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Stein open subsets with analytic
complements in compact complex spaces

by Jing Zhang (University Park, IL)

Abstract. Let Y be an open subset of a reduced compact complex space X such that
X −Y is the support of an effective divisor D. If X is a surface and D is an effective Weil
divisor, we give sufficient conditions so that Y is Stein. If X is of pure dimension d ≥ 1
and X − Y is the support of an effective Cartier divisor D, we show that Y is Stein if Y
contains no compact curves, Hi(Y,OY ) = 0 for all i > 0, and for every point x0 ∈ X − Y
there is an n ∈ N such that Φ−1

|nD|(Φ|nD|(x0)) ∩ Y is empty or has dimension 0, where

Φ|nD| is the map from X to the projective space defined by a basis of H0(X,OX(nD)).

1. Introduction. In three very interesting papers [O1, O2, O3], Ohsawa
proved the following theorems among other results:

(1) Let M be a compact Kähler manifold and let U be an open subset
in M . Suppose that B = M − U is a complex analytic subset of pure
codimension 1 such that there exists an effective divisor A with support
B for which the line bundle [A]|B is topologically trivial. Then U admits
no C∞ plurisubharmonic exhaustion function whose Levi form has at least
three positive eigenvalues everywhere outside a compact subset of U . In
particular, U is not Stein.

(2) Let M be a connected compact complex manifold of dimension 2, and
let D be an effective divisor on M such that [D] has a fiber metric whose
curvature form is semipositive on |D| and positive at some point of |D|.
Then M − |D| is holomorphically convex and properly bimeromorphic to a
Stein space.

(3) Let M be a connected compact complex manifold of dimension 2 and
let D be an effective divisor on M . If D2 > 0, then there exists a connected
component D∗ such that M −D∗ is 1-convex.

A Stein manifold Y may have no nonconstant regular functions and the
compact complex manifold X containing Y may have no nonconstant mero-
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morphic functions with poles in X−Y . Serre constructed a smooth algebraic
surface Y which is a Zariski open subset of a smooth projective surface X
with Kodaira dimension −∞ such that Y is biholomorphic to C∗×C∗, but X
has no nonconstant meromorphic functions with poles in X−Y [H2, p. 232].
Based on Serre’s surface, Neeman [N] constructed a Zariski open subset of
an affine algebraic variety which is Stein but not an affine algebraic vari-
ety. Hwang and Varolin [HV] constructed a compact Kähler manifold X of
dimension 4 and a smooth divisor D on X such that X −D is biholomor-
phic to (C∗)4 and X has no nonconstant meromorphic functions. Recently,
Forstnerič [Fo] investigated a long standing problem: If a complex manifold
admits nonexhausting strongly plurisubharmonic function, does it admit
a nonconstant holomorphic function? Is it Stein? He discovered a class of
counterexamples and showed that there is a complex surface, a connected
open set in CP2, that admits a strongly plurisubharmonic function but no
nonconstant holomorphic functions. His examples show that it is worthwhile
to give sufficient conditions for open subsets in a compact complex surface
to be Stein.

In [Z1, Z2, Z3], we show that if Y is an irreducible algebraic Stein variety
with dimension d ≥ 1, then:

(1) κ(D,X) 6= d− 1.

(2) If d = 2k, then κ(D,X) can be any even number 0, 2, . . . , 2k.

(3) If d = 2k + 1, then κ(D,X) can be any odd number 1, 3, . . . , 2k + 1.

This shows that a general algebraic Stein manifold is very complicated,
by the classification of algebraic varieties. Here Y is an open subset of X,
X − Y is the support of the Cartier divisor D, and κ(D,X) is the number
of algebraically independent nonconstant meromorphic functions with poles
in X − Y .

We are interested in the following question for complex spaces with sin-
gularities: Find sufficient conditions on X and Y such that Y is a Stein
space, where Y is an open subset of a compact complex space X and X−Y
is the support of a Cartier divisor D.

A complex space (X,OX) is Stein if X is holomorphically separable (i.e.,
for any two distinct points x, y ∈ X, there is a holomorphic function f in
H0(X,OX) such that f(x) 6= f(y)) and holomorphically convex (i.e., for any
discrete sequence S = {P1, P2, . . . , } in X, there is a holomorphic function
f ∈ H0(X,OX) such that f is not bounded on S) ([KaK, pp. 223, 228],
[GR1, pp. 109–116]).

In this paper, we will focus on Moishezon spaces, the complex spaces with
maximum algebraic dimensions [U, Chapter 1, Section 3]. We first consider
surfaces, the complex spaces with dimension 2. A Weil divisor D on X is
a finite sum

∑N
i=1 niDi, where ni ∈ Z, Di is an irreducible subvariety of
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codimension 1 in X, and Di is not contained in the singular locus of X. The
divisor D is effective if ni ≥ 0 for all i and D 6= 0, and big on X if X has
d = dimX algebraically independent nonconstant meromorphic functions
with poles in X − Y . Corresponding to Ohsawa’s theorem on nonsingular
surfaces, with a different approach, we have the following theorem for normal
surfaces.

Theorem 1.1. Let Y be an open subset of an irreducible normal reduced
compact complex surface X such that X − Y is the support of a connected
effective Weil divisor D. If D is a big divisor and Y contains no compact
curves, then there is a Weil divisor P1 with support X − Y such that for
every irreducible curve C in X, P1 · C > 0. If X is nonsingular, then P1 is
an ample divisor with support X − Y and Y is a Stein surface.

The proof of Theorem 1.1 is by using Zariski decomposition and the
Nakai–Moishezon criterion of ampleness. Zariski decomposition does not
hold in higher dimensions so the proof cannot be generalized to higher-
dimensional complex spaces. In Section 2, we will give an example to show
that Theorem 1.1 is not true for higher dimensional complex spaces.

A Cartier divisor D of a complex space X is a global section of the sheaf

M∗X/O∗X ,
where M∗X is the sheaf of germs of meromorphic functions which are not
identically zero on X, and O∗X is the sheaf of germs of nowhere vanishing
holomorphic functions on X. A Cartier divisor D is effective if all local
equations of D are holomorphic functions and at least one local equation
has zeros. The support of a Cartier divisor D is a closed complex subspace of
pure codimension 1 that is locally defined as the zeros of a single holomorphic
function.

If D is a Cartier divisor on a compact complex space X, then OX(D) is
a coherent sheaf defined by

OX(D)x = f−1
i Ox,X ⊂MX , ∀x ∈ X,

where fi is the local equation of D on some Ui 3 x, i ∈ I and {Uj}j∈I is an
open cover of X. Letting C(X) be the meromorphic function field of X, we
define the vector space [U, p. 39]

L(D) = {f ∈ C(X) : f = 0 or (f) +D ≥ 0}.
Here (f) is the principal divisor defined by f . Then L(D) is isomorphic to
H0(X,OX(D)) as a vector space over C [U, Lemma 4.14]. We do not distin-
guish between these two spaces and consider any element in H0(X,OX(D))
as a meromorphic function on X which is holomorphic on Y .

We will construct a bimeromorphic map from X to a projective variety.
If h0(X,OX(mD)) = 0 for all m ≥ 0, we define the D-dimension κ(D,X)
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to be −∞. If h0(X,OX(mD)) > 0 for some m ∈ Z and X is a normal
reduced compact complex space, choose a basis {f0, f1, . . . , fn} of the vector
space H0(X,OX(mD)); it defines a meromorphic map Φ|mD| from X to the
projective space Pn sending a point x in X to (f0(x), f1(x), . . . , fn(x)) in Pn.
We define the D-dimension [U, Definition 5.1] by

κ(D,X) = max
m

dim(Φ|mD|(X)).

If X is not normal, let π : X ′ → X be the normalization of X; then define
κ(D,X) = κ(π∗D,X ′), where π∗D on X ′ is the pullback divisor of D [U,
pp. 51, 53]

If D is an effective divisor, then 0 ≤ κ(D,X) ≤ d, where d is the dimen-
sion of X; and D is a big divisor if κ(D,X) = d. Let KX be the canonical
divisor of X. The Kodaira dimension of X is κ(X) = κ(KX , X).

In Theorems 1.2 and 1.4, OY is the sheaf of holomorphic functions.

Theorem 1.2. Let Y be an open subset of a normal reduced compact
complex space X of pure dimension d ≥ 1 such that X − Y is the support
of an effective Cartier divisor D. If D is a big divisor on every irreducible
component of X, if Y contains no compact curves, and if H i(Y,OY ) = 0
for all i > 0, then Y is holomorphically separable.

Theorem 1.3. Let Y be a Zariski open subset of a normal projective
variety X of pure dimension d ≥ 1 defined over C such that X − Y is
the support of an effective Cartier divisor D. If D is a big divisor on ev-
ery irreducible component of X, if Y contains no compact curves, and if
H i(Y,OY ) = 0 for all i > 0, then Y is an algebraic affine variety, so it is
Stein. Here OY is the sheaf of regular functions on Y .

It is well-known that a domain Ω in Cn is Stein if and only if H i(Ω,OΩ)
= 0 for all 0 < i < n ([GR1, p. 159], [Gu, p. 156]). We have Hn(Ω,OΩ) = 0
for every domain Ω in Cn by a theorem of Siu [Siu2]. Laufer generalized it
to Stein manifolds and proved that an open subset U of a Stein manifold M
is Stein if and only if H i(U,OU ) = 0 for all 0 < i < n [GR1, p. 160]. This is
no longer true for an open subset in a compact complex manifold (see Ex-
ample 3.10). Naturally we would ask what conditions we should add so that
an open subset in a complex space is Stein. It seems that many results and
methods used to understand the Steinness of complex manifolds cannot be
applied to open subsets in complex spaces with singularities. One reason is
that the traditional approach heavily relies on the smoothness of the spaces:
when the space is singular, there is no known method to construct strictly
plurisubharmonic exhaustion functions from distance functions [AN, Siu3]
unless the singularity is isolated [AN]. Fornæss and Narasimhan [FN] first
considered the Levi problem for complex spaces with singularities: What
open subsets in a Stein space are Stein? They gave several sufficient condi-
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tions with analytic methods. By using methods of birational geometry, we
obtain the following theorem for normal spaces.

Theorem 1.4. Let Y be an open subset of a normal reduced compact
complex space X of pure dimension d ≥ 1 such that X −Y is the support of
an effective Cartier divisor D. Then Y is Stein if Y contains no compact
curves, H i(Y,OY ) = 0 for all i > 0, and for every x0 ∈ X − Y there is an
n ∈ N such that Φ−1

|nD|(Φ|nD|(x0)) ∩ Y is empty or has dimension 0.

We will consider surfaces in Section 2 and prove Theorems 1.2–1.4 in
Section 3. The methods in Sections 2 and 3 are completely different. At the
end of Section 3, we will give three examples to show that if one condition
in Theorem 1.4 is not satisfied, then Y is not Stein in general.

2. Surfaces. Let Div(X) be the group of Weil divisors on an irreducible
normal reduced compact surface X. Let Div(X,Q) = Div(X) ⊗ Q be the
group of Q-divisors. The intersection pairing

Div(X,Q)×Div(X,Q)→ Q
is defined in the following way. Let π : X ′ → X be a resolution of singularities
and let A =

⋃
Ei denote the set of exceptional divisors of π, i.e., π(Ei) is

a point of X for all i. For a Q-divisor D on X we define the inverse image
π∗D by

π∗D = D̄ +
∑

aiEi

where D̄ is the strict transform of D by π and the rational numbers ai are
uniquely determined by the equations D̄ ·Ej +

∑
aiEi ·Ej = 0 for all j. For

two divisors D and D′ on X, their intersection number is defined to be

D ·D′ = π∗D · π∗D′.
A Q-divisor D =

∑
i riDi on X is effective if ri ≥ 0 for all i; nef if

D ·C ≥ 0 for all irreducible curves C on X; and pseuodoeffective if D ·P ≥ 0
for all nef divisors P on X. The Zariski decomposition is due to Sakai [Sa2].

Lemma 2.1 (Zariski Decomposition). Let D be a pseuodoeffective Q-
divisor on an irreducible normal reduced compact surface X. Then there
exists a unique decomposition

D = P +N

satisfying the following conditions:

(1) N is an effective Q-divisor and either N = 0 or the intersection
matrix of the irreducible components of N is negative definite;

(2) P is a nef Q-divisor and the intersection of P with each irreducible
component of N is zero.
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Lemma 2.2 was proved by Sakai [Sa1] for nonsingular projective surfaces.
The idea of the proof works for normal compact complex surfaces since
the Riemann–Roch formula [Fu] and Zariski decomposition hold for normal
compact surfaces which are not projective.

Let S(X) be the set of singular points of X. Then X ′ = X − S(X) is a
complex manifold, D′ = D|X′ is a Cartier divisor on X ′, and OX′(D′) is an
invertible sheaf on X ′. Let e : X ′ ↪→ X be the inclusion map. If D is a Weil
divisor, then OX(D) is defined to be e∗OX′(D′) [Sa2].

Lemma 2.2. Let D be an effective Weil divisor on an irreducible normal
reduced compact surface X, and D = P + N be the Zariski decomposition.
Then D is a big divisor if and only if P 2 > 0.

Proof. Since h0(X,OX(nD)) = h0(X,OX(nP )), D is a big divisor if and
only if P is a big divisor [Sa1]. We will show that if P 2 > 0, then P is a big
divisor. Let π : X ′ → X be the resolution of singularity. Note that P is big
if and only if P ′ = π∗P is big [U, Lemma 5.3].

By Serre duality for connected compact complex manifolds,

H2(X ′,OX′(nP ′)) = H0(X ′,OX′(KX′ − nP ′)),
where KX′ is the canonical divisor of X ′. Hence the dimensions of these
vector spaces are equal:

h2(X ′,OX′(nP ′)) = h0(X ′,OX′(KX′ − nP ′)).
As P ′ is an effective divisor, it is pseudoeffective: for every nef divisor N
on X ′, N · P ′ ≥ 0. If there is a sequence nk →∞ such that

h0(X ′,OX′(KX′ − nkP ′)) > 0,

then (1/nk)KX′ − P ′ is linearly equivalent to a pseudoeffective divisor and
the limit is −P ′. This is a contradiction. So for sufficiently large n, we have

h2(X ′,OX′(nP ′)) = h0(X ′,OX′(KX′ − nP ′)) = 0.

By Riemann–Roch, for sufficiently large n,

h0(X ′,OX′(nP ′)) = h1(X ′,OX′(nP ′)) + 1
2n

2P ′2− 1
2nP

′ ·KX′ +χ(X ′,OX′).
Now P ′2 = P 2 > 0 [H1, p. 387] implies that h0(X ′,OX′(nP ′)) ≥ cn2 for
some constant c > 0. So P ′ is a big divisor on X ′ [I, Theorem 10.2] and
hence D is big.

Conversely, if κ(D,X) = 2, then κ(P,X) = 2. If P 2 = 0, let mP be a
Weil divisor and |mP | = |M |+ F , where M is the movable part and F the
fixed part. Then

0 = (mP )2 = mP · (M+F ) = (M+F ) ·M+mP ·F = M2 +M ·F +mP ·F.
Since M2 ≥ 0 and M · F ≥ 0 and P · F ≥ 0, we have M2 = 0. Then the
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image Φ|mP |(X) = Φ|M |(X) is not a surface but a curve. This is not possible.

So P 2 > 0.

Theorem 2.3. Let Y be an open subset of an irreducible normal reduced
compact complex surface X such that X − Y is the support of a connected
effective Weil divisor D. If D is a big divisor and Y contains no compact
curves, then X−Y is the support of a divisor P1 such that for all irreducible
curves C in X, P1 · C > 0.

Proof. Let D = P+N be the Zariski decomposition, where N is effective
and negative definite, P is effective and nef, and no prime component of N
intersects P . Since both P and N are Q-divisors (D is a Weil divisor but P
and N may have rational coefficients), there is an integer l > 0 such that
lD = lP+lN and lP and lN are effective Weil divisors. We may assume that
both P and N are integral. Let SuppD = {D1, . . . , Dn} = X − Y . Since
κ(D,X) = 2, we have P 2 > 0. First we claim that SuppP = SuppD =
X − Y . If SuppP 6= X − Y , then there is a prime component, say D1, in
X − Y such that P ·D1 > 0 and D1 is not a component of P since X − Y
is connected. Let

Q = mP +D1,

where m is a large positive integer. Then Q is an effective divisor and
SuppQ = SuppP ∪D1. Since P 2 > 0, we may choose m such that

Q2 = m2P 2 + 2mP ·D1 +D2
1 > 0.

For every prime component E in P , since P is nef and D1 is not contained
in SuppP , for sufficiently large m we have

Q · E = mP · E +D1 · E ≥ 0, D1 ·Q = mD1 · P +D2
1 > 0.

Since Y contains no compact curves, any irreducible compact curve outside
X − Y intersects X − Y . Thus we get a new effective divisor Q such that
Q is nef and Q2 > 0. We may replace P by Q and still call it P . By finitely
many such replacements, we can find an effective nef divisor P such that
P 2 > 0 and SuppP = SuppD = X − Y .

Next we will show that X − Y is the support of a divisor P1 such that
for every irreducible curve C in X, P1 · C > 0. This is obvious if C is not a
component of X − Y since Y has no compact curves. We only need to show
that for every irreducible component C of D, C · P1 > 0.

If the above nef divisor P does not satisfy the positive intersection
condition, then there is an irreducible compact curve C in X such that
P.C = 0. Since Y has no compact curves, C must be one of the Di’s. We
may change the order and assume Di.P = 0 for i = 1, . . . , r and Dj .P > 0
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for j = r + 1, . . . , n. Write

P =
r∑
i=1

aiDi +
n∑

j=r+1

bjDj = A+B,

where A =
∑r

i=1 aiDi, B =
∑n

j=r+1 bjDj . Then for i = 1, . . . , r,

0 = P.Di = A.Di +B.Di.

Since Di is not a component of B, for all i = 1, . . . , r we have B.Di ≥ 0.
So A.Di ≤ 0 for all i = 1, . . . , r. If A is connected, this implies that the
intersection matrix [Ds.Dt]1≤s,t≤r is negative semidefinite [Ar]. Since A∪B
= X − Y is connected, there is at least one component Di0 of A such
that Di0 .B > 0. Hence Di0 .A < 0 and A2 < 0. This implies that the
intersection matrix [Ds.Dt]1≤s,t≤r is negative definite [Ar]. So there is an
effective divisor E =

∑r
i=1 αiDi such that E.Di < 0 for all i = 1, . . . , r [Ar].

If A is not connected, by induction, we may assume that A =
∑r1

i=1 aiDi +∑r
i=r1+1 aiDi = A1+A2, where A1 =

∑r1
i=1 aiDi and A2 =

∑r
i=r1+1 aiDi are

disjoint and each of them is connected. Then there are E1 =
∑r1

i=1 ciDi and
E2 =

∑r
k=r1+1 dkDk such that Di ·E1 < 0 and Dk ·E2 < 0, for i = 1, . . . , r1

and k = r1+1, . . . , r [Ar]. Let E = E1+E2; then E.Di < 0 for all i = 1, . . . , r
since E1 and E2 are disjoint.

We have shown that there are positive numbers αi, i = 1, . . . , r, such
that E.Di < 0, i = 1, . . . , r. Let P1 = mP − E. If m is sufficiently large,
then P 2

1 > 0, P1 is nef and if 1 ≤ i ≤ r,
P1.Di = −E.Di > 0.

If r + 1 ≤ j ≤ n, then for sufficiently large m,

P1.Dj = mP.Dj − E.Dj > 0.

D is an ample divisor if there is an n ∈ N such that nD is very ample,
i.e., Φ|nD| is a biholomorphic map.

Corollary 2.4. In Theorem 2.3, if X is nonsingular, then P1 is an
ample divisor and Y is a Stein surface.

Proof. In the proof of Theorem 2.3, by the Nakai–Moishezon criterion,
P1 is an ample divisor with support X − Y . So Y is Stein.

In general, Zariski decomposition does not hold for normal reduced com-
pact spaces of dimension greater than 2. The proof for surfaces cannot be
applied to higher dimensional spaces. In fact, Theorem 2.3 and Corollary 2.4
are not true if the dimension of X is greater than 2 even if X is a complex
manifold.

Example 2.5. Let H be a hyperplane in P3 through a point O. Let L
be a line through O and not contained in H. Blow up P3 along L and let
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π : X → P3 be the blowup. Define D = π∗H+E, where E is the exceptional
divisor. Then Y = X −D has no compact curves and D is a connected big
divisor. But Y is not Stein since it is isomorphic to C3 − L and L is of
codimension 2 in C3 [GR1, p. 128] and D is not ample.

3. Higher-dimensional complex spaces. In this section, Y is a proper
open subset of a reduced compact complex space X such that X − Y is the
support of an effective Cartier divisor D. Then D is a big divisor if and only
if there are constants b > a > 0 such that [I, Theorem 10.2]

and ≤ h0(X,OX(nD)) ≤ bnd.

There is a one-to-one correspondence between the complete linear system
|D| and H0(X,OX(D))/∼, where φ1, φ2 ∈ H0(X,OX(D)) and φ1 ∼ φ2 if
there is a constant c such that φ1 = cφ2 [U, Lemma 4.16].

A Cartier divisor on a normal space defines a Weil divisor [U, p. 36].
Let F be an effective Weil divisor on a normal complex space X. We say
that F is a fixed component of a linear system L of effective Cartier (or
Weil) divisors if E > F (i.e., E − F is an effective nonzero Weil divisor)
for all E ∈ L. And F is the fixed part of a linear system if every irreducible
component of F is a fixed component of the system and F is maximal with
respect to the order ≥. If F is the fixed part of L, then every element E in
the system can be written in the form E = E′ + F . We say that E′ is the
variable (or movable) part of E. A point x ∈ X is a base point of the linear
system if x is contained in the supports of the variable parts of all divisors
in the system. The set of all base points of L, called the base locus of L, is an
analytic subset of X [U, p. 42]. Here the definition of base point is different
from the definition in Hartshorne’s book [H1, p. 158].

If D is an effective Cartier divisor on X, then the base locus of the
complete linear system |nD| for any positive integer n is contained in the
boundary X − Y . Let {f0, f1, . . . , fm} be a basis of H0(X,OX(nD)). It
defines a meromorphic map Φ|nD| from X to Pm for sufficiently large n.
We will consider the algebraic variety Φ|nD|(Y ) in order to understand the
complex space Y . If D is a big divisor on every irreducible component of X,
we may choose n such that Φ|nD| is bimeromorphic. By the correspondence

between |nD| and H0(X,OX(nD)), for any y ∈ Y there is at least one
fi so that fi(y) 6= 0. So Φ|nD| is a holomorphic map on Y . By Hironaka’s
elimination of indeterminacy, we may blow up the subsets on the boundary
X − Y finitely many times so that π : X ′ → X is the blowup and the new
map from X ′ to Pm is holomorphic and its restriction to Y is equal to Φ|nD|.
In the process, Y and the restriction map Φ|nD||Y do not change. Since we
are only interested in the open subset Y , without loss of generality we may
assume that Φ|nD| is holomorphic on X. Therefore for sufficiently large n,
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we may assume that Φ|nD| is a proper bimeromorphic holomorphic map if
D is a big divisor.

A holomorphic map f : X1 → X2 of complex spaces is a modification if
f is proper surjective and bimeromorphic.

Lemma 3.1. If Y is a complex space with H i(Y,OY ) = 0 for all i > 0,
then every hypersurface Z = {y ∈ Y : f(y) = 0, f ∈ H0(Y,OY )} satisfies
H i(Z,OZ) = 0 for all i > 0, where f is the zero divisor of OP for no P ∈ Y .

Proof. We may assume that X is connected. We use the definition of
complex subspace from the book of Grauert and Remmert [GR1, p. 16]. The
underlying topological space Z is the zero set of the holomorphic function f
and the structure sheaf OZ is OY /(f), where (f) is the ideal sheaf generated
by f . The global holomorphic function f on Y times an element in OY is still
an element in OY . Let y ∈ Y and U an open neighborhood of y in Y . Let
(U, g) be a germ at y and fg = 0 on U . Then (U,OU ) is an open subspace
of X. Since f is not a zero divisor of Oy,U and f 6= 0 on U , g = 0 on U . This
implies that f gives an injective map by multiplication from OY to itself.
We have a short exact sequence

0→ OY
f→ OY

r→ OZ → 0,

where the first map is defined by f . The corresponding long exact sequence
is

· · · → H i(Y,OY )→ H i(Y,OY )→ H i(Z,OZ)→ H i+1(Y,OY )→ · · · .
Since H i(Y,OY ) = 0 for all i > 0, we have H i(Z,OZ) = 0 for all i > 0.

If Y is a reduced complex space, then the set S(Y ) of singular points
of Y is a nowhere dense analytic subset of Y [GR2, p. 117]. Let f be a
holomorphic function on Y which is not a constant and has zeros on every
irreducible component of Y . In the above proof, if fg = 0 on the open
subset U , then fg = 0 on the manifold U − S(Y ). This implies g = 0 and
the short exact sequence still holds.

Corollary 3.2. If Y is a reduced complex space with H i(Y,OY ) = 0
for all i > 0, then every hypersurface Z = {y ∈ Y : f(y) = 0, f ∈
H0(Y,OY )} satisfies H i(Z,OZ) = 0 for all i > 0.

Lemma 3.3. Let Y be an open subset of a normal reduced compact com-
plex space X of pure dimension d ≥ 1. Assume that X −Y is the support of
an effective Cartier divisor D. If D is a big divisor on every irreducible com-
ponent of X, then D is a big divisor on every irreducible component Z̄i of
the hypersurface Z̄ defined by f ∈ H0(X,OX(nD)) for sufficiently large n,
where f is not a constant and has zeros on every irreducible component of X,
and Zi = Z̄i ∩ Y is an open subset of Z̄i.
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Proof. We may assume that X is irreducible. The lemma is a direct con-
sequence of the one-to-one correspondence between the hyperplane sections
in the projective space and movable parts of effective divisors in |nD| [U,
p. 45]. Here we will give a different proof.

Since D is an effective big divisor on X, X is a Moishezon space and
there is an irreducible smooth projective variety X ′ of dimension d and a
modification π : X ′ → X such that every fiber of π is connected [U, p. 26].
Let D∗ = π∗D. Then D∗ is an effective big divisor on X ′ [U, p. 51]. Since
X ′ is a projective variety and D∗ is big, there are an effective ample divisor
A and an effective divisor E on X ′ such that n0D

∗ is linearly equivalent
to A + E for some n0 ∈ N [KM, pp. 67–68]. Let M + F ∈ |nn0D|, where
M is the movable part and F is the fixed component. Then the support
of F is contained in X − Y since nD is effective. Let Mi be an irreducible
component of M , and M ′i be the strict transform of Mi. Then A is also
ample on M ′i [H2, p. 23]. Any ample divisor is a big divisor so A is big
on M ′i . For sufficiently large n, there is a positive constant c > 0 such that
[I, Theorem 10.2]

h0(M ′i ,OM ′i (nA)) ≥ cnd−1.

So

h0(M ′i ,OM ′i (nn0D
∗))=h0(M ′i ,OM ′i (nA+ nE))≥h0(M ′i ,OM ′i (nA))≥cnd−1,

which implies that D∗ is a big divisor on M ′i , i.e., there are d−1 algebraically
independent nonconstant rational functions on M ′i which are regular on
M ′i ∩ Y ′, where Y ′ = π−1(Y ). Then on every irreducible component Mi,
D|Mi is a big divisor:

κ(D|Mi ,Mi) = κ(D∗|M ′i ,M
′
i) = d− 1.

The lemma is proved.

Theorem 3.4. Let Y be an open subset of a normal reduced compact
complex space X of pure dimension d ≥ 1 such that X − Y is the support
of an effective Cartier divisor D. If D is a big divisor on every irreducible
component of X, if Y contains no compact curves, and if H i(Y,OY ) = 0
for all i > 0, then Y is holomorphically separable.

Proof. If Y is a curve, then Y has no compact components. This implies
that for every coherent analytic sheaf F on Y , H i(Y,F) = 0 [Siu2]. By
Cartan’s Theorem B, Y is Stein and hence holomorphically separable. Let
P1 6= P2 be two points on Y . Let f ∈ H0(X,OX(nD)) be such that P1 ∈
Z = {y ∈ Y : f(y) = 0}. Here f is not a constant and has zeros on every
component of X. If P2 /∈ Z, then f(P2) 6= 0. Assume P2 ∈ Z. We may choose
n sufficiently large such that Φ|nD| is a proper holomorphic bimeromorphic

map. By Corollary 3.2, H i(Z,OZ) = 0 for all i > 0. Moreover, Z contains
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no compact curves and D is a big divisor on every irreducible component of
Z̄, where Z̄ the closure of Z in X and is the movable part of the effective
divisor defined by f . By induction, we may assume that Z is holomorphically
separable. There is a holomorphic function φ on Z such that φ(P1) 6= φ(P2).
By the short exact sequence

0→ OY
f→ OY

r→ OZ → 0,

and H1(Z,OZ) = 0, we have

0→ H0(Y,OY )→ H0(Y,OY )→ H0(Z,OZ)→ 0.

So φ can be lifted to a holomorphic function on Y , and thus Y is holomor-
phically separable.

In Theorem 3.4, if X is a projective variety, then Y is a Stein variety.

Theorem 3.5. Let Y be a Zariski open subset of a normal projective
variety X of pure dimension d ≥ 1 defined over C such that X − Y is
the support of an effective Cartier divisor D. If D is a big divisor on ev-
ery irreducible component of X, if Y contains no compact curves, and if
H i(Y,OY ) = 0 for all i > 0, then Y is an algebraic affine variety, so it is
Stein. Here OY is the sheaf of regular functions on Y .

Proof. If X is a projective curve, then Y is a proper Zariski open subset
of X, and Y contains no compact curves. So Y is an affine curve [H2, p. 68].

Since D is an effective big divisor, we may assume that Φ|nD| is a proper

birational regular map. Let Z̄ be the movable part of a hypersurface defined
by a rational function f ∈ H0(X,OX(nD)) for sufficiently large n, where f
is not a constant and has zeros on every component of X. Let Z = Y ∩ Z̄.
By Corollary 3.2 and Lemma 3.3, H i(Z,OZ) = 0 for all i > 0 and D|Z̄ is
a big divisor on every irreducible component of Z̄. By induction, we may
assume that Z is an affine variety. Similar to the proof of Theorem 3.4, by
induction and the exact sequence of global regular functions, Y is regularly
separable: for any two distinct points P1, P2 on Y , there is a regular function
g on Y such that g(P1) 6= g(P2). This implies that Y is a Zariski open subset
of an affine variety (a quasi-affine variety) by Goodman and Hartshorne’s
theorem [GH]. A quasi-affine variety Y is an affine variety if and only if
H i(Y,OY ) = 0 for all i > 0, by Neeman’s theorem [N]. So Y is an affine
variety. Every affine variety is Stein [H2, p. 232]. The theorem is proved.

Let S = {P1, P2, . . .} be a sequence in Y without accumulation point
in Y . In the following lemmas and theorems, we assume that the following
three conditions hold:

(1) Y contains no compact curves.
(2) H i(Y,OY ) = 0 for all i > 0.
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(3) For every point x0 ∈ X − Y , there is a positive integer n such that

Φ−1
|nD|(Φ|nD|(x0)) ∩ Y

is empty or has dimension 0.

Let C̄ be an irreducible curve on X such that x0 ∈ C̄ and C = Y ∩ C̄ is a
curve on Y . Then C is not compact and Φ|nD|(C̄) is not a point. So D is a
big divisor on every irreducible component of X. We may assume that Φ|nD|
is a proper holomorphic bimeromorphic map as discussed at the beginning
of this section.

Let f ∈ H0(X,OX(nD)) be nonconstant and have zeros on every irre-
ducible component of X. Let Z̄ be the movable part of the divisor defined
by f , and Z = Y ∩ Z̄ = {y ∈ Y : f(y) = 0}. By Lemma 3.1,

H i(Z,OZ) = 0

for all i > 0 and Z and Z̄ satisfy the above three conditions so we may
assume that Z is Stein.

Lemma 3.6. If the image Φ|nD|(S) is a finite set, then there is a global
holomorphic function on Y that is not bounded on S.

Proof. If Φ|nD|(S) is a finite set, then there is a point q ∈ Φ|nD|(S) such

that S′ = Φ−1
|nD|(q)∩S is not a finite subset of S, that is, Φ|nD| maps infinitely

many points in S to q.

Let H be a hyperplane section passing through q in Pm. Pulling H back
to Y by Φ|nD|, we obtain a hypersurface Z containing S′ [U, Lemma 4.20.3].
By induction, we may assume that Z is Stein. Since S has no accumulation
point on Y , its subset S′ has no accumulation point on Z. Since Z is Stein,
there is a holomorphic function ψ on Z that is not bounded on S′. Using the
surjective map from H0(Y,OY ) to H0(Z,OZ) from the proof of Lemma 3.1,
we can lift ψ to Y . In this way we obtain a global holomorphic function on
Y that is not bounded on the subset S′ of S. So it is unbounded on S.

Lemma 3.7. If Φ|nD|(S) has an accumulation point w0 in W −Φ|nD|(Y ),
then there is a global holomorphic function on Y that is not bounded on S,
where W is the affine variety containing Φ|nD|(Y ).

Proof. Φ|nD|(Y ) is contained in an algebraic affine variety W in the pro-
jective space ([I, p. 302], [U, Lemma 4.20.3]). An algebraic affine variety is
Stein [H2, p. 232]. We have

Φ|nD|(S) ⊂ Φ|nD|(Y ) ⊂W ⊂ Pm,

where m = h0(X,OX(nD))− 1.

If Φ|nD|(S) has an accumulation point w0 in W − Φ|nD|(Y ), let H be a
hyperplane in Pm passing through w0 with H ∩W 6= ∅. Let h be a regular
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(hence holomorphic) function on W defining H ∩ W . Since H ∩ W is a
hypersurface of the Stein variety W , it is Stein. Pull H back to X; then the
preimage of H in X is a hypersurface Z̄. Let Z = Z̄ ∩ Y . Then Z is defined
by the holomorphic function determined by the pullback of h. By inductive
assumption, Z is Stein.

Since both W and H ∩ W are Stein, there are holomorphic functions
h1, . . . , ha on W such that h1, . . . , ha have no common zeros on H∩Φ|nD|(Y )
and vanish at w0 [Gu, p. 143, Theorem 5]. Pulling them back to Y by Φ|nD|,
we have a + 1 holomorphic functions f = h ◦ ΦnD, f1 = h1 ◦ ΦnD, . . . , fa =
ha ◦ ΦnD on Y that have no common zeros on Z and approach zero when
y ∈ Y approaches x0 ∈ X − Y , where Φ|nD|(x0) = w0.

The hypersurface Z is defined by f . By their choice, f, f1, . . . , fa have
no common zeros on Z. Let α1 = f1|Z , . . . , αa = fa|Z be the restrictions
of holomorphic functions on Z. Since Z is Stein, there are holomorphic
functions β1, . . . , βa in H0(Z,OZ) such that on Z we have [GR1, p. 161]

α1β1 + · · ·+ αaβa = 1.

By the short exact sequence in the proof of Lemma 3.1, we have an exact
sequence

0→ H0(Y,OY )
f→ H0(Y,OY )

r→ H0(Z,OZ)→ 0.

Let gi be the lifting of βi on Y . Then 1− (f1g1 + · · ·+ faga) is holomorphic
on Y and vanishes on Z, hence is contained in the kernel of the second
map r. By the above exact sequence, 1− (f1g1 + · · ·+ faga) is in the image
of the first map, which is defined by the holomorphic function f on Y by
multiplication. Thus there is a g ∈ H0(Y,OY ) such that

1− (f1g1 + · · ·+ faga) = fg,

or on Y ,

fg + (f1g1 + · · ·+ faga) = 1.

Let {Pij} be a subsequence in S such that Φ|nD|(Pij ) approaches w0. Then
f(Pij ) = h◦Φ|nD|(Pij ), f1(Pij ) = h1◦Φ|nD|(Pij ), . . . , fa(Pij ) = ha◦Φ|nD|(Pij )
approach zero since the a+ 1 functions h, h1, . . . , ha vanish at w0. So there
is at least one function among g, g1, . . . , ga that is not bounded on the sub-
sequence {Pij}. Therefore it is not bounded on S.

Theorem 3.8. Let Y be an open subset of a normal reduced compact
complex space X of pure dimension d ≥ 1 such that X − Y is the support
of an effective Cartier divisor D. Then Y is holomorphically convex if Y
contains no compact curves, H i(Y,OY ) = 0 for all i > 0, and for every
x0 ∈ X − Y there is an n ∈ N such that Φ−1

|nD|(Φ|nD|(x0)) ∩ Y is empty or

has dimension 0.
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Proof. If Φ|nD|(S) has no accumulation point in the affine variety W ,
then there is a regular function f on W such that f is not bounded on
Φ|nD|(S). Pulling f back to Y by Φ|nD|, we obtain a holomorphic function
which is not bounded on S. Let x0 ∈ X − Y be an accumulation point of S
in X. Then Φ|nD|(x0) is an accumulation point of Φ|nD|(S) if Φ|nD|(S) is not

a finite set. If Φ−1
|nD|(Φ|nD|(x0))∩ Y is empty, then Φ|nD|(x0) /∈ Φ|nD|(Y ). By

Lemmas 3.5 and 3.6, there is a holomorphic function which is not bounded
on S.

Since Φ−1
|nD|(Φ|nD|(x0)) is a compact subset of X, if Φ−1

|nD|(Φ|nD|(x0))∩ Y

has dimension zero, then it is a finite set. Let X
α→ X ′

β→ Φ|nD|(X) be the
Stein factorization, where β is a finite surjective holomorphic map and α is a
surjective holomorphic map such that every fiber of α is connected [U, p. 9].
Let x′0 = α(x0). Then α−1(x′0)∩Y = ∅. Otherwise, Φ−1

|nD|(Φ|nD|(x0))∩Y has

dimension at least 1 by the connectedness of the fibers of α. Since β−1(W )
is a Stein space and α(x0) /∈ α(Y ) ⊂ W ′ = β−1(W ), similar to the proof
Lemma 3.6, there is a holomorphic function f on W ′ whose pullback to X
by α is not bounded on S.

Theorem 3.9. Let Y be an open subset of a normal reduced compact
complex space X with pure dimension d ≥ 1 such that X − Y is the support
of an effective Cartier divisor D. Then Y is Stein if Y contains no compact
curves, H i(Y,OY ) = 0 for all i > 0, and for every x0 ∈ X − Y there is an
n ∈ N such that Φ−1

|nD|(Φ|nD|(x0)) ∩ Y is empty or has dimension 0.

Proof. By the assumption, D is a big divisor. By Theorems 3.4 and 3.8,
Y is Stein.

Example 3.10. In Theorem 3.9, the condition that Y contains no com-
pact curves is necessary: There is a surface satisfying the other two condi-
tions but not Stein.

Let π : X → P2 be the blowup at a point O ∈ P2 and E the exceptional
curve on X. Then E is isomorphic to P1. Let L be a line in P2 such that
O /∈ L. Let D = π∗L and Y = X − D. Then D is an irreducible big
divisor on X. For sufficiently large n, Φ|nD|(Y ) ∩ Φ|nD|(X − Y ) = ∅. Since

π|Y : Y → P2−L ∼= C2 is a proper holomorphic map, for every point x ∈ C2,
the stalk of the ith direct image for i = 1, 2 vanishes [BaS, p. 93]:

(Riπ∗OY )x = H i(π−1(x),OY ) = 0.

So Riπ∗OY = 0. Since π∗OY = OC2 [U, p. 11], we have [Gu, p. 73]

H1(Y,OY ) = H1(C2, π∗OY ) = H1(C2,OC2) = 0,

H2(Y,OY ) = H2(C2, π∗OY ) = H2(C2,OC2) = 0.
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But Y is not holomorphically separable since it contains a compact curve
E ∼= P1.

Example 3.11. In Theorem 3.9, the condition H i(Y,OY ) = 0 for all
i > 0 is necessary.

Let π : X → P2 be the blowup at a point O and E the exceptional curve
on X. Let L be a line such that O /∈ L ⊂ P2. Define an effective divisor
D = π∗L+E. Let Y = X −E − π∗L. Then Y contains no compact curves,
π∗L · E = 0 and E2 = −1. For all integers j ≥ 0 and n > 0, we have

0→ OX(nπ∗L+ jE)→ OX(nπ∗L+(j+1)E)→ OE(nπ∗L+(j+1)E)→ 0.

Since

H0(E,OE(nπ∗L+ (j + 1)E)) = H0(P1,OP1(−j − 1)) = 0,

H0(X,OX(nD)) is equal to

H0(X,OX(nπ∗L+ nE)) = H0(X,OX(nπ∗L)) = H0(P2,OP2(nL)).

This implies that Φ|nD|(Y ) ∩ Φ|nD|(X − Y ) = ∅ for sufficiently large n such

that nL is very ample. Since Y is isomorphic to C2−{O}, H1(Y,OY ) is not a
finite-dimensional vector space [GR1, p. 131], and Y is not holomorphically
convex [GR1, p. 159].

Example 3.12. Let Y be an open subset of a nonsingular projective
threefold X defined over C such that X − Y is the support of an effective
divisor D, κ(D,X) = 1 and H i(Y,Ωj

Y ) = 0 for all i > 0 and j ≥ 0, where

Ωj
Y is the sheaf of regular j-forms [Z1, Z2]. Then Y contains no compact

curves and for a general point x0 ∈ X −Y , Φ−1
|nD|(Φ|nD|(x0))∩Y is a surface

on Y . We do not know if Y is Stein. This question was raised by Serre for
complex manifolds and is still open except for curves [Se, Z1, Z2, Z3].
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