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Γ -MINIMAX SEQUENTIAL ESTIMATION
FOR MARKOV-ADDITIVE PROCESSES

Abstract. The problem of estimating unknown parameters of Markov-
additive processes from data observed up to a random stopping time is
considered. To the problem of estimation, the intermediate approach be-
tween the Bayes and the minimax principle is applied in which it is assumed
that a vague prior information on the distribution of the unknown param-
eters is available. The loss in estimating is assumed to consist of the error
of estimation (defined by a weighted squared loss function) as well as a cost
of observing the process up to a stopping time. Several classes of optimal
sequential procedures are obtained explicitly in the case when the avail-
able information on the prior distribution is restricted to a set Γ which is
determined by certain moment-type conditions imposed on the prior distri-
butions.

1. Introduction. Let (A(t),X(t)), t ≥ 0, (the time parameter t is
continuous) be a Markov-additive process with state space R × I, where
I = {1, . . . ,m}. It is assumed that the conditional distribution of A(t)−A(s),
given X(u) = i for all u ∈ [s, t], is given by the density

exp[υix− fi(υi)(t− s)]
with respect to a σ-finite measure which may depend on the state i in
general, and υi is a real parameter, υi ∈ Υi ⊆ R. This means that the
sojourn time distributions belong to one-dimensional exponential families.
Let (λij)mi,j=1 be the transition intensity matrix of the embedded m-state
Markov chain X(t).

The model of processes considered covers a class of Markov-additive pro-
cesses which have important applications to queueing and data communi-
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cation models. They are used to model queueing-reliability systems, arrival
processes in telecommunication networks, environmental data, neural im-
pulses etc. A particularly important class of Markov-additive processes is
the class of Markov-additive processes (A(t),X(t)) of arrivals, i.e., those
with the additive component A(t) taking values in the set of nonnegative
integers. A typical example is that of arrivals in a queueing system.

Sequential estimation procedures of the form δ = (τ, d(τ)) will be con-
sidered, where τ is a stopping time and d(τ) is an estimator based on
the observation of the process up to τ . The parameter ϑ = (λij , i, j =
1, . . . ,m; υ1, . . . , υm) of the Markov-additive process considered is unknown
and the problem is to find optimal sequential procedures, i.e., optimal stop-
ping times τ and the corresponding sequential estimators d(τ) for ϑ. It is
supposed that if the observation is stopped at time τ and the estimate d(τ)
is reported, then the loss incurred is

Lτ (ϑ, d(τ)) = L(ϑ, d(τ)) + c(τ),

where L(ϑ, d(τ)) denotes the loss function (representing the error of estima-
tion) and c(τ) is the cost function. The loss function is defined by a weighted
squared error loss. The cost for a given procedure is determined by a func-
tion of one of the components of the Markov-additive process; for example,
it is the cost depending on arrivals at a queueing system up to the moment
of stopping.

Let π be a prior distribution on Θ. Then the Bayes risk of the sequential
procedure δ = (τ, d(τ)) is

R(π, δ) =
�

Θ

Eϑ[Lτ (ϑ, d(τ))] dπ(ϑ).

If there is precise prior information on the distribution of the unknown
parameter ϑ which can be described by a prior π, then usually the Bayes
principle is used. If on the other hand no prior information is available, then
the minimax principle can be applied. In this paper, to find optimal sequen-
tial estimation procedures, an intermediate approach between the Bayes and
the minimax principle is chosen. The use of the Γ -minimax principle is ap-
propriate if vague prior information is available which can be described by
a subset Γ of the set Π of all priors. The problem is to find stopping times
τ and the corresponding sequential estimators d(τ) subject to the minimax
criterion: a sequential procedure δ0 = (τ0, d0) is said to be Γ -minimax if

sup
π∈Γ
R(π, δ0) = inf

δ∈D
sup
π∈Γ
R(π, δ),

i.e., if it minimizes the maximum of the total Bayes sequential risk when
the set of prior distributions of the unknown parameter is restricted to a
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subset Γ of all priors. D is the class of all sequential procedures δ having
finite Bayes risk for each π ∈ Γ .

The set Γ is determined by certain moment-type conditions imposed
on the prior distributions. The idea and tools are exhibited to obtain Γ -
minimax sequential procedures for estimating important quantities of the
unknown parameters of the Markov-additive process. As one of the tools for
solving the problem, a minimax theorem, which is a considerable general-
ization of a theorem of Dvoretzky, Kiefer and Wolfowitz (1953), is provided
for a general class of stochastic processes and a wide class of stopping times.

Several classes of Γ -minimax sequential procedures for estimating the
unknown parameters of the Markov-additive process are presented. For ex-
ample, a class of Γ -minimax sequential procedures is derived explicitly in
the case when for a fixed state i the ratios of λij , j = 1, . . . ,m, j 6= i, to
f ′i(υi) are of interest. In particular, the results presented are applicable to
the Markov-additive processes of arrivals most frequently appearing in the
literature, i.e., to the Markov-modulated Poisson processes.

The results obtained constitute a generalization of the results given by
Magiera (1999).

2. The model and sampling times. Set I = {1, . . . ,m}. In accor-
dance with the definition given by Pacheco and Prabhu (1995), a process
(A(t),X(t)), t ≥ 0, with the continuous time parameter t, on the state space
R× I is said to be a Markov-additive process if

1) (A(t),X(t)), t ≥ 0, is a Markov process;
2) the conditional distribution of (A(s + t) − A(s),X(s + t)), given

(A(s),X(s)), depends only on X(s).

The basic theory of Markov-additive processes is presented by Çinlar
(1972), Ezhov and Skorokhod (1969), and Prabhu (1991), where a more
general state space for X(t) is considered. Recall (see Pacheco and Prabhu
(1995)) the most important properties of these processes. The transition
probability measure of a Markov-additive process is given by

(1) P (A(s+ t) ∈ B, X(s+ t) = j |A(s) = y, X(s) = i)

= P (A(s+ t)− A(s) ∈ B − y, X(s+ t) = j |X(s) = i)

for s, t > 0, i, j ∈ I, y ∈ R and B ∈ BR, where BR is the σ-algebra of Borel
subsets of R. Since (A(t),X(t)), t ≥ 0, is Markov, it follows from (1) that
the component X(t) is Markov and that A(t) has conditionally independent
increments, given X(t). For 0 ≤ t1 ≤ . . . ≤ tn, n > 2, the increments

A(t1)− A(0), A(t2)−A(t1), . . . , A(tn)− A(tn−1)

are conditionally independent given X(0),X(t1), . . . ,X(tn). The process
A(t), which is, in general, not Markovian is called the additive component
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of the Markov-additive process. Markov renewal processes are discrete time
versions of Markov-additive processes with the additive component taking
values in R+.

Markov-additive processes of arrivals (i.e. ones for which A(t) has the
state space {0, 1, 2, . . .}) were studied by Pacheco and Prabhu (1995). An
important special case is the Markov-modulated Poisson process in which
the rate λ of occurrence of Poisson events changes instantaneously with the
change of state in X(t). A survey of possible applications of Markov-additive
processes of arrivals can be found in Pacheco and Prabhu (1995). For ex-
ample, these processes have been used to model overflow from trunk groups,
superpositioning of packeted voice streams, and input to Asynchronous
Transfer Mode networks, which will be used in high-speed communication
networks. Using Markov-additive processes, some theoretical queueing re-
sults were established by Neuts (1992).

Although there is a vast literature on Markov-additive processes and
their use in modelling many stochastic phenomena, the statistical issues for
these processes have not been the subject of much study. Nonparametric and
Bayesian estimation for Markov renewal processes was considered by Gill
(1980) and Phelan (1990 a,b). Some problems of parameter estimation for
Markov-modulated Poisson processes were treated by Rydén (1994). Asymp-
totic normality of sequential and nonsequential maximum likelihood estima-
tors for Markov renewal and Markov-additive processes was established by
Stefanov (1995). A sequential estimation scheme based on “small” samples
was considered by Fygenson (1991), where efficient (optimal in the sense of
the Cramér–Rao–Wolfowitz lower bound) sequential procedures were inves-
tigated for Markov renewal processes.

In this paper we consider the problem of finding optimal, under minimax
criterion, sequential procedures for estimating the parameters of Markov-
additive processes in the case when the set of prior distributions of the
parameters is restricted.

Let the conditional distribution of A(t) − A(s), given X(u) = i for all
u ∈ [s, t], be given by the density

exp[υix− fi(υi)(t− s)](2)

with respect to a σ-finite measure which may depend on the state i in gen-
eral, and υi is a real parameter, υi ∈ Υi ⊂ R. Υi is assumed to be the
interior of the natural parameter space of the exponential family given by
(1). Assume that f ′i(υi) > 0 for each υi ∈ Υi. Since formula (1) implies
that the derivative f ′i(υi) is the mean value parameter of the increments for
A(t), this assumption covers the natural case of positive increments (ar-
rivals) of the additive component A(t). It is assumed that X(0) = 1 with
probability 1.
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The likelihood function corresponding to the observation of the process
up to time t has the following form (see Stefanov (1995)):

L(t, λ, υ) =
m∏

i,j=1
i6=j

λ
Nij(t)
ij exp[−Si(t)λij]

m∏

i=1

exp[Ai(t)υi − Si(t)fi(υi)](3)

=
m∏

i,j=1
i6=j

λ
Nij(t)
ij

m∏

i=1

exp{Ai(t)υi − Si(t)[λii + fi(υi)]},

where λ = (λij)mi,j=1 is the transition intensity matrix of the embedded
m-state Markov chain X(t), υ = (υ1, . . . , υm), Nij(t) is the number of tran-
sitions from state i to state j of the Markov process X(s) in the time interval
[0, t], Si(t) is the sojourn time in state i of the process X(s), and

Ai(t) =
∞∑

n=1

{[A(η∗n(i))− A(ηn(i))]1[0,∞)[t− η∗n(i)]

+ [A(t)− A(ηn(i))]1(ηn(i),η∗n(i))(t)},
where ηn(i) is the nth consecutive time of first entrance of X(s) to state i,
and η∗n(i) is the exit time from state i after ηn(i).

By the fundamental identity of sequential analysis (see Appendix), for
any finite stopping time τ the sequential version of (3) has the following form:

(4) L(τ, λ, υ)

=
m∏

i,j=1
i6=j

λ
Nij(τ)
ij exp[−Si(τ)λij ]

m∏

i=1

exp[Ai(τ)υi − Si(τ)fi(υi)]

=
m∏

i,j=1
i6=j

λ
Nij(τ)
ij

m∏

i=1

exp{Ai(τ)υi − Si(τ)[λii + fi(υi)]}

= exp
{ m∑

i,j=1
i6=j

Nij(τ) log λij +
m∑

i=1

Ai(τ)υi −
m∑

i=1

Si(τ)[λii + fi(υi)]
}
.

From the theoretical point of view (the possibility of exploiting the very
useful tools associated with exponential families), and in view of possible ap-
plicability, the most relevant stopping times which can be taken into account
in searching for optimal sequential estimation procedures are the following:

τ iJ,s = inf
{
t :
∑

j∈J
Nji(t) = s

}
, s = 1, 2, . . . ,

τ ii,s = inf{t : Si(t) = s}, s > 0,
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τ̃ ii,s = inf{t : Ai(t) = s},

τ iiJ,s = inf
{
t : Ai(t) +

∑

j∈J
Nji(t) = s

}
, s = 1, 2, . . . ,

for each i ∈ I and each J ⊆ I such that
∑

j∈J λji > 0. It is additionally
assumed that Pλ,υ(τ̃ ii,s < ∞) = 1 and Pλ,υ(τ iiJ,s < ∞) = 1 for each (λ, υ).
Considering, for example, the stopping time τ iJ,s, one should bear in mind
that the following linear dependencies for the components of N(τ iJ,s) hold
with probability 1:

(5)

∑

j∈J
Nji(τ iJ,s)− s = 0,

m∑

j=1, k 6=j
Njk(τ iJ,s)−

m∑

j=1, k 6=j
Nkj(τ iJ,s) + 1(k)(X(0))− 1(k)(X(τ iJ,s)) = 0,

k = 1, . . . ,m− 1,

where 1(k)(X(0)) equals 1 if k = 1, and 0 otherwise, whereas 1(k)(X(τ iJ,s))
equals 1 if k = i, and 0 otherwise. The class of stopping times above was
described by Stefanov (1995). By his Proposition 5.1, for each stopping
time from this class the curved (in general) exponential family of (4) be-
comes a noncurved exponential family of order equal to the dimension of
the parameter (λ, υ). The condition Pλ,υ(τ̃ ii,s < ∞) = 1 is satisfied, for ex-
ample, if the process Ai(t) is nonnegative with continuous trajectories and
Ai(t) → ∞ as t → ∞, or if the process Ai(t) is a Poisson process; in the
latter case s must be a natural number (see Remark 5.1 in Stefanov (1995)).
The condition Pλ,υ(τ iiJ,s < ∞) = 1 is satisfied, for example, in the case
of Markov-modulated Poisson processes. The stopping times τ̃ ii,s and τ iiJ,s
are new in comparison to those relevant in sequential estimation problems
for finite-state Markov processes. The stopping times τ̃ ii,s and τ ii,s will be
considered in the next section.

Considering the estimation problem for some special functions of the
unknown parameter (λ, υ) we exhibit the idea and tools for proving the
Γ -minimaxity of sequential procedures determined by the stopping times
from the class above.

3. Γ -minimax sequential procedures. Suppose that the unknown
parameter vector is λi = (λi, υi) (i fixed), where λi = (λi1, . . . , λi,i−1, λi,i+1,
. . . , λim). Then the likelihood function is

Li(τ, λi) =
m∏

j=1,j 6=i
λ
Nij(τ)
ij exp{Ai(τ)υi − Si(τ)[λii + fi(υi)]}.(6)
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3.1. It will be shown that if the ratios of λij (j = 1, . . . ,m; j 6= i)
to f ′i(υi) are of interest, then to estimate them one can use a sequential
procedure defined by the following stopping time:

τai = inf{t : Ai(t) = ai}, ai > 0,(7)

where it is additionally assumed that Pλi(τai <∞) = 1 for each λi ∈ Λi×Υi,
Λi = (0,∞)m−1. We will then show that the stopping time (7) determines
a class of Γ -minimax sequential procedures under a weighted squared error
loss and the cost depending on the value of the process Ai(t) at the moment
of stopping. In particular, for a Markov-additive arrivals process this cost
will be a function of arrivals in a queueing system. For the stopping time
τai the sequential likelihood function (6) takes the form

Li(τai , λi) =
m∏

j=1,j 6=i
λ
Nij(τai )
ij exp {aiυi − Si(τai)[λii + fi(υi)]} .(8)

The family (8) is an exponential family in which the dimension of the
sufficient statistic equals the dimension of the unknown parameter. It then
follows from the well known analytical properties of noncurved exponential
families (see Barndorff-Nielsen (1978) or Brown (1986)) that the regularity
conditions which allow one to differentiate twice under the integral sign with
respect to the parameter λi in the identity � Li(τai , λi) dµτai = 1 are satisfied
(µτ denotes a dominating measure in the fundamental identity of sequential
analysis, i.e., dPλ,τ/dµτ = L(τ, λ)—see Appendix). Thus, for the stopping
time τai the following Wald identities hold:

EλiSi(τai) =
ai

f ′i(υi)
;(9)

EλiNij(τai) = λijEλiSi(τai) =
λijai
f ′i(υi)

, j 6= i;(10)

Eλi

[ m∑

j=1, j 6=i
Nij(τai)

]
= λiiEλiSi(τai) =

λiiai
f ′i(υi)

;

Eλi{[Nij(τai)− λijSi(τai)][Nik(τai)− λikSi(τai)]} = 0,

k = 1, . . . ,m; j 6= k;

Eλi{[Nij(τai)− λijSi(τai)][ai − Si(τai)f ′i(υi)]} = 0, j 6= i;

Eλi [Nij(τai)− λijSi(τai)]2 = EλiNij(τai) =
λijai
f ′i(υi)

, j 6= i;

Eλi

[
Si(τai)−

ai
f ′i(υi)

]2

=
f ′′i (υi)

(f ′i(υi))
2EλiSi(τai) =

aif
′′
i (υi)

(f ′i(υi))
3 ;(11)
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Eλi

{[
Nij(τai)−

λijai
f ′i(υi)

][
Si(τai)−

ai
f ′i(υi)

]}
(12)

= λijEλi

[
Si(τai)−

ai
f ′i(υi)

]2

=
λijaif

′′
i (υi)

(f ′i(υi))
3 , j 6= i;

Eλi

[
Nij(τai)−

λijai
f ′i(υi)

]2

=
aiλij
f ′i(υi)

{
1 +

λijf
′′
i (υi)

(f ′i(υi))
2

}
, j 6= i.(13)

Define

w(λi) =
1
ai

[ m∑

j=1,j 6=i
VarλiNij(τai) + VarλiSi(τai)

]

=
f ′′i (υi)(

∑m
j=1,j 6=i λ

2
ij + 1) + (f ′i(υi))

2λii

(f ′i(υi))
3 ,

w1(λi) =
1
a2
i

[ m∑

j=1,j 6=i
(EλiNij(τai))

2 + (EλiSi(τai))
2
]

=

∑m
j=1,j 6=i λ

2
ij + 1

(f ′i(υi))
2 ,

S(λi) =
w1(λi)

w(λi)
=

f ′i(υi)(
∑m

j=1,j 6=i λ
2
ij + 1)

f ′′i (υi)(
∑m

j=1,j 6=i λ
2
ij + 1) + (f ′i(υi))

2λii

=
[
f ′′i (υi)
f ′i(υi)

+
f ′i(υi)λii∑m

j=1,j 6=i λ
2
ij + 1

]−1

and
%0,i = max{%i ≥ 0 : sup

λi∈Λi×Υi
%iS(λi) ≤ 1}.

In the Bayesian approach to the problem of finding optimal estimation
procedures, it is important to give a certain characterization of the prior dis-
tributions on Λi×Υi, which should be conjugate to the family (6). We assume
certain regularity conditions to hold for the exponential family of distribu-
tions of the additive component A(t) of the process considered. Namely, sup-
pose that for any %i > %0,i and βi > 0 the following conditions are satisfied:

(i1)
�

Υi

f ′′i (υi)(f ′i(υi))
2 exp[%iυi − βifi(υi)] dυi <∞,

(i2)
�

Υi

(f ′i(υi))
−1 exp[%iυi − βifi(υi)] dυi <∞,

(i3)
�

Υi

d

dυi
{[f ′′i (υi) + f ′i(υi)(%i − βif ′i(υi))] exp[%iυi − βifi(υi)]} dυi = 0.
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The natural prior distribution density of the parameter λi is proportional
to

g(λi; ri, αi) :=
m∏

j=1, j 6=i
λ
rij−1
ij exp(−riiλij)f ′i(υi) exp[αiυi − riifi(υi)],(14)

ri = (ri1, . . . , rim), and it is proper for all rij > 0, j = 1, . . . ,m, and each
αi > 0 (the integral of (14) with respect to dυi is proportional to αi/rii; for
results relating to conjugate priors for exponential families of processes see
Magiera and Wilczyński (1991)).

In solving the problem of finding Γ -minimax sequential procedures, mod-
ified priors π∗ of the parameter λi will be considered which are defined
according to the density

g∗(λi; ri, αi) = C(ri, αi)w(λi)g(λi; ri, αi).(15)

It is easy to see that under condition (i1) there exists a norming constant
C(ri, αi) such that formula (15) represents a probability distribution for all
rij > 0, j = 1, . . . ,m, and each αi > %0,i. Conditions (i2) and (i3) are
needed to derive finite posterior expected loss under the weighted squared
error defined below.

The family of priors π∗ on Λi × Υi =: Λi defined by (15) and satisfying
the conditions (i1)–(i3) will be denoted by E∗(ri, αi). Let E∗ stand for the
expectation with respect to the distribution π∗. Making use of the regularity
conditions on the family E∗(ri, αi) one can obtain the following identities:

αiE
∗
[

λij

w(λi)f ′i(υi)

]
= rijE

∗
[

1

w(λi)

]
, j 6= i,(16)

αiE
∗
[

1

w(λi)f ′i(υi)

]
= riiE

∗
[

1

w(λi)

]
(17)

and

E∗
{∑m

j=1, j 6=i[rijf
′
i(υi)− αiλij ]2 + [riif ′i(υi)− αi]2

w(λi)(f ′i(υi))
2

}
= αi.(18)

Let the loss function be defined by

L(λi, di) =
1

w(λi)

{ m∑

j=1
j 6=i

[
dij −

λij
f ′i(υi)

]2

+
[
dii −

1
f ′i(υi)

]2}
,(19)

where di = (di1, . . . , dim), and let the cost function c(·) depend only on the
value of the process Ai(t) at the moment of stopping.

In the following Theorem 1 a class of Γ -minimax sequential estimation
procedures is established in the case when a special moment condition is
imposed on the set of all prior distributions.
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Theorem 1. Let Γ be a class of all distributions π on Λi×Υi for which

E[S(λi)] = Mi(20)

with M−1
i > %0,i. If there exists a∗i such that

1

M−1
i + a∗i

+ c(a∗i ) = min
ai

[
1

M−1
i + ai

+ c(ai)
]
,

then the sequential procedure δa∗i = (τa∗i , d
0
i (τa∗i )) with τa∗i defined by (7) and

d0
i (τa∗i ) =

1

M−1
i + a∗i
× (Ni1(τa∗i ), . . . , Ni,i−1(τa∗i ), Si(τa∗i ), Ni,i+1(τa∗i ), . . . , Nim(τa∗i ))

is Γ -minimax.

Proof. Using identities (9)–(13) we find that the risk associated with
the estimation error and corresponding to a sequential procedure δai =
(τai , d

0
i (τai)) with τai defined by (7) and

d0
i (τai) =

1

M−1
i + ai

× (Ni1(τai), . . . , Ni,i−1(τai), Si(τai), Ni,i+1(τai), . . . , Nim(τai))

is

R0(λi, δai)

=
1

w(λi)

{ m∑

j=1
j 6=i

Eλi

[
Nij(τai)
%0,i + ai

− λij
f ′i(υi)

]2

+ Eλi

[
Si(τai)
%0,i + ai

− 1
f ′i(υi)

]2}

=
1

(M−1
i + ai)2

{
ai +

S(λi)
M2
i

}
.

Thus for π ∈ Γ the Bayes risk is

R0(π, δai) = E[R0(λi, δai)] =
1

M−1
i + ai

,(21)

and this Bayes risk is independent of π ∈ Γ .
Now, referring to Theorem 5 we show that the constant Bayes risk of

(21) is the limit of a sequence of posterior risks associated with a family of
prior distributions and the corresponding ai-Bayes estimators.

Let π∗ε , ε > 0, be the family of prior distributions π∗(λi; ri, αi)∈E∗(ri, αi)
with

rij = εM0,ij , j = 1, . . . ,m; αi =
1
Mi

(
1 + ε

m∑

j=1

M2
0,ij

)
,
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where

M0,ij =





E∗
[

λij

w(λi)f ′i(υi)

]
, j 6= i,

E∗
[

1

w(λi)f ′i(υi)

]
, j = i,

j = 1, . . . ,m. Using (16)–(18) we obtain

E∗[S(λi)] = E∗
[∑m

j=1, j 6=i λ
2
ij + 1

w(λi)(f ′i(υi))
2

]
= Mi,

so that π∗ε ∈ Γ .
Set Zi(t) = (Ni1(t), . . . , Ni,i−1(t), Si(t), Ni,i+1(t), . . . , Nim(t)). Let τ be

any finite stopping time with respect to Ft = σ{(Zi(s), Ai(s)), s ≤ t}, t ≥ 0.
It is easy to see that the family E∗(ri, αi) is the conjugate one. Consequently,
the posterior probability distribution π∗(λi | Zi(τ) = zi, Ai(τ) = ai) of the
parameter λi, given Zi(τ) = zi = (ni1, . . . , ni,i−1, si, ni,i+1, . . . , nim) and
Ai(τ) = ai, is determined by π∗(λi; r̃i, α̃i), where r̃i = ri+zi and α̃i = αi+ai.
Let

R̃(π∗(· |Zi(τ) = zi, Ai(τ) = ai), di(zi, ai))

=
�

Λi

L(λi, di) dπ∗(λi | Zi(τ) = zi, Ai(τ) = ai)

be the posterior risk associated with the prior π∗ and an estimator di(zi, ai).
Taking into account (16)–(18), a standard calculation shows that this risk
attains its minimum if

dij = d∗ij =





rij + nij
αi + ai

, j 6= i,

rii + si
αi + ai

, j = i.

Thus the ai-Bayes estimator d∗ε,i = (d∗ε,i1, . . . , d
∗
ε,im) for π∗ε is defined by

d∗ε,ij =





εM0,ij +Nij

M−1
i (1 + ε

∑m
j=1M

2
0,ij) + ai

, j 6= i,

εM0,ii + Si

M−1
i (1 + ε

∑m
j=1M

2
0,ij) + ai

, j = i.

The posterior risk associated with π∗ε and d∗ε is

R̃(π∗ε(· |Zi(τ) = zi, Ai(τ) = ai), d∗ε,i) =
1

M−1
i (1 + ε

∑ni
j=1M

2
0,ij) + ai

.

Thus we obtain (see formula (21))

R0(π, δai) = lim
ε→0
R̃(π∗ε(· |Zi(τ) = zi, Ai(τ) = ai), d∗ε,i).
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Now Theorem 5 with W (zi, ai) = ai for each (zi, ai), zi ∈ {1, 2, . . .}i−1

×(0,∞) × {1, 2, . . .}m−i, ai > 0, and K(ai) = 1/(M−1
i + ai) yields the

desired result.

In the following Theorem 2 the Γ -minimax sequential estimation proce-
dure is presented in the case when the prior information on the parameter
(λi, υi) is determined by three special moment conditions for this parameter.

Theorem 2. Let Γ be the class of all distributions π of the parameter
(λi, υi) for which

E

[
λij

w(λi)f ′i(υi)

]
= M0,ij , j 6= i; E

[
1

w(λi)f ′i(υi)

]
= M0,ii,

E

[
λ2
ij

w(λi)(f ′i(υi))
2

]
= M1,ij , j 6= i; E

[
1

w(λi)(f ′i(υi))
2

]
= M1,ii,

E

[
1

w(λi)

]
= M2,i,

with M i :=
∑m

j=1(M1,ijM2,i−M2
0,ij) > 0 and M2,iM

−1
i > %0,i. If there exists

a∗i > 0 such that
1

M2,iM
−1
i + a∗i

+ c(a∗i ) = min
ai

[
1

M2,iM
−1
i + ai

+ c(ai)
]
,

then the sequential procedure δa∗i = (τa∗i , d
0
i (τa∗i )) with τ ∗ai defined by (7) and

d0
ij(τa∗i ) =





M0,ij +M iNij(τa∗i )

M2,i +M ia∗i
, j 6= i,

M0,ii +M iSi(τa∗i )

M2,i +M ia∗i
, j = i,

is Γ -minimax.

Proof. A fairly laborious calculation shows that for the sequential pro-
cedure δai = (τai , d

0
i (τai)) the risk is

R0(λi, δai)

=
1

(M2,iM
−1
i + ai)2

×
{
ai +

∑m
j=1, j 6=i[M0,ijf

′
i(υi)−M2,iλi,j ]2 − [M0,iif

′
i(υi)−M2,i]2

M2
iw(λi)(f ′i(υi))

2

}
,

and consequently, for π ∈ Γ , the Bayes risk is

R0(π, δai) =
1

M2,iM
−1
i + ai

,(22)

which is independent of π ∈ Γ .
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Denote by π∗0 the prior distribution π∗(λi; ri, αi) ∈ E∗(ri, αi) with

rij =
M0,ij

M i

, j = 1, . . . ,m, αi =
M2,i

M i

,

where

M0,ij =





E∗
[

λij

w(λi)f ′i(υi)

]
, j 6= i,

E∗
[

1

w(λi)f ′i(υi)

]
, j = i,

for j = 1, . . . ,m.
Using (16)–(18) we obtain

E∗
[

1

w(λi)

]
= M2,i, E∗

[
λ2
ij

w(λi)(f ′i(υi))
2

]
= M1,ij , j 6= i,

E∗
[

1

w(λi)(f ′i(υi))
2

]
= M1,ii,

so that π∗0 ∈ Γ .
The posterior risk R̃(π∗0(· |Zi(τ) = zi, Ai(τ) = ai), di(zi, ai)) associated

with the prior π∗0 and an estimator di(zi, ai) attains its minimum if

dij = d∗0,ij =





M0,ij +M inij

M2,i +M iai
, j 6= i,

M0,ii +M isi

M2,i +M iai
, j = i,





=: d0
ij(zi, ai).

Taking into account (18) leads to the following form of the posterior risk
associated with π∗0 and d∗0,i(zi, ai):

R̃(π∗0(· |Zi(τ) = zi, Ai(τ) = ai), d∗0,i(zi, ai)) =
1

M2,iM
−1
i + ai

.

Since

R0(π, δai) = R̃(π∗0(· |Zi(τ) = zi, Ai(τ) = ai), d∗0,i(zi, ai))

(see formula (22)), the theorem follows from Theorem 5 by putting W (zi, ai)
= ai for each (zi, ai), zi ∈ {1, 2, . . .}i−1 × (0,∞)× {1, 2, . . .}m−i, ai > 0 and
K(ai) = 1/(M2,iM

−1
i + ai) for each ai > 0.

Note that the sequential procedure δa∗i = (τa∗i , d
0
i (τa∗i )) is the only mini-

max procedure under the loss function given by (19) and the assumed cost
function.

Example. In particular, conditions (i1)–(i3) are satisfied in the case
when the conditional density of A(t)−A(s) given X(u) = i, u ∈ [s, t], is the
Poisson density with intensity µi, i.e., fi(υi) = exp(υi), where υi = logµi.
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Since in this case f ′′i (υi) = f ′i(υi) for each υi ∈ Υi = (−∞,∞), it is easily
seen that for the Markov modulated Poisson process, %0,i = 1. The condition
(20) takes the form

E

{[
1 +

µiλii∑m
j=1,j 6=i λ

2
ij + 1

]−1}
= Mi,

where Mi < 1.

3.2. It will be shown below that to estimate the intensities λij (j =
1, . . . ,m; j 6= i) and the mean value parameter f ′i(υi) one can apply a
sequential procedure defined by

τsi = inf{t : Si(t) = si}, si > 0.(23)

For this stopping time the sequential likelihood function (6) takes the form

Li(τsi , λi) =
m∏

j=1,j 6=i
λ
Nij(τsi )
ij exp{Ai(τsi)υi − si[λii + fi(υi)]}.

Suppose that for any %i > 0 and βi > 0 the following conditions are
satisfied:

(s1)
�

Υi

f ′′i (υi) exp[%iυi − βifi(υi)] dυi <∞,

(s2)
�

Υi

(f ′i(υi))
2 exp[%iυi − βifi(υi)] dυi <∞,

(s3)
�

Υi

d

dυi
{[%i − βif ′i(υi)] exp[%iυi − βifi(υi)]} dυi = 0.

The natural prior distribution of the parameter λi is proportional to
m∏

j=1, j 6=i
λ
rij−1
ij exp(−αiλij) exp[riiυi − αifi(υi)],(24)

and it is proper for all rij > 0, j = 1, . . . ,m, and each αi > 0 (the integral of
(24) with respect to dυi is finite for each rii > 0 and αi > 0). The modified
prior, i.e., (24) multiplied by the sum

∑m
j=1, j 6=i λij + f ′′i (υi) = λii + f ′′i (υi),

is proper under condition (s1) for all rij > 0, j = 1, . . . ,m, and each αi > 0.
Let the loss function be defined by

L(λi, di) = [λii + f ′′i (υi)]−1
[ m∑

j=1, j 6=i
(dij − λij)2 + (dii − f ′i(υi))2

]

and let the cost function c(·) depend only on the value of the process Si(t)
at the moment of stopping.

Taking advantage of Theorem 5, in an analogous way to Theorem 1 one
obtains the following result.
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Theorem 3. Let Γ be the class of all distributions π on Λi×Υi for which

E

[∑m
j=1, j 6=i λ

2
ij + (fi(υi))2

λii + f ′′i (υi)

]
= Mi

with M−1
i > 0. If there exists s∗i such that

1

M−1
i + s∗i

+ c(s∗i ) = min
si

[
1

M−1
i + si

+ c(si)
]
,

then the sequential procedure δs∗i = (τs∗i , d
0
i (τs∗i )) with τs∗i defined by (23) and

d0
i (τs∗i ) =

1

M−1
i + s∗i
× (Ni1(τs∗i ), . . . , Ni,i−1(τs∗i ), Ai(τs∗i ), Ni,i+1(τs∗i ), . . . , Nim(τs∗i ))

is Γ -minimax.

Arguments analogous to those of Theorem 2 yield the following result.

Theorem 4. Let Γ be the class of all distributions π of the parameter
ϑ for which

E

[
λij

λii + f ′′i (υi)

]
= M0,ij , j 6= i, E

[
f ′i(υi)

λii + f ′′i (υi)

]
= M0,ii,

E

[
λ2
ij

λii + f ′′i (υi)

]
= M1,ij , j 6= i, E

[
(f ′i(υi))

2

λii + f ′′i (υi)

]
= M1,ii,

E

[
1

λii + f ′′i (υi)

]
= M2,i,

with M i :=
∑m

j=1(M1,ijM2,i −M2
0,ij) > 0 and M2,iM

−1
i > 0. If there exists

s∗i > 0 such that

1

M2,iM
−1
i + s∗i

+ c(s∗i ) = min
si

[
1

M2,iM
−1
i + si

+ c(si)
]
,

then the sequential procedure δs∗i = (τs∗i , d
0(τs∗i )) with τ ∗si defined by (23) and

d0
ij(τs∗i ) =





M0,ij +M iNij(τs∗i )

M2,i +M is∗i
, j 6= i,

M0,ii +M iAi(τs∗i )

M2,i +M is∗i
, j = i,

is Γ -minimax.

For example, conditions (s1)–(s3) are satisfied for the Poisson density
with intensity µi, i.e., if fi(υi) = exp(υi), υi = logµi.

Remark 1. In the limit case of Theorem 1 when 1/Mi → %0,i (resp.
Theorem 3 when 1/Mi → 0) or in the limit case of Theorem 2 when
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M2,i/M i → %0,i (resp. Theorem 4 when M2,i/M i → 0), the expressions
for the Γ -minimax sequential estimation procedures imply the forms for the
minimax procedures obtained by Magiera (1999).

The idea and tools are presented to solve the problem considered in the
case when only one row of the matrix (λ, υ) is unknown. We then use the
likelihood function defined by (6) which has a much simpler form than that
of (4). For estimable functions involving elements of more than one row of
the matrix (λ, υ) the problem can be solved using an appropriate stopping
time, but this requires more intricate calculations.

Considering, for example, a three-state Markov-additive process one can
use the stopping time

τ1
J,s = inf{t : N21(t) +N31(t) = s},

s = 1, 2, . . . ; J = {2, 3}, ∑j∈J λj1 > 0. One should then take into account
the following relations (see formulas (5)):

N21(τ1
J,s) +N31(τ1

J,s) = s,

N21(τ1
J,s) +N31(τ1

J,s) = N12(τ1
J,s) +N13(τ1

J,s),

N12(τ1
J,s) +N32(τ1

J,s) = N21(τ1
J,s) +N23(τ1

J,s),

which reduce the exponential family (4) to a noncurved exponential model
for estimating the parameters associated with all the rows of the matrix
(λ, υ).

4. Appendix. Let X(t), t ∈ T , be a stochastic process defined on a
probability space (Ω,F , Pλ) with values in (Rm,BRm), where T = [0,∞) or
T = {0, 1, 2, . . .} and λ is a parameter with values in an open set Λ ⊆ Rn.
Let Pλ,t denote the restriction of Pλ to Ft = σ{X(s) : s ≤ t}. Suppose that
the family Pλ,t, λ ∈ Λ, is dominated by a measure µt which is the restriction
of a probability measure µ to Ft, and that the density functions (likelihood
functions) have the form

dPλ,t
dµt

= L(Y (t), t, λ),

where Y (t), t ∈ T , is a process with values in (Rk,BRk) and adapted to the
filtration Ft, t ∈ T , and L(·, ·, λ) is a continuous function. In the case of
continuous time it is supposed that the process Y (t), t ∈ T , has Skorokhod
paths, i.e., paths which are right-continuous and have left-hand limits.

Let τ be a stopping time relative to Ft, t ∈ T , such that Pλ(τ <∞) = 1
for each λ ∈ Λ. The random variable (Y (τ), τ) is a sufficient statistic for λ
relative to Fτ . Let Pλ,τ and µτ denote the restrictions of Pλ and µ to Fτ .
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By the fundamental identity of sequential analysis, Pλ,τ � µτ and

dPλ,τ
dµτ

= L(Y (τ), τ, λ).

Suppose that, in addition to the loss associated with the estimation error,
the statistician incurs a cost of observation of the process. Let L(λ, d(Y (t), t),
Y (t), t) be the loss function determining the loss incurred by the statistician
if λ is the true value of the parameter and d is the estimator chosen by him
having observed Y (t) at the moment of stopping t. Denote by c(Y (t), t) the
cost function which represents the cost of observing the process up to time t.

Sequential procedures of the form δ = (τ, d) for estimating the value of a
function of λ will be considered, where τ is a finite stopping time with respect
to Ft, t ∈ T , and d = d(Y (τ), τ) is an Fτ -measurable random variable. The
risk of the sequential procedure δ corresponding to the estimation error is

R0(λ, δ) = EλL(λ, d(Y (τ), τ), Y (τ), τ).

The total risk function of the sequential procedure δ = (τ, d) is defined by

R(λ, δ) = R0(λ, δ) + Eλc(Y (τ), τ).

By the fundamental identity of sequential analysis the expectations (risks)
are well defined for randomly stopped processes.

Let π be a prior distribution of the parameter on the space (Λ,BΛ) and
let Γ be a set of prior distributions. Suppose thatR(λ, δ) is a BΛ-measurable
function of λ. Then the Bayes risk is defined by

R(π, δ) =
�

Λ

R(λ, δ)π(dλ) = R0(π, δ) +
�

Λ

Eλc(Y (τ), τ) dπ(λ),

provided the integral exists, where

R0(π, δ) =
�

Λ

R0(λ, δ) dπ(λ).

Below, only such sequential procedures δ = (τ, d) will be considered for
which R(π, δ) < ∞ for each π ∈ Γ . The class of all sequential procedures
satisfying this condition will be denoted byD. The problem is to find optimal
stopping rules τ and the corresponding estimators d(τ) = d(Y (τ), τ) subject
to the minimax criterion: a sequential procedure δ0 = (τ0, d0) is said to be
Γ -minimax if

sup
π∈Γ
R(π, δ0) = inf

δ∈D
sup
π∈Γ
R(π, δ).

This problem can be interpreted as the problem of choosing a minimax
strategy in the game of the statistician against the nature where the payoff
function is the Bayes risk associated with the given loss function L and the
cost function c. The strategy of the nature is the prior distribution π of
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the parameter λ. It is assumed that the set of all strategies of the nature is
reduced to a set Γ .

Let π(· |Y (τ) = y, τ = t) denote the posterior distribution of the pa-
rameter λ given Y (τ) = y, τ = t. The posterior risk corresponding to π and
an estimator d is determined by

R̃(π(· |Y (τ) = y, τ = t), d) =
�

Λ

L(λ, d(y, t), y, t) dπ(λ | Y (τ) = y, τ = t).

An estimator d∗ = d∗(y, t) is called (y, t)-Bayes for π if

R̃(π(· |Y (τ) = y, τ = t), d∗) = inf
d
R̃(π(· |Y (τ) = y, τ = t), d)

for all (y, t) ∈ U = Rk × T .
Denote by W (y, t) a measurable mapping from (U,BU ) into (R,BR).
A minimax theorem will be presented which is a slight extension of The-

orem 1 of Wilczyński (1985) and a considerable generalization of the familiar
tool given by Dvoretzky, Kiefer and Wolfowitz (1953) in statistical decision
theory.

Theorem 5. Assume that the cost function is of the form c(y, t) =
c(W (y, t)). Suppose that there exists a sequence of priors πn ∈ Γ , n =
1, 2, . . . , of the parameter λ for which there are corresponding (y, t)-Bayes
estimators d∗n such that

lim inf
n→∞

R̃(πn(· |Y (τ) = y, τ = t), d∗n) = K(W (y, t))

for each (y, t) ∈ U , where K is a real-valued measurable function defined
on R. Moreover , assume that K(·) + c(·) attains its minimum over Z at a
point z∗, where Z is the set of values of the process W (Y (t), t), t ∈ T . If

τz∗ = inf{t ∈ T : W (Y (t), t) = z∗}
is a finite stopping time for each λ ∈ Λ, and if there exists an estimator
dz∗(τz∗) = dz∗(Y (τz∗), τz∗) such that

sup
π∈Γ
R(π, δz∗) ≤ K(z∗) + c(z∗),

where δz∗ = (τz∗, dz∗(τz∗)), then the sequential procedure δz∗ is Γ -minimax
under the loss function L(λ, d(Y (t), t), Y (t), t) in the class of all sequential
procedures δ = (τ, d(τ)) ∈ D.

The proof of the theorem is the same as that of Theorem 1 of Wilczyński
(1985), the only difference being that the more general form L(λ, d(Y (t), t),
Y (t), t) of the loss function is taken into account and instead of R(λ, δ) one
should consider R(π, δ).
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