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Natural operators lifting functions to affinors
on higher order cotangent bundles

by W. M. Mikulski (Kraków)

Abstract. For natural numbers n ≥ 3 and r ≥ 1 all natural operators A : T (0,0)
|Mfn

 
T (1,1)T r∗ transforming functions from n-manifolds into affinors (i.e. tensor fields of type
(1, 1)) on the r-cotangent bundle are classified.

Introduction. We study the problem of how a function f : M → R
on an n-manifold M induces an affinor A(f) on the r-cotangent bundle
T r∗M = Jr(M,R)0. This problem is reflected in the concept of natural
operators A : T (0,0)

|Mfn
 T (1,1)T r∗ in the sense of [3]. We prove that for

n ≥ 3 the space of all natural operators A : T (0,0)
|Mfn

 T (1,1)T r∗ is a free
[(r+1)(r+2)−1]-dimensional module over C∞(R) and we construct explicitly
a basis of this module.

In the proof we will use a result of J. Kurek [5] stating that for n ≥ 2 the
space of all natural affinors on T r∗ over n-manifolds is an (r+1)-dimensional
vector space over R.

Natural affinors can be used to study torsions of connections (see [4]).
That is why they have been classified in many papers ([1]–[3], [5]–[7], etc.). It
seems that natural affinors depending on some geometric objects (functions,
vector fields, forms, etc.) can also be used to study invariants of connections
depending on these objects. That is why classifications of affinors depending
on some geometric objects are useful.

The usual coordinates on Rn are denoted by x1, . . . , xn, and we write
∂i = ∂/∂xi for i = 1, . . . , n.

All manifolds and maps are assumed to be smooth, i.e. of class C∞.

1. The r-cotangent bundle. For any n-dimensional manifold M we
have the vector bundle T r∗M = Jr(M,R)0 = {jrxγ | γ : M → R, x ∈M,
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γ(x) = 0} over M . It is called the r-cotangent bundle of M . Let π : T r∗M
→ M be the bundle projection. Every embedding ϕ : M → N of two
n-manifolds induces a vector bundle map T r∗ϕ : T r∗M → T r∗N over ϕ,
namely T r∗ϕ(jrx(γ)) = jrϕ(x)(γ ◦ ϕ−1), jr0(γ) ∈ T r∗M . The functor T r∗ :
Mfn → VB is a natural vector bundle over n-manifolds [3].

2. Examples of natural operators T
(0,0)
|Mfn

 T (1,1)T r∗. A natural

operator A : T (0,0)
|Mfn

 T (1,1)T r∗ is an Mfn-invariant family of regular
operators

A : C∞(M)→ AFF(T r∗M)

from the algebra C∞(M) of smooth maps M → R into the vector space
AFF(T r∗M) of all affinors (tensor fields of type (1, 1)) on T r∗M for any
n-manifold M . The Mfn-invariance means that for any maps f1 : M → R
and f2 : N → R and any local diffeomorphism ϕ : M → N between n-
manifolds if f1 and f2 are ϕ-related then A(f1) and A(f2) are T r∗ϕ-related.
The regularity means that A transforms smoothly parametrized families of
maps into smoothly parametrized families of affinors.

Example 1. For any n-manifoldM we have the identity affinor IdTT r∗M :
TT r∗M → TT r∗M over T r∗M . Hence we have the (constant) natural opera-
tor δ : T (0,0)

|Mfn
 T (1,1)T r∗ such that δ(f) = IdTT r∗M for any map f : M → R

from an n-manifold M .

Example 2. Let p, q=0, . . . , r be such that 1≤p+ q≤r. Let f : M→R
be a map from an n-manifold M . We have an affinor

Ap,q(f) = dfV ⊗ Lp,q(f)

on T r∗M , where fV = f ◦π : T r∗M → R is the vertical lifting of f to T r∗M
and Lp,q is the vertical vector field on T r∗M given by

Lp,q(f)jrx(γ) = (jrx(γ), jrx((f − f(x))pγq)) ∈ {jrx(γ)} × T r∗x M ∼= Vjrx(γ)T
r∗M

for jrx(γ) ∈ T r∗M . The correspondence Ap,q : T (0,0)
|Mfn

 T (1,1)T r∗, f 7→
Ap,q(f), is a natural operator.

Example 3. Let p, q = 0, . . . , r be such that 1≤p+ q≤r. Let f : M→R
be a map from an n-manifold M . We have an affinor Bp,q(f) on T r∗M such
that

Bp,q(f)jrx(γ) = djrx(γ)γ
V ⊗ Lp,q(f)jrx(γ)

for jrx(γ) ∈ T r∗M , where γV = γ ◦ π is the vertical lifting of γ : M → R
to T r∗M and Lp,q is the vertical vector field on T r∗M as in Example 2.
The correspondence Bp,q : T (0,0)

|Mfn
 T (1,1)T r∗, f 7→ Bp,q(f), is a natural

operator.
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3. A classification of natural affinors on T r∗. Observe that Cq :=
B0,q(f) is a canonical affinor on T r∗M (not depending on f). Similarly, δ is
a canonical affinor on T r∗.

Let us quote a result of J. Kurek [5].

Theorem 1. For natural numbers n ≥ 2 and r ≥ 1 the vector space of
natural affinors on T r∗ is (r + 1)-dimensional. More precisely , the natural
affinors δ and Cq for q = 1, . . . , r form a basis over R in the vector space of
all natural affinors on T r∗.

The following fact follows easily from Theorem 1.

Corollary 1. Let n ≥ 2 and r ≥ 1 be natural numbers. Let B be
a natural affinor on T r∗ over n-manifolds. Suppose that B(∂C1 |jr0 (x1)) = 0,
where ( )C denotes the complete lifting (flow operator) of vector fields to T r∗.
Then B = 0.

4. The main result. The space of all natural operators A : T (0,0)
Mfn

 
T (1,1)T r∗ is a module over C∞(R). Indeed, if A : T (0,0)

Mfn
 T (1,1)T r∗ is a

natural operator and g ∈ C∞(R) then gA : T (0,0)
|Mfn

 T (1,1)T r∗ is given by

(gA)(f) = (g ◦ fV )A(f) for any f : M → R.
The main result of the present paper is the following classification theo-

rem.

Theorem 2. For natural numbers n ≥ 3 and r ≥ 1 the C∞(R)-module
of all natural operators T

(0,0)
|Mfn

 T (1,1)T r∗ is free. More precisely , the
(r + 1)(r + 2) − 1 natural operators δ, Ap,q and Bp,q for p, q = 0, 1, . . . , r
with 1 ≤ p+ q ≤ r form a basis in that C∞(R)-module.

The proof of Theorem 2 will occupy Sections 5–9.

5. Beginning of proof of Theorem 2. From now on let A : T (0,0)
|Mfn

 
T (1,1)T r∗ be a natural operator, n ≥ 3.

Let Ã : T (0,0)
|Mfn

 T (1,1)T r∗ be the natural operator given by Ã(f)|T r∗x M

= A(f(x))|T r∗x M , x ∈ M . If k ∈ R then A(k) is a canonical affinor on T r∗.
So, by Theorem 1, Ã is a linear combination of δ and A0,q with coefficients
being maps R→ R. Hence on replacing A by A− Ã we can assume that

(1) A(k) = 0

for any k ∈ R.
We are going to show that A is a linear combination of Ap,q for p =

1, . . . , r and q = 0, 1, . . . with p + q ≤ r and Bp,q for p, q = 0, 1, . . . with
1 ≤ p + q ≤ r with coefficient being maps R → R. (We can easily see that
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δ, Ap,q and Bp,q for p, q = 0, 1, . . . with 1 ≤ p + q ≤ r are C∞(R)-linearly
independent.)

6. A reducibility lemma

Lemma 1. If

(2) A(x1 + k)(∂C1 |jr0 (x2)) = A(x1 + k)(∂C2 |jr0 (x2)) = 0

and

(3) A(x1 + k)
(
d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0(x3))
)

= 0

for any k ∈ R, then A = 0.

Proof. We have to show that A(f)(w) = 0 for any f : M → R and
any w ∈ TyT r∗M . By the naturality of A, the rank theorem and a density
argument we can assume that M = Rn, f = x1 + k, y = jr0(x2). Next,
by the fiber linearity of A(f) we can assume that w = ∂C|jr0 (x2) or w =
d
dt

∣∣
t=0(jr0(x2) + tjr0γ) for some constant vector field ∂ on Rn and some γ :

Rn → R with γ(0) = 0. Then by the naturality of A, the fiber linearity of
A(f), the rank theorem and a density argument we can assume additionally
that ∂ = ∂1 or ∂ = ∂2 and γ = x3.

Lemma 1 shows that A is determined by the values A(x1 +k)(∂C1 |jr0 (x2)),
A(x1 + k)(∂C2 |jr0 (x2)) and A(x1 + k)

(
d
dt

∣∣
t=0(jr0(x2) + tjr0(x3))

)
for any k ∈ R.

7. The verticality lemma

Lemma 2. Under assumption (1), A is of vertical type, i.e. im(A(f)) ⊂
V T r∗M for any f : M → R.

Proof. By Lemma 1 it is sufficient to show that the vectors

A(x1 + k)(∂C1 |jr0 (x2)), A(x1 + k)(∂C2 |jr0 (x2)),

A(x1 + k)
(
d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0(x3))
)

are vertical for any k ∈ R.
We can write

Tπ(A(x1 + k)(∂C1 |jr0 (x2))) =
n∑

i=1

ai(k)∂i|0

for some ai ∈ R. Using the naturality of B with respect to the homotheties
τ idRn for τ 6= 0 we obtain

Tπ(A(τx1 + k)(∂C1 |jr0 (τx2))) =
n∑

i=1

ai(k)∂i|0.
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Letting τ → 0 and using (1) we see that a1(k) = . . . = an(k) = 0. Then
A(x1 + k)(∂C1 |jr0 (x2)) is vertical.

Similarly we can proceed in the two remaining cases.

8. Some inessential assumptions. Let i = 1, 2. Because A is of ver-
tical type we can write

A(x1 + k)(∂Ci |jr0 (x2)) =
d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0(γi(k, ·)))

for some γi : R × Rn → R with γi(k, 0) = 0. By the naturality of A with
respect to (x1, x2, τx3, . . . , τxn) for τ 6= 0 we have

A(x1 + k)(∂Ci |jr0 (x2)) =
d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0(γi(k, x1, x2, τx3, . . . , τxn))).

Letting τ → 0 we have

(4) A(x1 + k)(∂Ci |jr0 (x2))

=
∑

1≤p+q≤r
ai,p,q(k)

d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0((x1)p(x2)q))

for some smooth maps ai,p,q : R→ R.
Next we use the invariance of A with respect to (τx1, x2, . . . , xn) for

τ 6= 0. From (4) we obtain

A(τx1 + k)(∂C2 |jr0 (x2))

=
∑

1≤p+q≤r
τpa2,p,q(k)

d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0((x1)p(x2)q)).

Letting τ → 0 and using (1) we get

(5) a2,0,q = 0.

Then by replacing A by

(6) A−
∑

1≤p+q≤r
a1,p,qB

p,q −
∑

1≤p+q≤r, p6=0

a2,p,qA
p,q

we can assume

(7) A(x1 + k)(∂C1 |jr0 (x2)) = A(x1 + k)(∂C2 |jr0 (x2)) = 0

for any k ∈ R.

9. End of proof of Theorem 2. Given an (n − 1)-manifold N we
have the obvious inclusion T r∗N ⊂ T r∗(R × N) given by jrzγ 7→ jr(0,z)γ,
γ : N → R, z ∈ N , γ(z) = 0, where we identify γ with γ ◦ prN , prN :
R × N → N being the projection. Then for any jrzγ ∈ T r∗N we have the
induced inclusion TjrzγT

r∗N ⊂ Tjr(0,z)γT r∗(R×N).
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For q = 0, . . . , r we define an Mfn−1-natural affinor Bq : TT r∗N →
TT r∗N on T r∗N as follows. Let w ∈ TjrzγT

r∗N , γ : N → R, z ∈ N ,
γ(z) = 0. Then w ∈ Tjr(0,z)γT r∗(R × N) and we can apply A(x1 + k) to w,
where x1 : R×N → R is the projection. We have the elements jr−qz (ηwq ) ∈
J

(r−q)∗
z (N,R) (ηwq : N → R, ηw0 (z) = 0) linearly depending on w by

(8) A(x1 + k)(w) =
d

dt

∣∣∣∣
t=0

(
jr(0,z)γ + tjr(0,z)

( r∑

q=0

(x1)qηwq
))
.

We put

(9) Bq(w) =
d

dt

∣∣∣∣
t=0

(jrzγ + tjrz(γqηwq )).

From (7) we deduce that Bq(∂C2 |jr0 (x2)) = 0, where we identify x2, . . . , xn

with the usual coordinates on Rn−1 = {0} ×Rn−1. Then by Corollary 1 we
have Bq = 0 for q = 0, . . . , r. Hence (in particular)

(10) A(x1 + k)
(
d

dt

∣∣∣∣
t=0

(jr0(x2) + tjr0(x3))
)

= 0,

and thus A = 0 because of Lemma 1.

10. Corollaries. Let L(f) be a vector field on T r∗M canonically de-
pending on a function f : M → R. Then dfV ⊗ L(f) is an affinor on T r∗M
canonically dependent on f . Using Theorem 2 we can write dfV ⊗ L(f) as
a linear combination of Ap,q(f) and Bp,q(f) with coefficients from C∞(R).
Then it is easy to verify that L(f) is a linear combination of Lp,q(f) with
coefficients from R. Thus we get the following fact.

Corollary 2. For natural numbers n ≥ 3 and r ≥ 1 the natural opera-
tors Lp,q for p, q = 0, 1, . . . , r with 1 ≤ p+ q ≤ r form a basis over R in the
vector space of all natural operators T (0,0)

|Mfn
 TT r∗.

Let Ω(f) be a vector 1-form on T r∗M canonically depending on a func-
tion f : M → R. Then Ω(f) ⊗ L0,1 is an affinor on T r∗M canonically
dependent on f . Using Theorem 2 we can write Ω(f) ⊗ L0,1 as a linear
combination of Ap,q(f) and Bp,q(f) with coefficients from C∞(R). Then it
is easy to verify that Ω(f) is a linear combination of dfV and λr with coef-
ficients from C∞(R), where λr is the usual canonical 1-form on T r∗M . Thus
we get the following fact.

Corollary 3. For natural numbers n ≥ 3 and r ≥ 1 the natural op-
erators dfV and λr form a basis over C∞(R) in the C∞(R)-module of all
natural operators T (0,0)

|Mfn
 T ∗T r∗.
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[4] I. Kolář and M. Modugno, Torsions of connections on some natural bundles, Differ-
ential Geom. Appl. 2 (1992), 1–16.

[5] J. Kurek, Natural affinors on higher order cotangent bundle, Arch. Math. (Brno) 28
(1992), 175–180.

[6] W. M. Mikulski, Natural affinors on r-jet prolongation of the tangent bundle, ibid.
34 (1998), 321–328.

[7] —, Natural affinors on (Jr,s,q(·,R1,1)0)∗, Comment. Math. Univ. Carolin. 42 (2001),
655–663.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl
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