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Convolution theorems for starlike and
convex functions in the unit disc

by M. Anbudurai (Chennai), R. Parvatham (Chennai),
S. Ponnusamy (Chennai) and V. Singh (Kanpur)

Abstract. Let A denote the space of all analytic functions in the unit disc ∆ with
the normalization f(0) = f ′(0)− 1 = 0. For β < 1, let

P0
β = {f ∈ A : Re f ′(z) > β, z ∈ ∆}.

For λ > 0, suppose that F denotes any one of the following classes of functions:

M
(1)
1,λ = {f ∈ A : Re{z(zf ′(z))′′} > −λ, z ∈ ∆},

M
(2)
1,λ = {f ∈ A : Re{z(z2f ′′(z))′′} > −λ, z ∈ ∆},

M
(3)
1,λ = {f ∈ A : Re{ 1

2 (z(z2f ′(z))′′)′ − 1} > −λ, z ∈ ∆}.
The main purpose of this paper is to find conditions on λ and γ so that each f ∈ F is
in Sγ or Kγ , γ ∈ [0, 1/2]. Here Sγ and Kγ respectively denote the class of all starlike
functions of order γ and the class of all convex functions of order γ. As a consequence,
we obtain a number of convolution theorems, namely the inclusions M1,α ∗ G ⊂ Sγ and
M1,α ∗G ⊂ Kγ , where G is either P0

β or M1,β . Here M1,λ denotes the class of all functions
f in A such that Re(zf ′′(z)) > −λ for z ∈ ∆.

1. Introduction and useful lemmas. Let ∆ be the unit disc {z ∈
C : |z| < 1} and H be the space of all analytic functions in ∆, with the
topology of local uniform convergence. A function f ∈ H is said to be in
A if it satisfies the normalization conditions f(0) = f ′(0) − 1 = 0. Let Kγ
and Sγ denote respectively the well known sets of all functions f in A that
are convex and starlike (with respect to origin) of order γ, γ < 1. We are

2000 Mathematics Subject Classification: 30C45, 30C55.
Key words and phrases: univalent, starlike and convex functions, Hadamard product

and subordination.
This work was carried out while the first author was under the FIP programme

of UGC at the Ramanujan Institute for Advanced Studies in Mathematics, Chennai.
The third author was supported by Department of Science and Technology, India (No.
DST/MS/091/98). The research was initiated during the fourth author’s visit to the De-
partment of Mathematics, IIT-Madras, Chennai with support from NBHM.

[27]



28 M. Anbudurai et al.

interested in the following sets:

Pβ = {f ∈ A : there exists an η ∈ R such that

Re eiη(f ′(z)− β) > 0, z ∈ ∆},
P0
β = {f ∈ A : Re f ′(z) > β, z ∈ ∆},
Pβ = {p ∈ H : p(0) = 1 and Re p(z) > β, z ∈ ∆},

M1,λ = {f ∈ A : Re(zf ′′(z)) > −λ, z ∈ ∆},

M
(1)
1,λ = {f ∈ A : Re{z(zf ′(z))′′} > −λ, z ∈ ∆},

M
(2)
1,λ = {f ∈ A : Re{z(z2f ′′(z))′′} > −λ, z ∈ ∆},

M
(3)
1,λ =

{
f ∈ A : Re

{
1
2

(z(z2f ′(z))′′)′ − 1
}
> −λ, z ∈ ∆

}
.

For functions f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k inH their Hadamard
product (convolution) f ∗g is defined by (f ∗g)(z) =

∑∞
k=0 akbkz

k. Note that
f ∗ g is in H. This definition is extended to subsets M and N by setting

M∗N = {f ∗ g : f ∈M, g ∈ N}.

Theorem 1.1. We have the following inclusions:

(i) M (1)
1,λ ⊂ S∗ for λ = 1/2(log 4− 1),

(ii) M (1)
1,λ ⊂ K for λ = 1/log 4,

(iii) M (2)
1,λ ⊂ S∗ for λ = 1/[2− 4 log 2 + π2/6],

(iv) M (2)
1,λ ⊂ K for λ = 1/(log 4)2,

(v) M1,λ ∗M1,λ ⊂ S∗ for 2λ2 = 1/[2− 4 log 2 + π2/6],
(vi) M1,λ ∗M1,λ ⊂ K for 2λ2 = 1/(log 4)2,

(vii) M1,λ ∗ P0
0 ⊂ S∗ for 2λ = 1/2(log 4− 1),

(viii) M1,λ ∗ P0
0 ⊂ K for 2λ = 1/2 log 4.

Cases (i) and (ii) of Theorem 1.1 are Theorem 2 in [8], whereas (iii) and
(iv) are Theorem 1 in [8]. Similarly (v) and (vi) are Theorem 3 in [8] and
(vii) and (viii) are Theorem 4 in [8].

The main aim of this paper is to obtain more general theorems which,
in particular, yield all the results of Theorem 1.1 as special cases. We also
obtain some additional results concerning the class M (3)

1,λ . To prove these
results we shall use a number of lemmas that have been obtained recently
with the help of duality theory for convolutions. For results in duality theory,
we refer to the book by Ruscheweyh [6].
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Lemma 1.2 ([2, Theorem 2.1]). Let α : [0, 1]→ R be nonnegative, inte-
grable with

� 1
0 α(t) dt = 1 and suppose that Λ(t) =

� 1
t α(s)s−2 ds satisfies the

following conditions:

(i) Λ is not integrable on [0, 1], tΛ(t) is integrable on [0, 1], and positive
on (0, 1).

(ii) For 0 ≤ γ ≤ 1/2,

Λ(t)
(1 + t)(1− t)1+2γ

is decreasing on (0, 1).

For β > 0, define

F (z) = z

1�

0

(
1 +

zβ

1− tz

)
α(t) dt ∗ φ(z),(1.3)

where φ ∈ P0. Then F ∈ Sγ for all γ ∈ [0, 1/2] and for β given by

β

1�

0

(
1− 1

(1− γ)(1 + t)
+

γ

1− γ
log(1 + t)

t

)
α(t)
t

dt =
1
2
.(1.4)

A combination of Theorem 2.13 and Lemma 1.4 of [2] gives the following
result.

Lemma 1.5. Let α : [0, 1] → R be nonnegative with
� 1
0 α(t) dt = 1 and

suppose that Λ(t) = α(t)/t satisfies the following conditions:

(i) Λ is not integrable on [0, 1], tΛ(t) is integrable on [0, 1], and positive
on (0, 1).

(ii) For 0 ≤ γ ≤ 1/2,
Λ(t)

(1 + t)(1− t)1+2γ

is decreasing on (0, 1).

For β > 0, let F be defined by (1.3). Then F ∈ Kγ for all γ ∈ [0, 1/2] and
for β given by

β

1�

0

(
1− 1− γ(1 + t)

(1− γ)(1 + t)2

)
α(t)
t

dt =
1
2
.

Earlier results which led to results such as Lemmas 1.2 and 1.5 can be
found in Fournier and Ruscheweyh [4] and Ponnusamy and Rønning [5].

Lemma 1.6 ([2, Theorem 2.10]). If β > 0 and F ∈ M1,β then F ∈ Sγ
(0 ≤ γ ≤ 1/2) whenever

0 ≤ β ≤ 1− 2γ
2γ + log 4

.
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The case γ = 0 is due to Ali, Ponnusamy and Singh [1].

Lemma 1.7 ([7]). If f, g ∈ H and F,G ∈ K are such that f ≺ F and
g ≺ G, then f ∗ g ≺ F ∗ G. Here K denotes the family of convex functions
(not necessarily normalized) in ∆.

2. Starlikeness condition for functions in M
(2)
1,λ, M (1)

1,λ and M
(3)
1,λ

Theorem 2.1. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− γ

2− 2 log 4 + π2/6 + (4 log 4− 6)γ
.(2.2)

Then M
(2)
1,λ ⊂ Sγ.

Proof. Suppose that f ∈M (2)
1,λ . Then

z(z2f ′′(z))′′ ≺ 2λz
1− z .

We consider a more general differential equation

z{z(zf ′(z))′′}′ = z(z2f ′′(z))′′ = λ(φ′(z)− 1), φ ∈ P0.(2.3)

By comparing the coefficients of zn on both sides of (2.3) and by a simple
calculation, it is easily seen that

f ′(z) =
(

1 +
λ

2
z

1�

0

1
1− tz α(t) dt

)
∗ φ′(z)

so that

f(z) = z

1�

0

(
1 +

λz

2(1− tz)

)
α(t) dt ∗ φ(z),

where α(t) = 2[−1+t− log t]. In order to apply Lemma 1.2 with γ ∈ [0, 1/2],
we need to verify the relevant conditions of Lemma 1.2 with β = λ/2 and
α(t) as above. Clearly,

� 1
0 α(t) dt = 1. If we define

Λ(t) =
1�

t

α(s)
s2 ds,

then it is easy to see that

Λ(t) = 2[2− 2t−1 − (t+ 1)t−1 log t].

We observe that Λ is not integrable on [0, 1] whereas tΛ(t) is integrable on
[0, 1], and positive on (0, 1). Finally, we show that g defined by

g(t) =
Λ(t)

(1 + t)(1− t)1+2γ
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is decreasing on (0, 1). To do this we use the idea from [3, Theorem 3.12].
Taking the logarithmic derivative of g(t) and using the fact that

Λ′(t) = −α(t)
t2

,

we have

g′(t) =
(
− α(t)
t2Λ(t)

+
2(γ + (1 + γ)t)

1− t2
)
g(t).

From this equation, we observe that g′(t) ≤ 0 for t ∈ (0, 1) is equivalent to
the inequality

ψ(t) = 2Λ(t)− (1− t2)α(t)t−2

γ + (1 + γ)t
≤ 0.

Clearly ψ(1) = 0, and so it suffices to show that ψ is increasing on (0, 1).
A simple calculation shows that

ψ′(t) =
(1− t2)t−2

γ + (1 + γ)t

[
α(t)

(
− 2γ

1− t +
2
t

+
1 + γ

γ + (1 + γ)t

)
− α′(t)

]
.

Now, ψ is increasing on (0, 1) if and only if

α(t)
[−2γt+ 2(1− t)

t(1− t) +
1 + γ

γ + (1 + γ)t

]
≥ α′(t),(2.4)

which is equivalent to

α(t)
[−t+ 2(1− t)

t(1− t) +
3

1 + 3t
+
(

1
1− t +

1
(γ + (1 + γ)t)(1 + 3t)

)
(1− 2γ)

]

≥ α′(t).
In view of this observation, ψ is increasing on (0, 1) if the last inequality
holds for γ = 1/2. Thus, we need to verify the inequality

α(t)
[−t+ 2(1− t)

t(1− t) +
3

1 + 3t

]
≥ α′(t).(2.5)

Substituting the value of α(t), we have

[−(1− t)− log(1− (1− t))]
[
−1 +

2(1− t)
t

+
3(1− t)
1 + 3t

]

≥ −(1− t)2

t
= −

∞∑

k=0

(1− t)k+2.

After some simplification this is seen to be equivalent to the inequality
∞∑

k=0

(1− t)k
k + 2

(−12t2 + 6t+ 2
t(1 + 3t)

+ k + 2
)

=
∞∑

k=0

(1− t)k
k + 2

(
2[3t(1− t) + (1 + t)]

t(1 + 3t)
+ k

)
≥ 0,
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which is clearly true for all t ∈ (0, 1). Therefore, g is decreasing on (0, 1)
and by Lemma 1.2 it follows that M (2)

1,λ ⊂ Sγ for all γ ∈ [0, 1/2] and λ given
by λI = 1, where

I =
1�

0

{
1− 1

(1− γ)(1 + t)
+
γ log(1 + t)

(1− γ)t

}
α(t)
t

dt.

Thus, to complete the proof we need to compute this integral. To do this
we rewrite it as

I =
1�

0

{
t

1 + t
− γ

1− γ

(
1

1 + t
− log(1 + t)

t

)}
α(t)
t

dt,

which, by using the series expansion, can be written as

I =
∞∑

n=0

(−1)n
[ 1�

0

(
tn+1 − γ

1− γ
n

n+ 1
tn
)
α(t)
t

dt

]
.(2.6)

For each k ∈ N ∪ {0}, it can be easily seen that

−
1�

0

tk log t dt =
1

(1 + k)2 .

If we substitute α(t) = 2[−1+ t− log t] in (2.6), a simple computation yields

I = 1 + 2
[ ∞∑

n=1

(−1)n
(

1
n+ 2

− 1
n+ 1

)
+
∞∑

n=1

(−1)n
1

(n+ 1)2

− γ

1− γ

∞∑

n=1

(−1)n
(

1
n
− 1
n+ 1

− 1
(n+ 1)2

)]
.

Using the fact that
∞∑

n=1

(−1)n+1 1
n2 =

π2

12
and

∞∑

n=1

(−1)n+1 1
n

= log 2,

we find that

I = 2− 2 log 4 +
π2

6
− γ

1− γ

(
4− 4 log 2− π2

6

)

and therefore, λI = 1 gives the value of λ given by (2.2).

Theorem 2.7. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− γ

2(log 4− 1) + γ(4− 4 log 2− π2/6)
.(2.8)

Then M
(1)
1,λ ⊂ Sγ.
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Proof. Let f ∈ M
(1)
1,λ . As in the proof of Theorem 2.1, we consider a

general differential equation

z(zf ′(z))′′ = λ(φ′(z)− 1), φ ∈ P0.(2.9)

It follows that

f ′(z) = 1 +
λ

2
z

1�

0

1
1− tz α(t) dt ∗ φ′(z)

and

f(z) = z

1�

0

(
1 +

λz

2(1− tz)

)
α(t) dt ∗ φ(z)

with α(t) = 2(1− t). Because of the similarity with Theorem 2.1, it suffices
to verify (2.5) for α(t) = 2(1− t). Thus, if we substitute α(t) = 2(1− t) in
(2.5), we find that the inequality (2.5) is equivalent to

2(1− t) +
3t(1− t)

1 + 3t
≥ 0,

which is clearly true for each t ∈ (0, 1). Thus, we have the desired inclusion
M

(1)
1,λ ⊂ Sγ , where 0 ≤ γ ≤ 1/2 and λ is given by (1.4) with α(t) = 2(1− t).

Again, substituting α(t) = 2(1 − t) in (1.4), we can obtain the desired λ
given by (2.8).

Theorem 2.10. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− γ

2(4 log 2− 1− π2/6)− γ(10 + 3ζ(3)− 16 log 2− π2/3)
,(2.11)

where ζ(3) = 1.202056903 . . . denotes the Riemann zeta value at 3. Then
M

(3)
1,λ ⊂ Sγ.

Proof. Let f ∈M (3)
1,λ . Then

Re
{

1
2

(z(z2f ′(z))′′)′ − 1
}
> −λ, z ∈ ∆,

so that
1
2

(z(z2f ′(z))′′)′ − 1 ≺ 2λz
1− z , z ∈ ∆.

We consider the more general differential equation
1
2
{z(zf ′(z))′′}′ − 1 = λ(φ′(z)− 1), φ ∈ P0.

By comparison of the coefficients of the powers of z, it can be easily seen
that

f ′(z) = 1 +
λ

6
z

1�

0

1
1− tz α(t) dt ∗ φ′(z)

and therefore,
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f(z) = z

1�

0

(
1 +

λz

6(1− tz)

)
α(t) dt ∗ φ(z),

where α(t) = 12t(−1 + t− log t). We observe that f has the form (1.3) with
β = λ/6. Further, if Λ(t) =

� 1
t (α(s)/s2) ds, then a simple calculation implies

that
Λ(t) = 6[2(1− t) + log(t(2 + log t))].

Thus, as in the proof of Theorem 2.1, it suffices to verify (2.5) for

α(t) = 12t(−1 + t− log t).

Now substituting α(t) = 12t(−1 + t− log t) in (2.5) yields

[−(1−t)−log(1−(1−t)]
[−t+ 2(1− t)

1− t +
3t

1 + 3t

]
≥ −2(1−t)−log(1−(1−t)),

that is,

[−(1− t)− log(1− (1− t)]
[
− t

1− t +
(

3t
1 + 3t

+ 1
)]
≥ −(1− t).

Using the series expansion for − log(1 − (1 − t)) and deleting the common
term 1 − t on both sides and then dividing the resulting inequality by t
implies that
∞∑

k=2

(1− t)k−1

k

[
− 1

1− t +
1
t

(
1 + 6t
1 + 3t

)]
≥ − 1

1− (1− t) = −
∞∑

k=2

(1− t)k−2

or
∞∑

k=2

(1− t)k−2

k

[
1− t
t

(
1 + 6t
1 + 3t

)
+ k − 1

]
≥ 0

which is clearly true for t ∈ (0, 1). By Lemma 1.2, it follows that f ∈ Sγ
for all γ ∈ [0, 1/2] and λ given by λI = 3, where (as in the proof of Theo-
rem 2.1)

I =
∞∑

n=0

(−1)n
[ 1�

0

(
tn+1 − γ

1− γ
n

n+ 1
tn
)]

α(t)
t
dt.

To compute I, we substitute α(t) = 12t(−1 + t− log t) to obtain

I = 1 + 12
[ ∞∑

n=1

(−1)n
(

1
n+ 3

− 1
n+ 2

)
+
∞∑

n=1

(−1)n
1

(n+ 2)2

− γ

1− γ

∞∑

n=1

(−1)n
{(

2
n+ 2

− 1
n+ 1

)
+
(

1
(n+ 1)2 −

1
(n+ 1)3

)

−
(

1
n+ 1

− 1
(n+ 1)2

)}]
.
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Using the fact that
∞∑

n=1

(−1)n+1 1
n2 =

π2

12
,

∞∑

n=1

(−1)n+1 1
n

= log 2,

∞∑

n=1

(−1)n+1 1
n3 =

3
4
ζ(3) = 0.90154 . . . ,

we find that

I =
(24 log 2− 6− π2) + γ(−48 log 2− π2 + 30 + 9ζ(3))

1− γ
and therefore, λI = 3 yields the value of λ given by (2.11).

3. Convexity condition for functions in M
(2)
1,λ, M (1)

1,λ and M
(3)
1,λ

Theorem 3.1. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− 2γ

(log 4)2 + 2γ log 4
.(3.2)

Then M
(2)
1,λ ⊂ Kγ.

Proof. Let f ∈M (2)
1,λ . Then

1 +
1
λ
z[z2f ′′(z)]′′ ≺ 1 + z

1− z , z ∈ ∆.

By considering a more general differential equation

z[z2f ′′(z)]′′ = z{z(zf ′(z))′′}′ = λ(p(z)− 1), p ∈ P0,(3.3)

it can be easily seen that

z(zf ′(z))′′ = λ

z�

0

p(t)− 1
t

dt = λ

1�

0

p(uz)− 1
u

du.

Since p ∈ P0 implies that
1 + |z|
1− |z| ≥ Re p(z) ≥ 1− |z|

1 + |z| ,

we have

Re(p(uz)− 1) ≥ 1− |uz|
1 + |uz| − 1 > − 2u

1 + u

and therefore,

Re{z(zf ′(z))′′} > −λ
1�

0

2
1 + u

du = −2λ log 2.
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By Lemma 1.6, zf ′(z) is in Sγ whenever

2λ log 2 ≤ 1− 2γ
2γ + log 4

and the desired conclusion follows.

From Lemma 1.6, we can easily obtain the following result.

Theorem 3.4. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− 2γ

log 4 + 2γ
.

Then M
(1)
1,λ ⊂ Kγ.

Theorem 3.5. Let γ ∈ [0, 1/2] and let λ > 0 be given by

λ =
1− γ

2(3− log 16) + γ(2− 2 log 16 + π2/3)
.(3.6)

Then M
(3)
1,λ ⊂ Kγ.

Proof. Let f ∈ M (3)
1,λ . Then as in the proof of Theorem 2.10, we notice

that f has the form (1.3) with β = λ/6 and α(t) = 12t(−1 + t− log t). We
set

Λ(t) =
α(t)
t

and apply Lemma 1.5 to complete the proof. First we observe that Λ(t)
satisfies condition (i) of Lemma 1.5. To verify (ii), we let

g(t) =
Λ(t)

(1 + t)(1− t)1+2γ

and show that g is decreasing on (0, 1). By taking the logarithmic derivative
of g(t), it can be easily seen that g′(t) ≤ 0 on (0, 1) iff

ψ(t) = 2Λ(t) +
(1− t2)Λ′(t)
γ + (1 + γ)t

≤ 0, t ∈ (0, 1).

As ψ(1) = 0, it suffices to show that ψ is increasing on (0, 1). As usual it
suffices to show this when γ = 1/2. Putting γ = 1/2, we see that

ψ(t) = 2
[
Λ(t) +

1− t2
1 + 3t

Λ′(t)
]

so that

ψ′(t) = 2
[
Λ′(t)

(
1− 3t2 + 2t+ 3

(1 + 3t)2

)
+

1− t2
1 + 3t

Λ′′(t)
]
.

As

Λ′(t) =
tα′(t)− α(t)

t2
= −12(1− t)

t
and Λ′′(t) =

α′′(t)
t
− 2
t
Λ′(t),
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it follows easily that

ψ′(t) =
2(1− t2)
(1 + 3t)t2

[
tα′′(t)− 2tΛ′(t) + 2t2Λ′(t)

3t2 + 2t− 1
(1 + 3t)(1− t2)

]
.

By using the expression for α′′ and Λ′(t), it can be quickly found that

ψ′(t) =
24(1− t2)(1− t)(1 + 6t)

(1 + 3t)2t2
.

Therefore, ψ is increasing on (0, 1), which means that g is decreasing on
(0, 1). By Lemma 1.5, M (3)

1,λ ⊂ Kγ for all γ ∈ [0, 1/2] and λ given by λI = 3,
where

I =
1�

0

(
1− 1− γ(1 + t)

(1− γ)(1 + t)2

)
α(t)
t

dt, α(t) = 12t(−1 + t− log t).

Thus, to complete the proof we need to compute this integral. It is a simple
exercise to see that

I =
∞∑

n=0

(−1)n(n+ 1)
1�

0

(
tn+2 + 2tn+1 − γ

1− γ
n

n+ 1
tn
)
α(t)
t

dt,

which, as in the proof of Theorem 2.1, gives

I =
6(3− log 16) + γ(6− 6 log 16 + π2)

1− γ .

Therefore, λI = 3 yields the desired value of λ given by (3.6).

4. Convolution theorems

Theorem 4.7. Let γ ∈ [0, 1/2] and β < 1. Then:

(i) M1,α ∗ P0
β ⊂ Sγ whenever

2α(1− β) =
1− γ

2(log 4− 1) + γ(4− 4 log 2− π2/6)
.

(ii) M1,α ∗ P0
β ⊂ Kγ whenever

2α(1− β) =
1− 2γ

2γ + log 4
.

Proof. Let f ∈M1,α and g ∈ P0
β . Then

zf ′′(z) ≺ 2αz
1− z and g′(z) ≺ 1 + (1− 2β)z

1− z
so that, by Lemma 1.7,

zf ′′(z) ∗ g′(z) ≺ 4α(1− β)z
1− z ,
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which is equivalent to

z(zh′(z))′′ ≺ 4α(1− β)z
1− z ,

where h = f ∗g. Thus, h ∈M (1)
1,λ with λ = 2α(1−β). The desired conclusions

follow from Theorems 2.1 and 3.1, respectively.

Theorem 4.8. Let γ ∈ [0, 1/2] and α, β > 0. Then:

(i) M1,α ∗M1,β ⊂ Sγ whenever

2αβ =
1− γ

2− 2 log 4 + π2/6 + (4 log 4− 6)γ
.

(ii) M1,α ∗M1,β ⊂ Kγ whenever

2αβ =
1− 2γ

(log 4)2 + 2γ log 4
.

Proof. Let f ∈M1,α and g ∈M1,β . Then

zf ′′(z) ≺ 2αz
1− z and zg′′(z) ≺ 2βz

1− z
so that, by Lemma 1.7,

zf ′′(z) ∗ zg′′(z) ≺ 4αβz
1− z ,

which is equivalent to

z{z(zh′(z))′′}′ ≺ 4αβz
1− z ,

where h = f ∗ g. This implies that h ∈ M
(2)
1,λ with λ = 2αβ. The desired

conclusions follow from Theorems 2.1 and 3.1, respectively.
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