ 0. Moreover, since L(−1) ≤ 0,
choosing β− = −ϕ(−1) = −L(−1), we get β− ≥ 0, and (2.2) holds.

Choosing X = −1 and Y = 1, and α = β = 1, by (BA1) we get

ϕ(0) = 0 = L(−1 + 1) ≤ L(−1) + L(1) = ϕ(−1) + ϕ(1) = −β− + β+.

This ends the proof.

Corollary 2.3. The scalar base of an arbitrary CRM functional L is a
convex function ϕ : R → R such that (i) ϕ(0) = 0; (ii) ϕ is nondecreasing ;
(iii) ϕ is linear on the infinite intervals (−∞, 0] and [0,∞) (separately).

The behaviour of CRM functionals on the subspace of constant functions
determines to a large degree the functionals themselves, as illustrated by the
following.

Proposition 2.2. Let L : L∞(P) → R be a CRM functional. Assume
that L(α0) = 0 for a nonzero scalar α0. Then

L(X) = 0 for all X ∈ L∞(P) if α0 > 0,(2.3)

L(X) = 0 for all X ∈ L∞(P) such that X ≤ 0 if α0 < 0.(2.4)

Proof. Let ϕ denote the scalar base of L, with the corresponding con-
stants β+ ≥ β− ≥ 0. If α0 > 0, then β+α0 = 0, so that β+ = 0, and conse-
quently L(t1) = ϕ(t) = 0 for all scalars t. Therefore, for every X ∈ L∞(P),
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we have −‖X‖∞ ≤ X ≤ ‖X‖∞, and so

0 = L(−‖X‖∞) ≤ L(X) ≤ L(‖X‖∞) = 0,

which proves (2.3).
If α0 < 0, then β−α0 = 0, so that β− = 0, and consequently L(t1) =

ϕ(t) = 0 for all nonpositive scalars t. Therefore, for every nonpositive X ∈
L∞(P), we have −‖X‖∞ ≤ X ≤ 0, and so 0 = L(−‖X‖∞) ≤ L(X) ≤ 0,
which proves (2.4).

Of course, every positive linear functional l : L∞(P) → R is a CRM
functional. A less trivial example is given by the following.

Example 2.1. Let l1, l2 : L∞(P)→ R be two positive linear functionals.
Define a functional L : L∞(P)→ R as follows:

(2.5) L(X) = max(l1(X), l2(X)) for X ∈ L∞(P).

The functional (2.5) is isotonic since X ≤ Y implies that

L(X) = max(l1(X), l2(X)) ≤ max(l1(Y ), l2(Y )) = L(Y ).

It is also subadditive since for any X,Y ∈ L∞(P), we have

L(X + Y ) = max(l1(X + Y ), l2(X + Y ))

= max(l1(X) + l1(Y ), l2(X) + l2(Y ))

≤ max(l1(X), l2(X)) + max(l1(Y ) + l2(Y ))

= L(X + Y ).

Its positive homogeneity is obvious, so L is indeed a CRM functional.

Let CRM(P) denotes the set of all CRM functionals on L∞(P). It can be
regarded as a subset of the ordered linear space Map(L∞(P),R) of all real-
valued functions L∞(P)→ R, with the standard operations and partial order
defined by the cone of positive functions (that is, all nonnegative mappings
from L∞(P) into R). Then it is clear that the set CRM(P) is closed with
respect to (i) addition; (ii) multiplication by nonnegative constants; and (iii)
the operation of taking a maximum. That is, we have the following.

Proposition 2.3. (i) CRM(P) + CRM(P) ⊂ CRM(P).
(ii) λCRM(P) ⊂ CRM(P) for every λ ≥ 0.
(iii) F,G ∈ CRM(P)⇒ max(F,G) ∈ CRM(P).

The last proposition says that the set of all CRM functionals on L∞(P)
is a convex cone which is closed with respect to the maximum operation.
Actually it is closed with respect to taking the supremum of any collection of
CRM functionals provided the supremum is finite for all elements of L∞(P).
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Proposition 2.4. Let {fα}α∈A be a subset of CRM(P) bounded from
above by a functional g : L∞(P)→ R. Then the functional defined by

f(X) = sup{fα(X) | α ∈ A} for X ∈ L∞(P)

is also a CRM functional.

Proof. This follows directly from the definition and from the properties
of the supremum.

By the Hahn–Banach like arguments, the converse is also true for CRM
functionals whose scalar base is a (positive) linear functional on the set of
real numbers.

First, we will prove the following fact.

Theorem 2.2. Let F : L∞(P) → R be a CRM functional with a linear
scalar base. Then for every X0 ∈ L∞(P) there exists a linear CRM functional
L : L∞(P)→ R such that

L(X0) = F (X0),(2.6)

L(X) ≤ F (X) for all X ∈ L∞(P).(2.7)

Proof. If X0 = 0, or F = 0, the conclusion trivially holds, so assume
that X0 6= 0, and that F is nontrivial. Assume also, for simplicity, that
F (1) = −F (−1) = 1.

Next, consider the subspace Y0 of L∞(P) spanned by the elements X0

and 1. Let l0 : Y0 → R be the linear functional defined as follows:

(2.8) l0(αX0 + β1) = αF (X0) + β for α, β ∈ R.
Then, of course, l0(1) = 1 and l0(X0) = F (X0).

Now we show that the functional (2.8) is positive. So, let α, β ∈ R be
such that αX0 + β1 ≥ 0. Then for α ≥ 0 we have

(2.9) l0(αX0 + β1) = αF (X0) + β = F (αX0) + β = F (αX0 + β1) ≥ 0.

Next, for α < 0 we have

X0 +
β

α
1 ≤ 0,

so that

F (X0) +
β

α
≤ 0,

and thus 0 ≤ αF (X0) + β = l0(αX0 + β1).
Now, we will show that l0 is bounded by F on Y0. Let αX0 + β1 ∈ Y0.

For α ≥ 0 we have, by (2.9),

l0(αX0 + β1) = F (αX0 + β1) ≤ F (αX0 + β1).
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For α < 0 we have

l0(αX0 + β1) = αF (X0) + β =
α

|α|F (|α|X0) + β

= −F (|α|X0) + β ≤ F (−|α|X0) + β = F (αX0 + β1).

Therefore, by the Hahn–Banach theorem, there exists a linear extension of
l0, say L, to all of L∞(P), such that

L(X) ≤ F (X) for all X ∈ L∞(P).

Thus, it remains to show that the functional L is positive. So, let X ∈
L∞(P) and let 0 ≤ X. Then −X ≤ 0 and

(2.10) L(−X) ≤ F (−X) ≤ 0.

This implies that

(2.11) 0 ≤ −F (−X) ≤ L(X).

Therefore, the functional L is positive, and thus it is a CRM functional.

Looking at (2.10) and (2.11) we can see that in proving the positivity of
L we have only used the fact that L is bounded by the CRM functional F .
This leads to the following remarkable and unexpected fact.

Corollary 2.3. Every linear functional bounded by a CRM functional
is a CRM functional.

Now, we can prove the announced theorem on maximization of a CRM
functional with a linear scalar base by positive linear functionals it bounds
from above.

Theorem 2.3. If F : L∞(P)→ R is a CRM functional such that F (1) =
−F (−1) = κ > 0, then there is a convex set L of positive linear functionals
such that

L ≤ F,(2.12)

µ ∈ L ⇒ µ(1) = κ,(2.13)

F (X) = max{µ(X) | µ ∈ L}.(2.14)

Proof. We can assume that κ = 1. Otherwise we would consider the
functional F ′ given by F ′(X) = F (X/κ). Define L to be the set of all positive
linear extensions of the scalar base of the functional F to all of L∞(P), and
bounded from above by F . The set L is nonempty by Theorem 2.2. By
definition, it satisfies (2.12).

It is convex, since for any µ, ν ∈ L, and for any a, b ≥ 0 such that
a+ b = 1, we get

(aµ+ bν)(1) = aµ(1) + bν(1) = aκ+ bκ = (a+ b)κ = κ.



Coherent risk measures 435

Also, it follows from Theorem 1.2 that

F (X) ≤ sup{µ(X) | µ ∈ L},
since for every X ∈ L∞(P), there is µ0 ∈ L such that F (X) = µ0(X).

On the other hand, for every X ∈ L∞(P) and µ ∈ L, µ0(X) ≤ F (X), so

F (X) ≥ sup{µ(X) | µ ∈ L},
and thus (2.14) holds, because by (2.6) we can replace sup by max. This
ends the proof.

Corollary 2.4. The set L in Theorem 2.3 is σ(ba, L∞)-closed.

Proof. By definition,

L = {µ ∈ ba(P) | µ(1) = κ, 0 ≤ µ} (where κ ≥ 0 is fixed).

Thus L is a weakly closed and convex subset of the (weakly) closed and
convex cone of positive elements in ba(P).

Theorem 2.3 has its counterpart for coherent risk measures.

Theorem 2.4 [De]. Given a coherent risk measure % : L∞(P)→ R, there
is a convex σ(ba, L∞)-closed set Pba ⊂ ba of finitely additive probabilities
such that

%(X) = sup{〈−X,µ〉 | µ ∈ Pba},
where

〈X,µ〉 = µ(X) =
�

Ω

X dµ for all X ∈ L∞(P) and µ ∈ ba.

3. Conclusions. In our formulation of Theorem 2.3 we concentrated on
positivity and convexity of the set L of positive linear extensions of the scalar
base of the functional F and skipped the fact that it is σ(ba, L∞)-closed,
but it clearly is, by Corollary 2.4.

The considerable role played by the constant functions was demonstrated
by Proposition 2.2. One can anticipate that many of the results obtained
hold in linear lattices that have an analog of the space of constant functions.
This problem and the problem of characterization of CRM functionals with
arbitrary scalar bases will be dealt with in another publication.
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