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On the Łojasiewicz exponent at infinity of real polynomials

by Hà Huy Vui (Hanoi) and Pha.m Tiến So.n (Dalat)

Abstract. Let f : Rn → R be a nonconstant polynomial function. Using the informa-
tion from the “curve of tangency” of f, we provide a method to determine the Łojasiewicz
exponent at infinity of f. As a corollary, we give a computational criterion to decide if the
Łojasiewicz exponent at infinity is finite or not. Then we obtain a formula to calculate the
set of points at which the polynomial f is not proper. Moreover, a relation between the
Łojasiewicz exponent at infinity of f and the problem of computing the global optimum
of f is also established.

1. Introduction. Let F := (f1, . . . , fk) : Kn → Kk be a polynomial
mapping, where K := R or K := C. We define the Łojasiewicz exponent at
infinity L∞(F ) of the mapping F to be the least upper bound of the set of
all real numbers l which satisfy the condition: there exist positive constants
c, r such that

‖F (x)‖ ≥ c‖x‖l for ‖x‖ ≥ r.
If there are no such l, we put L∞(F ) := −∞.

The Łojasiewicz exponent at infinity is of fundamental importance in
singularity theory. In a natural way, a fundamental question arises:

• How to determine the Łojasiewicz exponent at infinity L∞(F )?

In the case K = C, Chądzyński and Krasiński [2] proved that for a com-
plex polynomial mapping F := (f1, . . . , fk) : Cn → Ck,L∞(F ) is attained
on the set {x ∈ Cn | f1(x) . . . fk(x) = 0}. On the other hand, the following
example shows that a real version of this result fails to hold.

Example 1.1. Let

F : R2 → R2, (x, y) 7→ (f1(x, y) := (x− y)2, f2(x, y) := (x− y)2 + y4).

It is obvious that {(x, y) ∈ R2 | f1(x, y)f2(x, y) = 0} = {(x, x) | x ∈ R} and
‖F (x, x)‖ = |x|4.
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Moreover, one can show directly that L∞(F ) = 2. Hence, L∞(F ) is not
attained on {(x, y) ∈ R2 | f1(x, y)f2(x, y) = 0}.

In the case K = R, using polar curves, Gwoździewicz [5] (see also [6])
gave an explicit bound for the Łojasiewicz exponent at infinity of a real
polynomial function with compact zero fiber. Moreover, it was shown in [9]
that if f : R2 → R is a positive definite polynomial in two real variables (i.e.,
f(x) > 0 as ‖x‖ → ∞), then L∞(f) is attained on the polar curve of this
polynomial. It seems, however, more difficult to obtain similar results in the
general case.

Let now f : Rn → R be a nonconstant real polynomial function. The
object of this paper is to provide a method to determine L∞(f), using the
information from the “curve of tangency” (see Section 2 for definition). It is
worth noting that, in contrast to [5] and [9], we do not need to assume the
compactness of f−1(0).

As an application, we give a computational criterion to decide if the
Łojasiewicz exponent at infinity is finite or not. We also obtain a formula
to calculate the set of points at which a polynomial f is not proper. This
set was introduced and studied by Jelonek in several papers (see [10], [11],
for instance); it plays a substantial role in the geometric approach to the
Jacobian conjecture.

Moreover, based again on the curve of tangency, some links between the
Łojasiewicz exponent at infinity of f and the following interesting problems
are established:

• How to tell if the polynomial f is bounded from below or not?
• Suppose that the polynomial f is bounded from below. Find the global
infimum

f∗ := inf{f(x) | x ∈ Rn}.

The first problem was originally posed by Shor [17] in his fundamental paper
about optimization of real multivariable polynomials. On the other hand, as
is well-known, the second problem is NP-hard even when the degree of f is
fixed to be 4 [16].

The results obtained by Chądzyński and Krasiński in [2], [3] have played
an inspiring role in undertaking this research. On the other hand, the main
idea used in our argument is the notion of curve of tangency, which was
taken from [7].

The paper is organized as follows. The notion of the curve of tangency is
recalled in Section 2. The main result and its proof are given in Section 3.
Some conclusions about the Łojasiewicz exponent at infinity are obtained in
Section 4.
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2. The curve of tangency. In this section we briefly recall the notion
of the curve of tangency. For details the reader may consult [7] (see also [4]).

Throughout this paper, f : Rn → R is a nonconstant polynomial function,
and we shall denote by Σ(f) the set of critical points of f.

Set

X :=
{

(x, a) ∈ Rn × Rn

∣∣∣∣ rank

(
∂f/∂x1 · · · ∂f/∂xn

x1 − a1 · · · xn − an

)
≤ 1
}
.

For a ∈ Rn, define

Γ (a, f) := {x ∈ Rn |x 6∈ Σ(f) and (x, a) ∈ X}.
Geometrically, Γ (a, f) consists of all points x 6∈ Σ(f) where the level sets of
f are tangent to S‖x−a‖(a); here Sr(a) := {x ∈ Rn | ‖x−a‖ = r} denotes the
sphere in Rn centered at a with radius r. We also write Br(a) := {x ∈ Rn |
‖x− a‖ < r} for the open ball.

The following is a simple fact about the set Γ (a, f).

Lemma 2.1. With the previous notations:

(i) Γ (a, f) is a nonempty , unbounded and semi-algebraic set ;
(ii) There exists a proper algebraic set Ω ( Rn such that Γ (a, f) is a

one-dimensional submanifold of Rn for each a ∈ Rn \Ω.

Proof. (i) Clearly, the sets X and Σ(f) are algebraic; and hence, by
definition, Γ (a, f) is semi-algebraic.

To prove that Γ (a, f) is nonempty and unbounded, define

C := {x ∈ Rn | f(x) = min{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}},
D := {x ∈ Rn | f(x) = max{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}}.

The sets C and D are semi-algebraic and obviously unbounded in Rn. More-
over, there exists r > 0 such that either

C \ Br(a) ⊂ Γ (a, f) or D \ Br(a) ⊂ Γ (a, f).

Indeed, suppose that this is not the case. Then, by the curve selection lemma
at infinity (see [14], [15]), there exist δ > 0 and Nash (i.e., analytic algebraic)
functions ϕ : (0, δ]→ C and ψ : (0, δ]→ D such that

• limτ→0 ‖ϕ(τ)‖ = limτ→0 ‖ψ(τ)‖ =∞,
• ϕ(τ) 6∈ Γ (a, f) and ψ(τ) 6∈ Γ (a, f) for all τ ∈ (0, δ].

According to Lagrange’s multiplier theorem, this implies that

gradf [ϕ(τ)] = gradf [ψ(τ)] = 0 for all τ ∈ (0, δ].

Consequently, (f ◦ ϕ)′ and (f ◦ ψ)′ vanish in (0, δ], so that the functions
τ 7→ f [ϕ(τ)] and τ 7→ f [ψ(τ)], τ ∈ (0, δ], are constant. Hence f is constant,
which is a contradiction.
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(ii) Set Y := Σ(f)×Rn. We shall show that X \Y is a smooth manifold
of dimension n+ 1. Indeed, let (x0, a0) ∈ X \ Y. Without loss of generality,
we can assume that ∂f

∂xn
(x0) 6= 0. Then there exists a neighborhood U of x0

in Rn such that ∂f
∂xn

(x) 6= 0 for all x ∈ U. Consequently, we may write

(X \ Y ) ∩ (U × Rn) = {(x, a) ∈ U × Rn |Φi(x, a) = 0, i = 1, . . . , n− 1},
where

Φi(x, a) := (xn − an)
∂f

∂xi
(x)− (xi − ai)

∂f

∂xn
(x).

A direct computation shows that

det
(
∂Φi
∂aj

(x, a)
)

1≤i,j≤n−1

=
[
∂f

∂xn
(x)
]n−1

6= 0 for all (x, a) ∈ U × Rn.

Applying the implicit function theorem to the mapping

U × Rn → Rn−1, (x, a) 7→ (Φ1(x, a), . . . , Φn−1(x, a)),

we see that X \ Y is an (n+ 1)-dimensional submanifold of Rn × Rn.

We now consider the second projection π2 : X \ Y → Rn, (x, a) 7→ a.
By an algebraic version of Sard’s theorem (see [1]), there exists a proper
algebraic set Ω ( Rn such that for each a ∈ Rn \ Ω, π−1

2 (a) is a smooth
manifold of dimension (n+1)−n = 1. This implies that Γ (a, f) = π1(π−1

2 (a))
is a one-dimensional submanifold of Rn, where π1 is the first projection
X \ Y → Rn, (x, a) 7→ x.

This ends the proof.

Definition 2.1 (see [4], [7]). The set Γ (a, f), when it is a smooth man-
ifold of dimension 1, will be called the curve of tangency of f with respect
to a ∈ Rn.

Remark 2.1. In [4], [7], the curves of tangency of polynomials are used
for different purposes.

3. The main result. In order to formulate the main theorem we shall
need some definitions.

Definition 3.1. For any subset V ⊂ Rn, the set R∞(f, V ) of asymptotic
values of f on V consists of all y ∈ R ∪ {−∞,+∞} for which there exists a
sequence {xk}k∈N ⊂ V such that xk →∞ and f(xk)→ y.

By a standard argument, based on the curve selection lemma at infinity
(see [14], [15]), we have R∞(f,Σ(f)) ⊂ f(Σ(f)), the set of critical values
of f. According to an algebraic version of Sard’s theorem (see [1]), this implies
that R∞(f,Σ(f)) is finite. Moreover, we have

Lemma 3.1. For all a ∈ Rn, the set R∞(f, Γ (a, f)) is finite.
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Proof. This follows immediately from [8, Lemma 2.2] (see also [18, The-
orem 1.5]).

Furthermore, we can give more concrete information about the set of
asymptotic values R∞(f, Γ (a, f)) in the case where Γ (a, f) is a curve of
tangency of f. In fact, let Ω be as in Lemma 2.1. Fix a ∈ Rn \ Ω, so that
Γ (a, f) is the curve of tangency of f. It is not hard to see that for r > 0
sufficiently large, Γ (a, f)\Br(a) consists of a fixed number of one-dimensional
connected components, say Γ1, . . . , Γs. Taking r large enough, we infer that,
for i = 1, . . . , s, there exist δ > 0 and a Nash function θi : (0, δ] → Rn,
τ 7→ θi(τ), such that Γi is the germ of the curve x = θi(τ) as τ → 0. Note
that θi (or rather its germ at 0) is given by a real algebraic Puiseux series
in τ. Let

‖θi(τ)‖ := aiτ
αi + higher order terms in τ,(1)

where ai ∈ R \ {0} and αi ∈ Q. Since ‖θi(τ)‖ → +∞ as τ → 0, we have
αi < 0. We may also assume (taking δ > 0 small enough if necessary) that
the function ‖θi‖ : (0, δ]→ R, τ 7→ ‖θi(τ)‖, is strictly decreasing. Moreover,
the function f ◦ θi : (0, δ] → R, τ 7→ f [θi(τ)], is strictly increasing, strictly
decreasing or constant for δ small. Hence, it has a limit ti := limΓi f in
R ∪ {+∞,−∞}. Furthermore, we also expand

f [θi(τ)] := biτ
βi + higher order terms in τ, bi ∈ R.(2)

If the series f [θi(τ)] is identically zero, we set bi = 0 and βi arbitrary (unim-
portant).

Assume that the connected components Γ1, . . . , Γs are numbered in such
a way that t1 ≤ · · · ≤ ts. Then we put

I1 := {i | ti = t1}, Is := {i | ti = ts}.
There are the following cases to discuss:

(A1) t1 = −∞ and ts = +∞.
(A2) −∞ < t1 < 0.
(A3) 0 < ts < +∞.
(A4) 0 ≤ t1, R∞(f,Σ(f)) 6= ∅ and mint∈R∞(f,Σ(f)) t ≤ 0.
(A5) ts ≤ 0, R∞(f,Σ(f)) 6= ∅ and maxt∈R∞(f,Σ(f)) t ≥ 0.
(A6) t1 = 0 and min{bi | i ∈ I1} ≤ 0.
(A7) ts = 0 and max{bi | i ∈ Is} ≥ 0.
(A8) Otherwise.

Lemma 3.2. The set f−1(0) is not compact if and only if one of Cases
(A1)–(A7) holds.

Proof. This is straightforward.

The main result of this paper can now be formulated.
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Theorem 3.1. (Notations as above). If one of Cases (A1)–(A7) holds
then L∞(f) = −∞; otherwise, there exists a Nash function ϕ : (0, ε]→ Rn

(ε > 0) with limτ→0 ‖ϕ(τ)‖ =∞ such that either

(i) ϕ(τ) ∈ Σ(f) for all τ ∈ (0, ε] and L∞(f) = 0;
(ii) ϕ(τ) ∈ Γ (a, f) for all τ ∈ (0, ε] and

L∞(f) = min{β1/α1, βs/αs}.

Proof. By Lemma 3.2, L∞(f) = −∞ provided that one of Cases (A1)–
(A7) holds.

Conversely, suppose that none of Cases (A1)–(A7) occurs, which is equiv-
alent to saying that f−1(0) is compact. This implies that, in expansion (2),
bi 6= 0 for i = 1, . . . , s. Moreover, by (1) and (2), asymptotically as τ → 0,
we have

|f [θi(τ)]| ' ‖θi(τ)‖βi/αi , i = 1, . . . , s,

where A ' B means that A/B lies between two positive constants. Hence,
by the definition of L∞(f), we get

(3) L∞(f) ≤ min
i=1,...,s

βi/αi.

As in the proof of Lemma 2.1 we let

C := {x ∈ Rn | f(x) = min{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}},
D := {x ∈ Rn | f(x) = max{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn}}.

There are three different cases to discuss.

Case 1: C \ Br(a) * Γ (a, f) for all r > 0. Then there exist ε > 0 and a
Nash function ϕ(0, ε]→ C such that

lim
τ→0
‖ϕ(τ)‖ =∞, ϕ(τ) 6∈ Γ (a, f) for all τ ∈ (0, ε].

In view of Lagrange’s multiplier theorem,

grad f [ϕ(τ)] = 0 for all τ ∈ (0, ε].

This implies that τ 7→ f [ϕ(τ)] is constant, say m, for τ small. As a corollary,
L∞(f) ≤ 0. On the other hand, we have m > 0 because f−1(0) is compact.
Moreover, by definition, |f(x)| = f(x) ≥ m > 0 for ‖x‖ large enough. This
leads to L∞(f) ≥ 0. Therefore L∞(f) = 0.

Case 2: D \ Br(a) * Γ (a, f) for all r > 0. By entirely analogous argu-
ments to those in Case 1, we also get statement (i).

Case 3: C \ Br(a) ⊆ Γ (a, f) and D \ Br(a) ⊆ Γ (a, f) for some r > 0.
Since f−1(0) is compact, f(x) does not change sign for ‖x‖ sufficiently large.
Taking −f instead of f if needed, we can assume that f(x) > 0 for ‖x‖ large
enough.
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Notice that the set C is semi-algebraic and unbounded in Rn. Hence,
C \Br(a) ⊆ Γ (a, f) implies that C \Br(a) must contain the connected com-
ponent Γ1, and possibly some other connected components, say Γ2, . . . , Γk.

Let x ∈ Rn with ‖x‖ � 1. Since limτ→0 ‖θ1(τ)‖ =∞ and τ 7→ ‖θ1(τ)‖ is
strictly decreasing, we have ‖θ1(τ)−a‖ = ‖x−a‖ for some τ ∈ (0, δ]. Hence,

|f(x)| = f(x) ≥ min{f(y) | ‖y − a‖ = ‖x− a‖, y ∈ Rn} = f [θ1(τ)].

On the other hand, it follows from (1) and (2) that

f [θ1(τ)] ' ‖θ1(τ)− a‖β1/α1 = ‖x− a‖β1/α1 .

Therefore L∞(f) ≥ β1/α1. This fact, together with (3), proves (ii), and
hence the theorem is proved.

Remark 3.1. Suppose that the set of critical points of f is compact.
Then, by Theorem 3.1, to determine L∞(f) it suffices to compute the Puiseux
expansions at infinity of the curve of tangency Γ (a, f), which can be per-
formed using a version at infinity of Mac-Millan’s result in [12] (see also
[13]).

Example 3.1. Let f(x) := [
∑n

i=1 xi]
2 + 1. We can choose a to be the

origin in Rn. A direct computation shows that

Σ(f) =
{
x ∈ Rn

∣∣∣ n∑
i=1

xi = 0
}
, Γ (a, f) = {x ∈ Rn \ {0} |x1 = · · · = xn}.

Moreover, L∞(f) (= 0) is attained on Σ(f).

Example 3.2. Consider the polynomial in three variables

f(x, y, z) := (xy − 1)2 + x2 + (z − 1)2.

Clearly, f−1(0) = ∅. We can choose a := (0, 0, 0) ∈ R3. Then the curve of
tangency Γ (a, f) is given by the equations

2zxy2 − 2zy + 2x = 0 and 2zx2y − 2zx− 2zy + 2y = 0.

Using MAPLE we have found that there are ten (real) connected components
of the curve of tangency:

Γ±1 : ϕ±1 =
(
s−1 + 1

2s+ 1
4s

3 + · · · , s+ 1
2s

3 + · · · ,−s−4 + 1
2s
−2 + · · ·

)
,

Γ±2 : ϕ±2 =
(
−1

2s+ 3
8s

3 + · · · ,−2s−1 − s+ 3
4s

3 + · · · , 1− 17
4 s

2 + · · ·
)
,

Γ±3 : ϕ±3 =
(

2
3s
−1 + 1

4s+ · · · ,−2
3s
−1 + 1

2s+ · · · ,−9
4s

2 + 27
16s

4 + · · ·
)
,

Γ±4 : ϕ±4 =
(
2s−1 − 1

4s+ · · · , 2s−1 − 1
2s+ · · · ,−1

4s
2 − 3

16s
4 + · · ·

)
,

Γ±5 : ϕ±5 = (0, 0, s−1).
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Here s→ ±0. Then substituting these expansions in f we get

f |Γ±1 = s−8 − s−6 +O(s−4),

f |Γ±2 = 1
4s

2 + 71
4 s

4 +O(s6),

f |Γ±3 = 16
81s
−4 + 32

27s
−2 + 20

9 + 451
96 s

2 +O(s4),

f |Γ±4 = 16 s−4 − 16 s−2 + 2 + 117
32 s

2 +O(s4),

f |Γ±5 = 2 + s−2 − 2s−1.

Consequently,
α±1 =−4, β±1 =−8,
α±2 =−1, β±2 = 2,
α±3 =−1, β±3 =−4,
α±4 =−1, β±4 =−4,
α±5 =−1, β±5 =−2.

Hence,

L∞(f) = min
{
−8
−4

,
2
−1

,
−4
−1

,
−4
−1

,
−2
−1

}
= −2.

4. Corollaries. Let us keep the notations of Section 3. We now give
some applications of Theorem 3.1. The easiest consequence is an answer to
the question of [17]:

Corollary 4.1.

(i) f is bounded from below if and only if t1 > −∞.
(ii) f is bounded from above if and only if ts < +∞.

Proof. This follows immediately from the proofs of Lemma 2.1 and The-
orem 3.1.

Next we put

t∗ :=

{
t1 if R∞(f,Σ(f)) = ∅,
min{t1, min

t∈R∞(f,Σ(f))
t} if R∞(f,Σ(f)) 6= ∅,

t∗ :=

{
ts if R∞(f,Σ(f)) = ∅,
max{ts, max

t∈R∞(f,Σ(f))
t} if R∞(f,Σ(f)) 6= ∅.

Recall that the polynomial f : Rn → R is not proper at a point t ∈ R
if there is no neighborhood U of t such that f−1(U) is compact. In other
words, f is not proper at t if there is a sequence {xk}k∈N ⊂ Rn such that
xk →∞ and f(xk)→ t, i.e., t ∈ R ∩R∞(f,Rn). The polynomial f is called
proper if R ∩R∞(f,Rn) = ∅.
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For each t ∈ R we will denote by f − t the polynomial function Rn → R,
x 7→ f(x)− t.

Corollary 4.2. With the previous notations:

(i) For each t ∈ (t∗, t∗) we have

L∞(f − t) = −∞.

(ii) f is bounded neither from below nor from above if and only if

L∞(f − t) = −∞ for all t ∈ R.

(iii) f is proper if and only if L∞(f − t) is a positive constant for all
t ∈ R.

(iv) Suppose that f is not proper.
(iv-1) If t∗ > −∞, then

L∞(f − t) = 0 if and only if t < t∗.

(iv-2) If t∗ < +∞, then

L∞(f − t) = 0 if and only if t > t∗.

Proof. (i) It follows from the definitions that f−1(t) is not compact for
all t ∈ (t∗, t∗).

(ii) By Corollary 4.1, f is bounded neither from below nor from above
if and only if t1 = −∞ and ts = +∞, which is equivalent to f−1(t) being
noncompact for all t ∈ R. This proves (ii).

(iii) If L∞(f) > 0, then obviously f is proper. Conversely, suppose that f
is proper. Then f−1(0) is compact. Moreover, in (2), bi 6= 0 and the exponent
βi, i = 1, . . . , s, must be negative. But αi < 0 for i = 1, . . . , s. Hence, by
Theorem 3.1,

L∞(f) = min
{
β1

α1
,
βs
αs

}
> 0.

On the other hand, as expressed by the notation Γ (a, f), the polynomials
f with the same gradient ∇f have the same tangency variety, in other words,

Γ (a, f − t) = Γ (a, f) for all t ∈ R.

Furthermore, it is worth noting that f is proper if and only if f − t is proper
for each t ∈ R. Therefore L∞(f − t) = L∞(f) > 0, which proves (iii).

(iv) We only prove (iv-1); the proof of (iv-2) uses entirely analogous argu-
ments. So suppose that f is not proper and t∗ > −∞. Hence, in particular,
t∗ = ts = +∞. Then one can easily see that t1 < +∞, and hence β1 ≥ 0.
There are two cases to consider.
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Case 1: R∞(f,Σ(f)) = ∅. If the series f [θi(τ)] − t1 is identically zero
for some i ∈ I1 = {i | ti = t1}, then it is clear that

L∞(f − t) =
{
−∞ if t ≥ t1,
0 if t < t1.

Now suppose that f [θi(τ)] − t1 6≡ 0 for all i ∈ I1. Then it is not difficult
to see that the proof of Theorem 3.1 also shows that L∞(f − t1) < 0 and
L∞(f − t) = 0 for all t < t1. On the other hand, by (i), L∞(f − t) = −∞
for all t > t1. This proves (iv-1) in Case 1.

Case 2: R∞(f,Σ(f)) 6= ∅. Then it is not hard to verify that

L∞(f − t) =


0 if t < t∗,

−∞ if t > t∗,

−∞ if t = t∗ and {f = t∗} is not compact,
l if t = t∗ and {f = t∗} is compact,

where l is a negative rational number. As a corollary, we get (iv-1) in Case 2.

From Corollary 4.2, we immediately obtain

Corollary 4.3. Let f : Rn → R be a polynomial function. Then either

(i) the function R→ Q ∪ {−∞}, t 7→ L∞(f − t), is constant , or
(ii) there exists a stratification

R = (−∞, λ) ∪ {λ} ∪ (λ,+∞)

such that the function t 7→ L∞(f − t) is constant on each stratum.

Proof. Suppose that (i) does not hold. Let

λ :=
{
t∗ if t∗ > −∞,
t∗ if t∗ < +∞.

Then (ii) follows from Corollary 4.2.

The following corollary says that the set of points at which the polynomial
f is not proper can be computed using the information from the curve of
tangency and the Łojasiewicz exponent at infinity.

Corollary 4.4. We have

R ∩R∞(f,Rn) =


∅ if t∗ = t∗,

R if t∗ = −∞ and t∗ = +∞,
{t ∈ R | L∞(f − t) < 0} otherwise.

Proof. The statement follows directly from Corollary 4.2.

We now suppose that the polynomial f : Rn → R is bounded from below
and consider the global optimization problem:

f∗ := inf{f(x) |x ∈ Rn}.
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As is well known, if f attains a minimum in x∗ ∈ Rn, i.e., f(x∗) ≤ f(x) for
all x ∈ Rn, then the gradient of f vanishes at x∗; in other words, f∗ = f(x∗)
is a critical value of f. On the other hand, there are polynomials that are
bounded from below on Rn and yet do not attain a minimum on Rn. In such
cases, the following result shows that the global infimum is characterized in
terms of the Łojasiewicz exponent at infinity.

Corollary 4.5. Suppose that the polynomial f : Rn → R is bounded
from below. If f does not attain its infimum f∗, then L∞(f−f∗) is a negative
(finite) number , and moreover

L∞(f − t) =
{

0 if t < f∗,

−∞ if t > f∗.

Proof. Indeed, it is not difficult to see that f∗ = t1. Then the statement
follows from Corollary 4.2.

Let now F := (f1, . . . , fk) : Rn → Rk be a polynomial mapping. Notice
that the Łojasiewicz inequality does not depend on a particular norm in Rn,
so we shall use the Euclidian norm ‖ · ‖. Then consider the polynomial
function ‖F‖2 : Rn → R, x 7→ ‖F (x)‖2. By definition, one can easily see
that

L∞(F ) = 1
2L∞(‖F‖2).

Hence, directly from Theorem 3.1 we get

Corollary 4.6. If F−1(0) is not compact , then L∞(F ) = −∞; other-
wise, there exist ε > 0 and a Nash function

ϕ : (0, ε]→ Σ(‖F‖2) ∪ Γ (a, ‖F‖2), τ 7→ ϕ(τ),

such that limτ→0 ‖ϕ(τ)‖ =∞ and

L∞(F ) =
val(‖F [ϕ(τ)]‖)

val(‖ϕ(τ)‖)
,

where val(·) denotes the natural valuation of series with respect to τ ; in par-
ticular , the number L∞(F ) is rational.

Remark 4.1. By entirely analogous arguments but working in a small
sphere instead of in the complement of a large sphere, it is not hard to obtain
similar results for the local Łojasiewicz exponent of real analytic mapping
germs. We leave the details to the reader.
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