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A proof of the Livingston conjecture for the fourth
and the fifth coefficient of concave univalent functions

by Karl-Joachim Wirths (Braunschweig)

Abstract. Let D denote the open unit disc and f : D → C be meromorphic and
injective in D. We further assume that f has a simple pole at the point p ∈ (0, 1) and an
expansion

f(z) = z +
∞∑

n=2

an(f)zn, |z| < p.

In particular, we consider f that map D onto a domain whose complement with respect to
C is convex. Because of the shape of f(D) these functions will be called concave univalent
functions with pole p and the family of these functions is denoted by Co(p). It is proved
that for p ∈ (0, 1) the domain of variability of the coefficient an(f), f ∈ Co(p), for
n ∈ {2, 3, 4, 5} is determined by the inequality

∣∣∣∣∣an(f)− 1− p2n+2

pn−1(1− p4)

∣∣∣∣∣ ≤
p2(1− p2n−2)
pn−1(1− p4)

.

In the said cases, this settles a conjecture from [1]. The above inequality was proved for
n = 2 in [6] and [2] by different methods and for n = 3 in [1]. A consequence of this
inequality is the so called Livingston conjecture (see [4])

Re(an(f)) ≥ 1 + p2n

pn−1(1 + p2)
.

A classical problem in Geometric Function Theory is to determine the
domain of variability of the nth Taylor coefficient for classes of functions f
holomorphic and univalent in the unit disc D and determined by the shape
of f(D). Famous examples are the classes of convex or starlike functions.
In many of these cases the relevant families are invariant under rotations
around the origin and therefore the domains of variability under considera-
tion are discs with center at the origin.

In the present paper we consider a family of meromorphic mappings
which is not invariant under rotations and we will determine the domain
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of variability of its Taylor coefficient an(f), n ∈ {2, 3, 4, 5}, by a unified
method. We are concerned with the family of concave univalent functions
with pole p ∈ (0, 1), denoted by Co(p). We say that a function f : D → C
belongs to Co(p) if:

(i) f is meromorphic in D and has a simple pole at p ∈ (0, 1).
(ii) f has an expansion

f(z) = z +
∞∑

n=2

an(f)zn, |z| < p.

(iii) f maps D conformally onto a set whose complement with respect
to C is convex.

The story of the coefficients of concave functions began with J. Miller’s
proof of the inequality

∣∣∣∣a2(f)− 1 + p2 + p4

p(1 + p2)

∣∣∣∣ ≤
p

1 + p2(1)

for functions f that satisfy (i), (ii) and

Re
(

1 +
zf ′′(z)
f ′(z)

+
2p
z − p −

2pz
1− pz

)
< 0, z ∈ D(2)

(see [6]). In fact, at this time Pfaltzgraff and Pinchuk had essentially proved
in [7] that the class of functions that satisfy this set of conditions equals
Co(p). This fact was recognized by A. E. Livingston in the article [4] pub-
lished in these Annales. In Livingston’s paper, which mainly motivated the
research presented here, it was proved that

Re(a3(f)) ≥ 1 + p6

p2(1 + p2)
(3)

for f ∈ Co(p), p ∈ (0, 1). The extremal functions for (1) and (3) are

fθ(z) =
z − p

1 + p2 (1 + eiθ)z2

(1− z/p)(1− zp) ,(4)

where θ ∈ [0, 2π) for (1) and θ = 0 for (3). The form (4) of the extremal
functions led Livingston to the conjecture that

Re(an(f)) ≥ 1 + p2n

pn−1(1 + p2)
(5)

for all n ≥ 2, f ∈ Co(p), p ∈ (0, 1). Similar considerations led to a sharper
version of this conjecture, namely

∣∣∣∣an(f)− 1− p2n+2

pn−1(1− p4)

∣∣∣∣ ≤
p2(1− p2n−2)
pn−1(1− p4)

(6)
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for all n ≥ 2, f ∈ Co(p), p ∈ (0, 1), which generalizes (1) (see [1]). The case
n = 3 of this conjecture was proved in [1].

Concerning (5) it was proved in [3] that

Re(an(f)) ≥ 1 + p2n

pn−1(1 + p)2

for all n ≥ 2, f ∈ Co(p), p ∈ (0, 1).
In the present paper we prove a new representation formula for f ′′/f ′,

f ∈ Co(p), which enables us to give a unified proof of (6) for n ∈ {2, 3, 4, 5}.
Because of the simplicity of this proof we want to express the hope that
someone among the interested readers will see a generalization of the for-
mulae given below that will prove the conjecture (6) for all n ≥ 2.

Theorem 1. A function f belongs to the class Co(p) if and only if
f satisfies (ii) and there exists a function ω holomorphic in D such that
ω(D) ⊂ D and

f ′′(z)
f ′(z)

=
2p

1− zp+
2

p(1− z/p) +
2zω(z)− α(1 + ω(z))

1− αz(1 + ω(z)) + z2ω(z)
, z∈D,(7)

where

α :=
2p

1 + p2 ∈ (0, 1).

Proof. We will give two short alternative proofs of this theorem. One of
them starts with formula (2) and the other one with the following represen-
tation formula:

A function f belongs to the class Co(p) if and only if f satisfies (ii) and
there exists a function ψ holomorphic in D such that ψ(D) ⊂ D and

2f ′(z)
f ′′(z)

+ z =
p+

(
z − p
1− zp

)3

ψ(z)

1 +
(
z − p
1− zp

)3

pψ(z)

, z ∈ D(8)

(see [1] and [2]). Hence, by this procedure we get a short proof for the
equivalence of (2) and (8).

On the one hand, the considerations in [5], [7] and [4] concerning (2)
together with a little computation show that f ∈ Co(p) if and only if f
satisfies (ii) and there exists a function P holomorphic in D such that

Re(P (z)) > 0 for z ∈ D, P (p) =
1 + p2

1− p2 , P (0) = 1

and
f ′′(z)
f ′(z)

=
2p

1− zp +
2

p(1− z/p) +
1
z

(1− P (z)), z ∈ D.(9)
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Now we use the fact that P has the above properties if and only if there
exists a function ψ holomorphic in D such that ψ(D) ⊂ D and

P (z) =

1 + z

(
ψ(z)
(
z−p
1−zp

)
+p

1+ψ(z)
(
z−p
1−zp

)
p

)

1− z
(

ψ(z)
(
z−p
1−zp

)
+p

1+ψ(z)
(
z−p
1−zp

)
p

) , z ∈ D.(10)

If we insert (10) into (9), we get

f ′′(z)
f ′(z)

=
2p

1− zp +
2

p(1− z/p) + 2
ψ(z)(z − p) + (1− zp)p
ψ(z)(z − p)2 − (1− zp)2 .(11)

The same identity results from (8). This proves the equivalence of (2) and (8).
To derive (7) we replace in (11) the function ψ by

ψ(z) :=
p2 − ω(z)
1− ω(z)p2 .

Obviously, ω is holomorphic in D and ω(D) ⊂ D, the replacement yields (7)
and therefore proves the assertion of Theorem 1.

Theorem 2. Let f ∈ Co(p), p ∈ (0, 1) and n ∈ {2, 3, 4, 5}. Then the
domain of variability of an(f) is described by the inequality (6). A point on
the boundary of this domain is attained if and only if there exists a θ ∈ [0, 2π)
such that f = fθ, where fθ is defined as in (4).

Proof. The functions

f(c0; z) =
z − p

1 + p2 (1 + c0)z2

(1− z/p)(1− zp) , c0 ∈ D,

belong to Co(p). This is a consequence of the fact that they satisfy the con-
dition (7) for ω(z) ≡ c0. On the other hand, a computation of the coefficients
an(f(c0; ·)) shows that for any point of the domain described by (6) there
exists a c0 such that an(f) = an(f(c0; ·)).

A lengthy, but straightforward computation using (7) and the expansion

ω(z) =
∞∑

k=0

ckz
k

yields representations for an(f) of the form

an(f) = Cn(p)−Rn(p)c0 − Tn,
where

Cn(p) =
1− p2n+2

pn−1(1− p4)
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represent the centers of the domains of variability,

Rn(p) =
p2(1− p2n−2)
pn−1(1− p4)

their radii, and Tn the following remainder terms:

T2 = 0,(12)

T3 =
αc1

6
,(13)

T4 =
1
24

(α2c1 + α2c0c1 + 2αc2 + 8c1),(14)

T5 =
1

120

((
2α3 − 10α+

80
α

)
c1 + 2α3c2

0c1 + (4α3 + 8α)c0c1(15)

+ 3α2c2
1 + (4α2 + 20)c2 + 4α2c0c2 + 6αc3

)
.

Now, we have to prove that for n ∈ {2, 3, 4, 5} the inequality

|Rn(p)c0 + Tn| ≤ Rn(p)(16)

is valid for p ∈ (0, 1) and that equality in (16) is attained if and only if
ω(z) ≡ eiθ, θ ∈ [0, 2π).

For (12) this is trivial, in the other cases we proceed as follows. We use
the triangle inequality to break the left side of (16) into pieces. Then we use
the inequalities

|cn| ≤ 1− |c0|2, n ≥ 2,

for the Taylor coefficients of the unimodular bounded function ω. As an
abbreviation we use

x := |c0|
and we replace any expression in p by the corresponding expression in α.

According to (13) we have to prove in the case n = 3 that
∣∣∣∣c0 +

α

6
c1

∣∣∣∣ ≤ 1.

This follows in the way explained above from the inequality

(−1 + x)
(

1− α

6
(1 + x)

)
≤ 0

for x ∈ [0, 1] and α ∈ (0, 1). Equality is attained here if and only if x = 1.
This proves Theorem 2 in the case n = 3.

In the same way we get, for the case n = 4 from (14) and for the case
n = 5 from (15), an inequality of the form

(−1 + x)Sn(α, x) ≤ 0(17)
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that has to be proved for x ∈ [0, 1] and α ∈ (0, 1). In these two cases we show
that Sn(α, x) > 0 for x ∈ [0, 1] and α ∈ (0, 1) to get the desired conclusions.
For n = 4 this is a simple task, since

S4(α, x) =
4− α2

2α
− 1

24
(α2 + 2α+ 8 + (2α2 + 2α+ 8)x+ x2)

≥ 1
2α

(
4− α2 − α

12
(3α2 + 4α+ 17)

)
>

1
2α

> 0

for x ∈ [0, 1] and α ∈ (0, 1). Hence, (17) is true for n = 4 and equality is
attained there if and only if x = 1.

For n = 5 the proof is a bit more complicated. In this case we get

S5(α, x) =
1
α2

(
4− 2α2 − α

120
U(α, x)

)
,

where

U(α, x) = 2α4 + 7α3 − 4α2 + 20α+ 80 + (6α4 + 11α3 + 4α2 + 20α+ 80)x

+ (6α4 + α3 + 8α2)x2 + (2α4 − 3α3)x3.

From the inequality

∂U(α, x)
∂x

≥ 6α4 + 11α3 + 4α2 + 20α+ 80 + (24α4 − 7α3 + 16α2)x > 0

for x ∈ [0, 1] and α ∈ (0, 1) we conclude that

S5(α, x) ≥ S5(α, 1)

=
1
α2

(
4− 2α2 − α

120
(16α4 + 16α3 + 8α2 + 40α+ 160)

)
> 0

for x ∈ [0, 1] and α ∈ (0, 1). The last inequality implies the truth of (17) in
the case n = 5 and as above we see that equality is attained there if and
only if x = 1. This completes the proof of Theorem 2.
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