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Infinite systems of first order PFDEs with mixed conditions

by W. Czernous (Gdańsk)

Abstract. We consider mixed problems for infinite systems of first order partial
functional differential equations. An infinite number of deviating functions is permitted,
and the delay of an argument may also depend on the spatial variable. A theorem on the
existence of a solution and its continuous dependence upon initial boundary data is proved.
The method of successive approximations is used in the existence proof. Infinite differential
systems with deviated arguments and differential integral systems can be derived from the
general model by specializing the operators.

1. Introduction. For any normed linear spaces X and Y and for
M ⊂X, let C(M,Y ) denote the class of all continuous functions from M
into Y . Inequalities between vectors will be understood componentwise.

Let a > 0, h0 ∈ R+, R+ = [0,∞), h = (h1, . . . , hn), and b = (b1, . . . , bn)
∈ Rn be given where bj > 0 for 1 ≤ j ≤ n. We define

E = [0, a]× [−b, b], D = [−h0, 0]× [−h, h].

Let c̄ = (c1, . . . , cn) = b+ h and

E0 = [−h0, 0]× [−c̄, c̄], ∂0E = [0, a]× ([−c̄, c̄] \ (−b, b)),
E∗ = E0 ∪ E ∪ ∂0E, Ω = E × C(D,X)× Rn.

Moreover, for τ ∈ (0, a] and a set U ⊂ R1+n we set

Uτ = U ∩ ((−∞, τ ]× Rn).

Suppose that z : E∗ → R and (t, x) ∈ E are fixed. We define the function
z(t,x) : D → R by

z(t,x)(ζ, ξ) = z(t+ ζ, x+ ξ), (ζ, ξ) ∈ D.

The function z(t,x) is the restriction of z to [t−h0, t]× [x−h, x+h] and this
restriction is shifted to D.
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Let S be an arbitrary set of indices and let

X = {p = {ps}s∈S : ps ∈ R for s ∈ S and ‖p‖ = sup{|ps| : s ∈ S} <∞}.
We will denote by Mm×k the class of all m × k real matrices. For y =
(y1, . . . , ym) ∈ Rm and A = [aij ]i=1,...,m, j=1,...,k ∈Mm×k we put

‖y‖ =
m∑
j=1

|yj | and ‖A‖ = max
1≤j≤k

m∑
i=1

|aij |.

The product of two matrices is denoted by “∗”, and the scalar product in
Rm by “◦”. If A ∈Mm×k, then AT is the transpose matrix. We next define

Xm = {y = {ys}s∈S : ys ∈ Rm, s ∈ S; ‖y‖ = sup{‖ys‖ : s ∈ S} <∞}
and

Xm×k = {A = {As}s∈S : As ∈Mm×k, s ∈ S;
‖A‖ = sup{‖As‖ : s ∈ S} <∞}.

For η ∈ Xm we will write (η1,s, . . . , ηm,s) = ηs. Let ‖·‖ξ, ‖·‖(ξ), ‖·‖D denote
the supremum norms in C(E∗ξ , X), C(Eξ, Xm), C(D,X), respectively. For a
domain U ⊂ R1+n and for functions z : U → X, u : U → Rn of the variables
(t, x) we will write

∂tz = {∂tzs}s∈S , ∂xz = {∂xzs}s∈S = {(∂x1zs, . . . , ∂xnzs)}s∈S ,
∂z = (∂tz, ∂xz), ∂tu = (∂tu1, . . . , ∂tun)T , ∂xu =

[
∂xjui

]
i,j=1,...,n

,

provided that the derivatives exist.
Let

f : E∗ × C(D,X)× Rn → X, ϕ : E0 ∪ ∂0E → X,

α0 = {α0,s}s∈S : E → X, α′ : E → Xn

be given functions. We write αs = (α0,s, α
′
s). For a function z : E∗ → X and

a point (t, x) ∈ E, we write

zα(t,x) = {(zs)αs (t,x)}s∈S .
We consider the system of functional differential equations

(1) ∂tzs(t, x) = fs(t, x, zα(t,x), ∂xzs(t, x)), s ∈ S,
with the initial boundary condition

(2) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E.

For ξ ∈ R, 0 < ξ ≤ a, we define a classical solution z̃ : E∗ξ → X of the
system (1), (2) to be a continuous function satisfying the system (1) on E,
the condition (2), and having the derivatives ∂tz̃s, ∂xz̃s, s ∈ S, at every
point of E. In fact, higher regularity of solutions is proved in this paper (see
p. 213 for the definition of the relevant function space).
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Note that our hereditary setting contains well known delay structures as
particular cases.

Example 1.1. Suppose that f̃ : E ×X × Rn → X is a given function.
Set fs(t, x, w, q) = f̃s(t, x, w(0, 0), q), s ∈ S, then

fs(t, x, zα(t,x), ∂xzs(t, x)) = f̃s(t, x, z(α(t, x)), ∂xzs(t, x)), s ∈ S,
and (1) becomes a system with deviated variables.

Example 1.2. For a function w ∈ C(D,X) and a measurable set B ⊂ D
write

	
B w(ξ, y) dy dξ = {

	
B ws(ξ, y) dy dξ}s∈S . For the above f̃ we put

fs(t, x, w, q) = f̃s

(
t, x,

�

B

w(ξ, y) dy dξ, q
)
, s ∈ S.

Then

(3) fs(t, x, zα(t,x), ∂xzs(t, x)) = f̃s

(
t, x,

�

B

zα(ξ,y) dy dξ, ∂xzs(t, x)
)
, s ∈ S,

and (1) becomes a differential integral system.

We will discuss the existence of solutions of problem (1), (2).
In recent years, numerous papers have been published, concerning first

order partial functional differential equations. The following subjects have
been investigated: functional differential inequalities and their applications,
uniqueness of solutions to initial or initial boundary value problems, exis-
tence of classical or generalized solutions, numerical methods for functional
differential equations. It is not our aim to give a full review of papers con-
cerning the above problems. We just mention some results on the existence
of solutions and cite only a few items of the vast literature.

Nonlinear evolutionary equations with first order partial derivatives have
the following property: any classical solutions to initial or initial boundary
value problem exist locally with respect to the time variable. This leads in
a natural way to weak or generalized solutions.

Continuous solutions satisfying integral systems obtained by integrat-
ing original equations along bicharacteristics are considered in [12]. The
Schauder fixed point theorem is used to prove existence results. That paper
initiated the theory of first order partial functional differential equations.

Existence results for initial value problems for equations with deviated
variables can be found in [1]. The Baiada method is applied there and the
unknown functions depend on two variables. The paper [6] brings an exis-
tence result for quasilinear differential integral equations. The proof is based
on the method of bicharacteristics.

Carathéodory solutions of quasilinear differential functional systems with
initial or initial boundary conditions are investigated in [5], [16]. The method
of bicharacteristics and functional integral inequalities are used in existence



212 W. Czernous

proofs. Weak solutions in the Cinquini Cibrario sense are studied in [3],
[11]. Existence results for nonlinear equations are obtained by using the
method of quasilinearization. It consists in constructing a quasilinear sys-
tem for the unknown function and for its spatial derivatives. This system is
then transformed into a system of integral functional equations of Volterra
type. Continuous solutions of this integral problem lead to weak solutions
of the original differential problem. Existence of Carathéodory solutions for
nonlinear equations is considered in [4]; the constructive proof is based on
the finite difference method. Classical solutions of nonlinear functional dif-
ferential problems are considered in [2] and [8] (Chapter 2). These stud-
ies involve the method of successive approximations, introduced in [17] for
systems without functional dependence. On each step of this method, dif-
ferential problems without functional dependence arise. The existence of
a sequence of successive approximations follows from a classical theorem.
Partial differential inequalities are used in the proof of convergence of the
successive approximations.

The work [14] initiated the theory of infinite systems of first order partial
differential functional equations. Sufficient conditions are given in [14] for
the existence of classical solutions to a generalized Cauchy problem

(4)
{
∂tzi(t, x) = Gi(t, x, z, ∂xzi(t, x)),
zi(ai, x) = χi(x) for x ∈ Rn,

i = 0, 1, 2, . . . .

The variable z represents the functional argument in the system. The proof
of the existence of solution is based on the following idea. A set Xc is con-
structed, which is a closed subset of the Banach space consisting of sequences
z = {zi}∞i=0 of the bounded continuous functions zi : [−c, c]× Rn → R. For
u ∈ Xc, consider the classical Cauchy problems

(5) ∂tzi(t, x) = Gi(t, x, u, ∂xzi(t, x)), zi(ai, x) = χi(x), x ∈ Rn,

where i = 0, 1, . . . . Let us denote by Tu = {Tiu}∞i=0 the solution of (5). The
set Xc has the following property: Tu ∈ Xc and T has exactly one fixed
point ũ ∈ Xc. This ũ is a classical solution of (5).

It is clear that the result from [14] can be extended to initial boundary
value problems. The above existence result can be characterized as follows:
the theorem has simple assumptions and the proof is very natural. Unfortu-
nately, only a small class of problems are covered by this theorem. It is not
applicable to differential problems with deviated variables nor to differential
integral systems with right-hand sides given by (3).

Note that we have different models of functional dependence in (1)
and (3). There are existence results for nonlinear problems ([2], [13], [16])
where the right-hand sides of the equations are superpositions of functions
defined on a finite-dimensional Euclidean space and operators of Volterra
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type. The main assumptions in the existence theorems concern the operators
of Volterra type, and are inequalities for norms in function spaces. Compar-
isons between different models of functional dependence are presented in [7].

Functional differential inequalities generated by infinite systems are in-
vestigated in [9], [15]. Uniqueness of solutions and continuous dependence
on given functions are consequences of comparison theorems.

For further bibliography on partial differential functional equations and
applications, see the monographs [8], [18].

This paper continues the author’s study [3] of hyperbolic differential-
functional equations, and generalizes some results of [10]. We now consider a
more general form of functional dependence. Our approach admits equations
with deviated argument, where the delay depends on all variables, not only
on t, as was the case in former studies.

The paper is organized as follows. The notion of bicharacteristics for
problem (1), (2) and their properties are presented in Section 2. Then the
initial boundary value problem is transformed into a system of integral func-
tional equations. This system is solved in Section 3 by the method of succes-
sive approximations. The main existence result and continuous dependence
of solutions on the initial boundary functions are proved in Section 4.

2. Bicharacteristics. The following function spaces will be needed in
our considerations.

Given s = (s1, s2) ∈ R2
+, we denote by C1.L[s] the set of all functions

ϕ ∈ C(E0 ∪ ∂0E,X) such that

|∂tϕ(t, x)|+ ‖∂xϕ(t, x)‖ ≤ s1,

|∂tϕ(t, x)− ∂tϕ(t̄, x̄)|+ ‖∂xϕ(t, x)− ∂xϕ(t̄, x̄)‖ ≤ s2[|t− t̄|+ ‖x− x̄‖]

on E∗c .
For fixed ϕ ∈ C1.L[s], 0 < c ≤ a, and d ∈ R+ with d ≥ s1, we consider

the space CLϕ.c[d] of all z ∈ C(E∗c , X) such that z(t, x) = ϕ(t, x) on E0∪∂0E
and

‖z(t, x)− z(t̄, x̄)‖ ≤ d[|t− t̄|+ ‖x− x̄‖] on E∗c .

Let p = (p0, p1) ∈ R2
+ with p0 ≥ s1, p1 ≥ s2. We denote by CLϕ.c[p; 1] the

class of all functions u0 : E∗c → X such that u0 = ∂tϕ on E0 ∪ ∂0E and

‖u0(t, x)‖ ≤ p0 and ‖u0(t, x)− u0(t̄, x̄)‖ ≤ p1[|t− t̄|+ ‖x− x̄‖]

on Ec.
Similarly, for such p, we denote by CLϕ.c[p;n] the class of all functions

u : E∗c → Xn such that u = ∂xϕ on E0 ∪ ∂0E and
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‖u(t, x)‖ ≤ p0 and ‖u(t, x)− u(t̄, x̄)‖ ≤ p1[|t− t̄|+ ‖x− x̄‖] on Ec.

Write CLϕ.c[p; 1+n] = CLϕ.c[p; 1]×CLϕ.c[p;n]. We prove that, under suitable
assumptions on f , α and ϕ and for sufficiently small c, there exists a solution
z̄ of problem (1), (2) such that z̄ ∈ CLϕ.c[d] and ∂z̄ ∈ CLϕ.c[p; 1 + n].

We begin with assumptions on f . For 1 ≤ j ≤ n, define

∆
(j)
+ = {(t, x) ∈ E : xj = bj}, ∆

(j)
− = {(t, x) ∈ E : xj = −bj},

∆ =
n⋃
j=1

(∆(j)
+ ∪∆

(j)
− ).

Assumption H[∂qf ]. The functions fs : Ω → R, s ∈ S, of variables
(t, x, w, q) are continuous and satisfy the following conditions:

1) the partial derivatives

(∂q1fs(P ), . . . , ∂qnfs(P )) = ∂qfs(P ), P = (t, x, w, q), s ∈ S,
exist for (t, x, w, q) ∈ Ω;

2) the functions ∂qfs : Ω → Rn, s ∈ S, are continuous and there are B,
L ∈ R+ such that

‖∂qf(t, x, w, q)‖ ≤ B on Ω

and

‖∂qf(t, x, w, q)− ∂qf(t, x̄, w̄, q̄)‖ ≤ L[‖x− x̄‖+ ‖w − w̄‖D + ‖q − q̄‖];
3) there is κ > 0 such that for 1 ≤ j ≤ n and s ∈ S we have

∂qjfs(t, x, w, q) ≥ 2κ on [0, a]×∆(j)
+ × C(D,X)× Rn,

∂qjfs(t, x, w, q) ≤ −2κ on [0, a]×∆(j)
− × C(D,X)× Rn.

Assumption H[α]. The functions αs : E → E, s ∈ S, satisfy the follow-
ing conditions:

1) 0 ≤ α0,s(t, x) ≤ t for s ∈ S and there is r0 ∈ R+ such that

‖α(t, x)− α(t̄, x̄)‖ ≤ r0[|t− t̄|+ ‖x− x̄‖];
2) the derivatives ∂xα0,s, ∂xα′s, s ∈ S, exist on E and there is r1 ∈ R+

such that
‖∂xα(t, x)− ∂xα(t, x̄)‖ ≤ r1‖x− x̄‖,

where ∂xα = {∂xαs}s∈S .

Suppose that ϕ ∈ C1.L[s], z ∈ CLϕ.c[d], u ∈ CLϕ.c[p;n]. Fix s ∈ S and
consider the Cauchy problem

(6) η′(τ) = −∂qfs(τ, η(τ), zα(τ,η(τ)), us(τ, η(τ))), η(t) = x,

and denote by gs[z, us](·, t, x) its solution in the classical sense. The function
gs[z, us](·, t, x) is the sth bicharacteristic of system (1) corresponding to
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(z, us). Let I(t,x); s be its domain, and let δs[z, us](t, x) denote the left end
of the maximal interval on which the bicharacteristic is defined. The set of
all bicharacteristics of (1) corresponding to (z, u) ∈ CLϕ.c[d] × CLϕ.c[p;n] is
denoted by g[z, u] = {gs[z, us]}s∈S .

Let

Ps[z, us](τ, t, x)
= (τ, gs[z, us](τ, t, x), zα(τ,gs[z,us](τ,t,x)), us(τ, gs[z, us](τ, t, x))).

We prove a lemma on bicharacteristics.

Lemma 2.1. Suppose that Assumptions [H∂qf ] and H[α] are satisfied
and ϕ, ϕ̄ ∈ C1.L[s], z ∈ CLϕ.c[d], z̄ ∈ CLϕ̄.c[d], u ∈ CLϕ.c[p;n], ū ∈ CLϕ̄.c[p;n] are
given. Then for each s ∈ S the solutions gs[z, us](·, t, x) and gs[z̄, ūs](·, t, x)
exist on the intervals I(t,x); s and Ī(t,x); s, respectively , such that , for ξ =
δs[z, us](t, x) and ξ̄ = δs[z̄, ūs](t, x), we have gs[z, us](ξ, t, x) ∈ ∆ and
gs[z̄, ūs](ξ̄, t, x) ∈ ∆. The bicharacteristics are unique on I(t,x); s and Ī(t,x); s.
Moreover ,

(7) ‖gs[z, us](τ, t, x)− gs[z, us](τ, t̄, x̄)‖ ≤ C[|t− t̄|+ ‖x− x̄‖],

(8) ‖gs[z, us](τ, t, x)−gs[z̄, ūs](τ, t, x)‖ ≤ C
∣∣∣τ�
t

[‖z−z̄‖ξ+‖u−ū‖(ξ)] dξ
∣∣∣,

where C = max{1, B, L} exp(cLd̄) and d̄ = 1 + r0d + p1. Furthermore, the
functions δs[z, us](t, x) and δs[z̄, ūs](t, x) are continuous on Ec and

|δs[z, us](t, x)− δs[z, us](t̄, x̄)| ≤ Ĉ[|t− t̄|+ ‖x− x̄‖],(9)

|δs[z, us](t, x)− δs[z̄, ūs](t, x)| ≤ Ĉ
t�

0

[‖z − z̄‖ξ + ‖u− ū‖(ξ)] dξ,(10)

where Ĉ = Cκ−1.

Proof. The existence and uniqueness of solutions of (6) follow from
the classical theorems on the solutions of Cauchy problems. The function
gs[z, us](·, t, x) satisfies the integral equation

(11) gs[z, us](τ, t, x) = x−
τ�

t

∂qfs(Ps[z, us](ξ, t, x)) dξ.

Since z ∈ CLϕ.c[d], condition 2) of Assumption H[α] shows that

‖zα(τ,y) − zα(τ,ȳ)‖D ≤ r0d‖y − ȳ‖
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for all (τ, y), (τ, ȳ) ∈ Ec. It follows from Assumption H[∂qf ] that

‖gs[z, us](τ, t, x)− gs[z, us](τ, t̄, x̄)‖ ≤ max{1, B}[|t− t̄|+ ‖x− x̄‖]

+Ld̄
∣∣∣τ�
t

‖gs[z, us](ξ, t, x)− gs[z, us](ξ, t̄, x̄)‖ dξ
∣∣∣

for τ ∈ I(t,x); s ∩ I(t̄,x̄); s. We now obtain (7) by the Gronwall inequality. For
(τ, y), (τ, ȳ) ∈ Ec, we have

‖zα(τ,y) − z̄α(τ,ȳ)‖D ≤ ‖z − z̄‖τ + r0d‖y − ȳ‖.
It follows that

‖gs[z, us](τ, t, x)− gs[z̄, ūs](τ, t, x)‖ ≤ L
∣∣∣τ�
t

(‖z − z̄‖ξ + ‖u− ū‖(ξ)) dξ
∣∣∣

+ Ld̄
∣∣∣ τ�
t

‖gs[z, us](ξ, t, x)− gs[z̄, ūs](ξ, t, x)‖ dξ
∣∣∣,

for τ ∈ I(t,x); s ∩ Ī(t,x); s, and we get (8) from the Gronwall inequality.
The continuity of δs[z, us] and δs[z̄, ūs] on Ec follows from the classical

theorems on continuous dependence of Cauchy problems’ solutions on initial
conditions. We now prove (9). This estimate is obvious if δs[z, us](t, x) =
δs[z, us](t̄, x̄) = 0 (i.e. the solutions of problem (6) are defined on [0, t] and
[0, t̄]). Now assume that 0 ≤ δs[z, us](t, x) < δs[z, us](t̄, x̄). Then, for ζ̄ =
δs[z, us](t̄, x̄), we have gs[z, us](ζ̄, t̄, x̄) ∈ ∆ and there exists i, 1 ≤ i ≤ n,
such that|gi,s(ζ̄, t̄, x̄)| = bi. The following two cases are possible:

(i) gi,s(ζ̄, t̄, x̄) = bi;
(ii) gi,s(ζ̄, t̄, x̄) = −bi.

Consider case (i). Let x = (x1, . . . , xn), x̃ = (x1, . . . , xi−1, bi, xi+1, . . . , xn).
Then for (t, x) ∈ Ec,
(12) |∂qifs(t, x, zα(t,x), u(t, x))− ∂qifs(t, x̃, zα(t,ex), us(t, x̃))| ≤ c̃(bi − xi),

where c̃ = Ld̄. Thus

∂qifs(t, x, zα(t,x), us(t, x)) ≥ κ

for (t, x) ∈ Ec such that bi − xi ≤ κc̃−1. It follows from (7) that

bi − gi,s[z, us](ζ̄, t, x) = gi,s[z, us](ζ̄, t̄, x̄)− gi,s[z, us](ζ̄, t, x) ≤ κ/c̃
for (t, x), (t̄, x̄) ∈ Ec such that

(13) |t− t̄|+ ‖x− x̄‖ ≤ κ/c̃C.
Hence

∂qifs(ζ̄, gs[z, us](ζ̄, t, x), zα(ζ̄,gs[z,us](ζ̄,t,x)), us(ζ̄, gs[z, us](ζ̄, t, x))) ≥ κ > 0,
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and consequently

∂tgi,s[z, us](δs[z, us](t̄, x̄), t, x) < 0

for (t, x), (t̄, x̄) ∈ Ec satisfying (13). It is easy to see that gi,s(·, t, x) is de-
creasing on the interval (δs[z, us](t, x), δs[z, us](t̄, x̄)). Therefore

bi − gi,s[z, us](τ, t, x) ≤ κ/c̃,
and

∂qifs(Ps[z, us](τ, t, x))
= ∂qifs(τ, gs[z, us](τ, t, x), zα(τ,gs[z,us](τ,t,x)), us(τ, gs[z, us](τ, t, x))) ≥ κ

for τ ∈ (δs[z, us](t, x), δs[z, us](t̄, x̄)) and (t, x), (t̄, x̄) ∈ Ec such that (13) is
satisfied. Hence

−κ[δs[z, us](t̄, x̄)− δs[z, us](t, x)]

≥ −
δs[z,us](t̄,x̄)�

δs[z,us](t,x)

∂qifs(Ps[z, us](τ, t, x)) dτ

= gi,s[z, us](δs[z, us](t̄, x̄), t, x)− gi,s[z, us](δs[z, us](t, x), t, x)

≥ gi,s[z, us](δs[z, us](t̄, x̄), t, x)− gi,s[z, us](δs[z, us](t̄, x̄), t̄, x̄)

≥ −C[|t− t̄|+ ‖x− x̄‖].
Thus, the proof of (9) for (t, x), (t̄, x̄) ∈ Ec such that (13) holds is complete
in case (i). In case (ii) we proceed in a similar way. Note that we have proved
a local Lipschitz property of δs[z, us] with respect to (t, x) with a Lipschitz
constant independent of (t, x). Hence δs[z, us] satisfies a global Lipschitz
condition with respect to (t, x) with the same constant. That proves (9).

The proof of (10) is similar.

3. Integral functional equations. We denote by CL(D,X) the set of
all linear and continuous real functions defined on C(D,X) and we denote
by ‖ · ‖ the norm in CL(D,X) generated by the supremum norm ‖ · ‖D in
the space C(D,X).

Assumption H[f ]. The Assumption H[∂qf ] is satisfied and:

1) there is B0 ∈ R+ such that ‖f(t, x, w, q)‖ ≤ B0 on Ω,
2) for each s ∈ S the partial derivatives (∂x1fs(P ), . . . , ∂xnfs(P )) =

∂xfs(P ), P = (t, x, w, q), and the Fréchet derivative ∂wfs(P ) ∈
CL(D,X) exist on Ω,

3) the estimates ‖∂xf(t, x, w, q)‖ ≤ B and

‖∂wf(t, x, w, q)‖ = sup{‖∂wfs(t, x, w, q)‖ : s ∈ S} ≤ B
are satisfied on Ω, where ∂xf = {∂xfs}s∈S , ∂wf = {∂wfs}s∈S ,
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4) there is B1 ∈ R+ such that for t, t̄ ∈ [0, a] and (x,w, q) ∈ Rn ×
C(D,X)× Rn we have

‖f(t, x, w, q)− f(t̄, x, w, q)‖ ≤ B1|t− t̄|,

5) for (t, x, w, q) ∈ Ω and w̄ ∈ C(D,X) we have

‖∂xf(t, x, w, q)− ∂xf(t, x̄, w̄, q̄)‖ ≤ L[‖x− x̄‖+ ‖w − w̄‖D + ‖q − q̄‖],
‖∂wf(t, x, w, q)− ∂wf(t, x̄, w̄, q̄)‖ ≤ L[‖x− x̄‖+ ‖w − w̄‖D + ‖q − q̄‖].

Remark 3.1. We will give a theorem on the existence of solutions of
problem (1), (2). For simplicity of formulation, we have assumed the same
estimates for the derivatives ∂xf , ∂wf and ∂qf . We have also assumed the
Lipschitz condition for these derivatives with the same coefficient.

We now exhibit a system of integral equations generated by (1), (2). We
write

Qs[z, us](t, x) = (δs[z, us](t, x), gs[z, us](δs[z, us](t, x), t, x)),
Φs[z, us](t, x) = ϕs(Q[z, us](t, x)),
Ψs[z, us](t, x) = ∂xϕs(Q[z, us](t, x)),

W s[u0,s, us](t, x) = (u0,s, us)αs (t,x) ∗ ∂xαs(t, x),

W [u0, u](t, x) = {W s[u0,s, us](t, x)}s∈S ,
W{s}[z, u0, u](τ, t, x) = W [u0, u](τ, gs[z, us](τ, t, x)) ∈ C(D,X).

For u ∈ C(D,Xn), P ∈ Ω and s ∈ S, we set

∂wfs(P )u = (∂wfs(P )u1, . . . , ∂wfs(P )un).

Given ϕ ∈ C1.L[s], z ∈ CLϕ.c[d] and u0 ∈ CLϕ.c[p; 1], u ∈ CLϕ.c[p;n], where
0 < c ≤ a, we define

Fs[z, us](t, x) = Φs[z, us](t, x)(14)

+
t�

δs[z,us](t,x)

[
fs(Ps[z, us](τ, t, x))

− u(τ, gs[z, us](τ, t, x)) ◦ ∂qfs(Ps[z, us](τ, t, x))
]
dτ,

Gs[z, u0, u](t, x) = Ψs[z, us](t, x)(15)

+
t�

δs[z,us](t,x)

[
∂xfs(Ps[z, us](τ, t, x))

+ ∂wfs(Ps[z, us](τ, t, x))W{s}[z, u0, u](τ, t, x)
]
dτ,

for s ∈ S. Write

F [z, u] = {Fs[z, us]}s∈S and G[z, u0, u] = {Gs[z, u0, u]}s∈S .
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Consider the system of integral functional equations

(16) z(t, x) = F [z, u](t, x), u(t, x) = G[z, u0, u](t, x),

where

(17) u0,s(t, x) = fs(t, x, zα(t,x), us(t, x)), s ∈ S,
with the initial boundary condition

(18) z = ϕ, (u0, u) = ∂ϕ on E0 ∪ ∂0E.

Remark 3.2. The integral functional system (16)–(18) is obtained in
the following way. We first introduce an additional unknown function u,
where u = ∂xz. Then we consider the linearization of (1) with respect to u,
i.e.

(19) ∂tzs(t, x) = fs(Us) + ∂qfs(Us) ◦ (∂xzs(t, x)− us(t, x)), s ∈ S,
where Us = (t, x, zα(t,x), us(t, x)). By virtue of equation (1) we get a differ-
ential system for the unknown function u:

[∂tus(t, x)]T = ∂xfs(Us) + ∂qfs(Us) ∗ [∂xus(t, x)]T(20)
+ ∂wf(Us)W [∂tz, ∂xz](t, x), s ∈ S,

where ∂tz = {∂tzs}s∈S , ∂xz = {∂xzs}s∈S . Finally, we put ∂tz = u0 and
∂xz = u in (20). System (19), (20) has the following property: the differential
equations of bicharacteristics for (19) and for (20) are the same and they
have the form (6).

If we consider (19), (20) along the bicharacteristics gs[z, us](·, t, x), we
obtain, for s ∈ S,
d

dτ
zs(τ, gs[z, us](τ, t, x))

= fs(Ps[z, us](τ, t, x))− ∂qfs(Ps[z, us](τ, t, x)) ◦ us(τ, gs[z, us](τ, t, x))

and
d

dτ
us(τ, gs[z, us](τ, t, x))

= ∂xfs(Ps[z, us](τ, t, x)) + ∂wfs(Ps[z, us](τ, t, x))W{s}[z, u0, u](τ, t, x).

By integrating the above equations on [δs[z, us](t, x), t] with respect to τ ,
we get (16). Again by virtue of equation (1), we get the formula (17) for u0.

The existence results for (16)–(18) are based on the following method of
successive approximations. Assume that ϕ ∈ C1.L[s] and Assumption H[f ] is
satisfied. We define a sequence {z(m), u

(m)
0 , u(m)} in the following way: Write

(z, u0, u)(m) = (z(m), u
(m)
0 , u(m)) and C = CLϕ.c[d] × CLϕ.c[p; 1] × CLϕ.c[p;n].

Let (z, u0, u)(0) ∈ C be arbitrary differentiable functions such that ∂z(0) =
(u(0)

0 , u(0)) on Ec. Next, if (z, u0, u)(m) ∈ C are known functions, then u(m+1)
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is a solution of the equation

(21) u = G(m)[u]

and
z(m+1)(t, x) = F [z(m), u(m+1)](t, x)

u
(m+1)
0,s (t, x) = fs(t, x, z

(m)
α(t,x), u

(m+1)
s (t, x)), s ∈ S

}
on Ec,(22)

z(m+1)(t, x) = ϕ(t, x)

u
(m+1)
0 (t, x) = ∂tϕ(t, x)

}
on E0 ∪ ∂0Ec,(23)

where G(m) = {G(m)
s }s∈S is defined by

G(m)
s [u](t, x) = Ψs[z(m), us](t, x)(24)

+
t�

δs[z(m),us](t,x)

[
∂xfs(Ps[z(m), us](τ, t, x))

+ ∂wfs(Ps[z(m), us](τ, t, x))W (m)
{s} [us](τ, t, x)

]
dτ

for (t, x) ∈ Ec, s ∈ S, and by

(25) G(m)[u](t, x) = ∂xϕ(t, x)

for (t, x) ∈ E0 ∪ ∂0E, and where

W
(m)
{s} [us](τ, t, x) = W [u(m)

0 , u(m)](τ, gs[z(m), us](τ, t, x)) ∈ C(D,X).

We wish to emphasize that the main difficulty in carrying out this construc-
tion is to prove the existence of the sequence {z(m), u

(m)
0 , u(m)}.

We set p̄ = 1 + np0r0, ω̄ = p1r
2
0 + p0r1, Q̄ = C + Ĉ(1 + B) and A0 =

Bp̄Ĉ + cC[Ld̄p̄+ nω̄B].

Assumption H[c, d, p]. The constants c, d and p = (p0, p1) satisfy the
conditions

d = p0 ≥ max{s1 + cBp̄, B0},
p1 ≥ max{Bp̄+A0 + s2Q̄, B1 +Bd̄}.

It is easy to see that there are d, p, and c ∈ (0, a] sufficiently small that
satisfy Assumption H[c, d, p].

Lemma 3.3. If ϕ ∈ C1.L[s] and Assumptions H[α], H[f ] and H[c, d, p]
are satisfied , then

G(m) : CLϕ.c[p;n]→ CLϕ.c[p;n].

Proof. Suppose that ϕ ∈ C1.L[s], (z, u0, u)(m) ∈ C and u ∈ CLϕ.c[p;n].
Then

(26) ‖G(m)[u](t, x)‖ ≤ s1 + cBp̄ on Ec.
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We now prove that the function G(m)[u] satisfies the Lipschitz condition
with constant p1. If (t, x), (t̄, x̄) ∈ Ec, then for each s ∈ S,

‖G(m)
s [u](t, x)−G(m)

s [u](t̄, x̄)‖ ≤ Aϕ +Af ,

where

Aϕ = ‖∂xϕs(Qs[z(m), us](t, x))− ∂xϕs(Qs[z(m), us](t̄, x̄))‖,

Af =
∥∥∥ t�

δs[z(m),us](t,x)

[
∂xfs(Ps[z(m), us](τ, t, x))

+ ∂wfs(Ps[z(m), us](τ, t, x))W (m)
s [us](τ, t, x)

]
dτ

−
t̄�

δs[z(m),us](t̄,x̄)

[
∂xfs(Ps[z(m), us](τ, t̄, x̄))

+ ∂wfs(Ps[z(m), us](τ, t̄, x̄))W (m)
s [us](τ, t̄, x̄)

]
dτ
∥∥∥.

It follows from Lemma 2.1 that

Aϕ ≤ s2Q̄[|t− t̄|+ ‖x− x̄‖], Af ≤ Bp̄|t− t̄|+A0[|t− t̄|+ ‖x− x̄‖].

Hence, using Assumption H[c, d, p], we get

‖G(m)[u](t, x)−G(m)[u](t̄, x̄)‖ ≤ p1[|t− t̄|+ ‖x− x̄‖]

on Ec. This inequality, together with (26) and (25), yields Lemma 3.3.

Lemma 3.4. Suppose that ϕ ∈ C1.L[s] and Assumptions H[α], H[f ],
H[c, d, p] are satisfied. Then there exists exactly one function ū ∈ CLϕ.c[p;n]
satisfying the equation u = G(m)[u].

Proof. Lemma 3.3 shows that G(m) : CLϕ.c[p;n] → CLϕ.c[p;n]. It follows
that there is A > 0 such that, for u, ū ∈ CLϕ.c[p;n], we have

(27) ‖G(m)[u](t, x)−G(m)[ū](t, x)‖ ≤ A
t�

0

‖u− ū‖(τ) dτ

on Ec. We now define the norm in the space C(E∗c , X
n) as follows:

‖u‖λ = max{‖u(t, x)‖e−λt : (t, x) ∈ E∗c },

where λ > A. It is easy to see that (C(E∗c , X
n), ‖ ·‖λ) is a Banach space and

CLϕ.c[p;n] is its closed subset. Let us prove that there exists q ∈ (0, 1) such
that

(28) ‖G(m)[u]−G(m)[ū]‖λ ≤ q‖u− ū‖λ for u, ū ∈ CLϕ.c[p;n].
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Since, from (25), ‖G(m)[u](t, x)−G(m)[ū](t, x)‖e−λt vanishes on E0 ∪ ∂0Ec,
it is sufficient to estimate it on Ec. According to (27), we have

‖G(m)[u](t, x)−G(m)[ū](t, x)‖ ≤ A
t�

0

‖u− ū‖(ξ) dξ

= A

t�

0

‖u− ū‖(ξ)e−λξeλξ dξ ≤ A‖u− ū‖λ
t�

0

eλξ dξ

=
A

λ
‖u− ū‖λ(eλt − 1) ≤ A

λ
‖u− ū‖λeλt

for (t, x) ∈ Ec. Hence

‖G(m)[u](t, x)−G(m)[ū](t, x)‖e−λt ≤ A

λ
‖u− ū‖λ, (t, x) ∈ Ec.

It follows that estimate (28) holds with q = Aλ−1. By the Banach fixed-
point theorem, there exists exactly one ū ∈ CLϕ.c[p;n] satisfying the equation
u = G(m)[u].

We now prove the main lemma in this section.

Lemma 3.5. If ϕ ∈ C1.L[s] and Assumptions H[α], H[f ] and H[c, d, p]
are satisfied , then, for any m ≥ 0, we have

(29) ∂z(m)(t, x) = (u(m)
0 , u(m))(t, x) on Ec

and z(m) ∈ CLϕ.c[d], u(m)
0 ∈ CLϕ.c[p; 1].

Proof. We prove (29) by induction. It follows from the definition of the
sequence {(z, u0, u)(m)} that (29) is satisfied for m = 0. Assuming that it
holds for a givenm ≥ 0, we prove that z(m+1), u(m)

0 given by (22) satisfy (29).
We fix s ∈ S and set

∆(m)(t, t̄, x, x̄) = z(m+1)
s (t̄, x̄)− z(m+1)

s (t, x)(30)

− u(m+1)
0,s (t, x)(t̄− t)− u(m+1)

s (t, x) ◦ (x̄− x),

where (t, x), (t̄, x̄) ∈ Ec. We prove that there exists C̃ ∈ R+ such that

(31) |∆(m)(t, t̄, x, x̄)| ≤ C̃‖x̄− x‖2 on Ec.

Fix (t, x), (t̄, x̄) ∈ Ec and set, for brevity,

g(τ) = gs[z(m), u(m+1)
s ](τ, t, x), g(τ) = gs[z(m), u(m+1)

s ](τ, t̄, x̄),

P (τ) = Ps[z(m), u(m+1)
s ](τ, t, x), P (τ) = Ps[z(m), u(m+1)

s ](τ, t̄, x̄),

δ = δs[z(m), u(m+1)
s ](t, x), δ̄ = δs[z(m), u(m+1)

s ](t̄, x̄),

and

Q(θ, τ) = θP (τ) + (1− θ)P (τ), W (m)(τ) = W (m)
s [u(m+1)

s ](τ, t, x).
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It follows from (21) and (22) that

∆(m)(t, t̄, x, x̄) = Fs[z(m), u(m+1)
s ](t̄, x̄)− Fs[z(m), u(m+1)

s ](t, x)(32)

− u(m+1)
0,s (t, x)(t̄− t)−G(m)

s [u(m+1)](t, x) ◦ (x̄− x).

To simplify the formulation of properties of the function ∆(m) we define

A(m)(t, t̄, x, x̄) = ϕs(δ̄, g(δ̄))− ϕs(δ, g(δ))
− ∂tϕs(δ, g(δ))(δ̄ − δ)− ∂xϕs(δ, g(δ)) ◦ [g(δ̄)− g(δ)],

B(m)(t, t̄, x, x̄) = ∂tϕs(δ, g(δ))(δ̄ − δ)
+ ∂xϕs(δ, g(δ)) ◦ [g(δ̄)− g(δ)− x̄+ x],

C(m)(τ, t, t̄, x, x̄) =
t�

τ

[∂qfs(P (ξ))− ∂qfs(P (ξ))] dξ +
t̄�

t

∂qfs(P (ξ)) dξ,

Λ(m)(t, t̄, x, x̄) =
( δ�
δ̄

+
t̄�

t

)
[fs(P (τ))− u(m+1)

s (τ, g(τ)) ◦ ∂qfs(P (τ))] dτ.

It follows from (32) that

∆(m)(t, t̄, x, x̄) = ϕs(δ̄, g(δ))− ϕs(δ, g(δ)) +
t�

δ

[fs(P (τ))− fs(P (τ))] dτ

+
t�

δ

[−u(m+1)
s (τ, g(τ)) ◦ ∂qfs(P (τ)) + u(m+1)

s (τ, g(τ)) ◦ ∂qfs(P (τ))] dτ

+ Λ(m)(t, t̄, x, x̄)− u(m+1)
0,s (t, x)(t̄− t)−G(m)

s [u(m+1)](t, x) ◦ (x̄− x).

Having disposed of this preliminary step, we apply the Hadamard mean
value theorem to the difference

fs(P (τ))− fs(P (τ)).

We thus get

∆(m)(t, t̄, x, x̄) = ∆
(m)(t, t̄, x, x̄) + ∆̃(m)(t, t̄, x, x̄)

where

∆
(m)(t, t̄, x, x̄) = A(m)(t, t̄, x, x̄)

+
t�

δ

1�

0

[∂xfs(Q(θ, τ))− ∂xfs(P (τ))] dθ ◦ [g(τ)− g(τ)] dτ

+
t�

δ

1�

0

[∂wfs(Q(θ, τ))− ∂wfs(P (τ))] dθ[z(m)
α(τ,g(τ)) − z

(m)
α(τ,g(τ))] dτ
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+
t�

δ

[u(m+1)
s (τ, g(τ))− u(m+1)

s (τ, g(τ))]

◦
1�

0

[∂qfs(Q(θ, τ))− ∂qfs(P (τ))] dθ dτ

+
t�

δ

∂wfs(P (τ))[z(m)
α(τ,g(τ)) − z

(m)
α(τ,g(τ)) −W

(m)(τ) ◦ (g(τ)− g(τ))] dτ

and

∆̃(m)(t, t̄, x, x̄) = B(m)(t, t̄, x, x̄)

+
t�

δ

[∂xfs(P (τ)) + ∂wfs(P (τ))W (m)(τ)] ◦ [g(τ)− g(τ)− x̄+ x] dτ

−
t�

δ

u(m+1)
s (τ, g(τ)) ◦ [∂qfs(P (τ))− ∂qfs(P (τ))] dτ

+ Λ(m)(t, t̄, x, x̄)− u(m+1)
0,s (t, x)(t̄− t).

Let us estimate |∆̃(m)(t, t̄, x, x̄)|. It follows from (11) that

g(τ)− g(τ)− x̄+ x = C(m)(τ, t, t̄, x, x̄)

and

g(δ̄)−g(δ)− x̄+x =
( δ�
δ̄

+
t̄�

t

)
∂qfs(P (τ)) dτ+

t�

δ

[∂qfs(P (τ))−∂qfs(P (τ))] dτ.

Substituting the above relations into ∆̃(m)(t, t̄, x, x̄) and changing the order
of integrals where necessary we obtain

∆̃(m)(t, t̄, x, x̄) = D(m)(t, t̄, x, x̄)

+
t�

δ

E(m)(τ, t, x) ◦ [∂qfs(P (τ))− ∂qfs(P (τ))] dτ,

where

D(m)(t, t̄, x, x̄) =
t̄�

t

[
(u(m+1)
s (t, x)− u(m+1)

s (τ, g(τ))) ◦ ∂qfs(P (τ))

+ fs(P (τ))− u(m+1)
0,s (t, x)

]
dτ

+
δ�

δ̄

[
(∂xϕs(δ, g(δ))− u(m+1)

s (τ, g(τ))) ◦ ∂qfs(P (τ))

+ fs(P (τ))− ∂tϕs(δ, g(δ))
]
dτ
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and

E(m)(τ, t, x) = −u(m+1)
s (τ, g(τ)) + ∂xϕs(δ, g(δ))

+
τ�

δ

[∂xfs(P (ξ)) + ∂wfs(P (ξ))W (m)(ξ)] dξ.

The next claim is that E(τ, t, x) = 0 for (t, x), (t̄, x̄) ∈ Ec and τ ∈ [0, c]. To
see this, write (21) at the point (τ, g(τ)) and note that

gs[z(m), u(m+1)
s ](ξ, τ, g(τ)) = gs[z(m), u(m+1)

s ](ξ, t, x) = g(ξ).

Thus ∆̃(m)(t, t̄, x, x̄) = D(m)(t, t̄, x, x̄). We conclude from (22) and Lem-
ma 2.1 that there is C1 ∈ R+ such that

(33) |∆̃(m)(t, t̄, x, x̄)| ≤ C1[|t̄− t|+ ‖x̄− x‖]2.

We will now estimate ∆(m)(t, t̄, x, x̄). It follows from Assumption H[f ]
that

‖∂xfs(Q(s, τ))− ∂xfs(P (τ))‖ ≤ Ld̄‖g(τ)− g(τ)‖
and similar estimates hold for ∂wfs, ∂qfs. An easy computation shows that

|A(m)(t, t̄, x, x̄)| ≤ s2(|δ̄ − δ|+ ‖g(δ̄)− g(δ)‖)2,

‖z(m)
α(τ,g(τ)) − z

(m)
α(τ,g(τ))‖D ≤ dr0‖g(τ)− g(τ)‖,

‖u(m+1)
s (τ, g(τ))− u(m+1)

s (τ, g(τ))‖ ≤ p1‖g(τ)− g(τ)‖.

Since ∂z(m) = (u(m)
0 , u(m)) on E∗c , we have

‖z(m)
α(τ,g(τ)) − z

(m)
α(τ,g(τ)) −W

(m)(τ) ◦ [g(τ)− g(τ)]‖D ≤ nω̄‖g(τ)− g(τ)‖2.

The above estimates and the definition of ∆̄(m)(t, t̄, x, x̄) yield

(34) ∆
(m)(t, t̄, x, x̄) ≤ s2(|δ̄ − δ|+ ‖g(δ̄)− g(δ)‖)2 +A∗

t�

δ

‖g(τ)− g(τ)‖2 dτ,

where A∗ = Bnω̄ + Ld̄2. It follows from Lemma 2.1 that there is C2 ∈ R+

such that

(35) ∆̄(m)(t, t̄, x, x̄) ≤ C2[|t̄− t|+ ‖x̄− x‖]2.
Adding inequalities (33) and (35), we get (31), and from arbitrariness of
(t, x), (t̄, x̄) ∈ Ec, and s ∈ S,

∂z(m+1) = (u(m+1)
0 , u(m+1)) on Ec.

This completes the proof of (29).
We now prove that z(m+1) ∈ CLϕ.c[d]. It is clear that z(m+1) is continuous

on Ec and z(m+1) = ϕ on E0 ∪ ∂0E. Moreover, it follows from Assumption
H[c, d, p] and (29) that ‖z(m+1)(t, x)− z(m+1)(t̄, x̄)‖ ≤ d[|t̄− t|+ ‖x̄− x‖].
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It remains to prove u
(m+1)
0 ∈ CLϕ.c[p; 1]. Clearly, u(m+1)

0 is continuous

on Ec and u
(m+1)
0 = ∂tϕ on E0 ∪ ∂0E. Furthermore, Assumption H[c, d, p]

implies ‖u(m+1)
0 (t, x)‖ ≤ p0 and ‖u(m+1)

0 (t, x) − u(m+1)
0 (t̄, x̄)‖ ≤ p1[|t̄ − t| +

‖x̄− x‖].

Now we prove that the sequence {(z, u0, u)(m)} is uniformly convergent
on Ec.

Lemma 3.6. If Assumptions H[α], H[f ] and H[c] are satisfied , then the
sequence {(z, u0, u)(m)} is uniformly convergent on Ec.

Proof. For t ∈ [0, c] and m ≥ 1, we set

Z(m)(t) = ‖z(m) − z(m−1)‖t, U (m)(t) = ‖u(m) − u(m−1)‖(t).

It follows from Lemma 2.1 that

‖g[z(m), u(m+1)](τ, t, x)− g[z(m−1), u(m)](τ, t, x)‖

≤ C
∣∣∣τ�
t

[Z(m)(ξ) + U (m+1)(ξ)] dξ
∣∣∣

and

|δs[z(m), u(m+1)
s ](t, x)− δs[z(m−1), u(m)

s ](t, x)|

≤ Ĉ
t�

0

[Z(m)(τ) + U (m+1)(τ)] dτ, s ∈ S.

Hence we obtain the integral inequality

U (m+1)(t) ≤ Ã
t�

0

U (m+1)(τ) dτ

+
t�

0

[B̃Z(m−1)(τ) + ÃZ(m)(τ) + B̃U (m)(τ)] dτ

for some constants Ã, B̃ ∈ R+, independent of m. The above estimate and
the Gronwall inequality yield

U (m+1)(t) ≤ e eAc t�
0

[B̃Z(m−1)(τ) + ÃZ(m)(τ) + B̃U (m)(τ)] dτ, m ≥ 1.

An easy computation shows that there is a constant B ∈ R+ independent
of m, such that

Z(m+1)(t) ≤ B
t�

0

[Z(m)(τ) + U (m+1)(τ)] dτ.



Infinite systems of first order PFDEs 227

The above two inequalities yield

Z(m+1)(t) + U (m+1)(t) ≤ D1

t�

0

[Z(m)(τ) + U (m)(τ)] dτ(36)

+D2

t�

0

Z(m−1)(τ) dτ

for all m ≥ 1 and some D1, D2 ∈ R+. We define the norm in the space
C([0, c],R) as follows:

‖ζ‖λ = max{|ζ(t)|e−λt : t ∈ [0, c]},

where λ > D1 +D2. According to (36), we have

Z(m+1)(t) + U (m+1)(t)

≤ D1

t�

0

[Z(m)(τ) + U (m)(τ)] dτ +D2

t�

0

Z(m−1)(τ) dτ

= D1

t�

0

[Z(m)(τ) + U (m)(τ)]e−λτeλτ dτ +D2

t�

0

Z(m−1)(τ)e−λτeλτ dτ

≤ D1‖Z(m) + U (m)‖λ
t�

0

eλτ dτ +D2‖Z(m−1)‖λ
t�

0

eλτ dτ

=
D1

λ
‖Z(m) + U (m)‖λ(eλt − 1) +

D2

λ
‖Z(m−1)‖λ(eλt − 1)

≤
(
D1

λ
‖Z(m) + U (m)‖λ +

D2

λ
‖Z(m−1)‖λ

)
eλt

for t ∈ [0, c]. It follows that

|Z(m+1)(t) + U (m+1)(t)|e−λt ≤ D1

λ
‖Z(m) + U (m)‖λ +

D2

λ
‖Z(m−1)‖λ

for t ∈ [0, c]. Writing y(m) = ‖Z(m) + U (m)‖λ yields

0 ≤ y(m+1) ≤ γ1y
(m) + γ2y

(m−1).

Moreover, from Lemmata 3.3 and 3.5 we get y(1), y(2) ≤ 2(db̄ + p̃), where
p̃ = min{p0, p1b̄} and b̄ = min{b, c}. From the above and from the stability
theory for difference equations (using the fact that γ1 + γ2 < 1), there exist
C ∈ R+ and q ∈ (0, 1) such that

y(m) ≤ Cqm for m ∈ N.
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By the above inequality, {z(m)}, {u(m)} are Cauchy sequences in CLϕ.c[d],
CLϕ.c[p;n], hence are uniformly convergent. Now, define

U
(m)
0 (t) = ‖u(m)

0 − u(m−1)
0 ‖t.

Note that from (22) we get

U
(m+1)
0 (t) ≤ B[Z(m)(t) + U (m+1)(t)] ≤ BC(1 + q)qm.

Since Lemma 3.3 implies U (1)
0 (t) ≤ 2p̃, {u(m)

0 } is a Cauchy sequence (in
CLϕ.c[p; 1]) as well, and hence is uniformly convergent.

4. Existence of solutions of nonlinear mixed problems. We can
now state the main result on the existence of classical solutions to problem
(1), (2). For a function ϕ ∈ C1.L[s] and τ ∈ [0, a] we write

‖ϕ‖τ = max{‖ϕ(t, x)‖ : (t, x) ∈ E0 ∪ ∂0Eτ},
‖∂tϕ‖τ = max{‖∂tϕ(t, x)‖ : (t, x) ∈ E0 ∪ ∂0Eτ},
‖∂xϕ‖τ = max{‖∂xϕ(t, x)‖ : (t, x) ∈ E0 ∪ ∂0Eτ}.

Theorem 4.1. If Assumptions H[α], H[f ] and H[c] are satisfied , then,
for every ϕ ∈ C1.L[s], there exists a solution v : E∗c → X of problem (1), (2).
Moreover , v ∈ CLϕ.c[d] and ∂v ∈ CLϕ.c[p; 1 + n].

If ϕ̄ ∈ C1.L[s] and v̄ ∈ CLϕ̄.c[d] is a solution of system (1) with initial
boundary condition z = ϕ̄ on E0 ∪ ∂0E, then there is Λc ∈ R+ such that for
0 ≤ t ≤ c,
(37) ‖v̄ − v‖t + ‖∂tv − ∂tv̄‖(t) + ‖∂xv − ∂xv̄‖(t)

≤ Λc[‖ϕ̄− ϕ‖t + ‖∂tϕ− ∂tϕ̄‖t + ‖∂xϕ− ∂xϕ̄‖t].

Proof. It follows from Lemmata 3.5 and 3.6 that there is v ∈ CLϕ.c[d]
such that

v(t, x) = lim
m→∞

z(m)(t, x), ∂z(t, x) = lim
m→∞

u(m)(t, x)

uniformly on Ec. Thus, we get

v(t, x) = F [v, ∂xv](t, x), ∂xv(t, x) = G[v, ∂tv, ∂xv](t, x),

and

gs[v, ∂xvs](τ, t, x) = x+
t�

τ

∂qfs(Ps[v, ∂xvs](ξ, t, x)) dξ.

Moreover, the initial boundary conditions

v = ϕ, ∂v = ∂ϕ on E0 ∪ ∂0Ec

are satisfied. It follows that v is a classical solution of problem (1), (2)
on E∗c . The proof is similar to the proof of the corresponding properties
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for initial-value or initial boundary value problems considered in [3] and [8]
(Chapter 4). The details are omitted.

We now prove (37). To this end, we first prove

(38) ‖v̄−v‖t+‖∂xv−∂xv̄‖(t) ≤ Λc[‖ϕ̄−ϕ‖t+‖∂tϕ−∂tϕ̄‖t+‖∂xϕ−∂xϕ̄‖t]
for 0 ≤ t ≤ c. The functions (v̄, ∂xv̄) satisfy the integral functional system
(16), (17) and the initial boundary condition (18) with ϕ̄ instead of ϕ. It
easily follows that there are Λ0, Λ1 ∈ R+ such that

‖v̄ − v‖t + ‖∂xv − ∂xv̄‖(t) ≤ Λ0[‖ϕ̄− ϕ‖t + ‖∂tϕ− ∂tϕ̄‖t + ‖∂xϕ− ∂xϕ̄‖t]

+ Λ1

t�

0

[‖v̄ − v‖τ + ‖∂xv − ∂xv̄‖(τ)] dτ, 0 ≤ t ≤ c.

Using the Gronwall inequality, we get (38) with Λc = Λ0 exp(Λ1c). Moreover,
from (17) we have

‖∂tv − ∂tv̄‖(t) ≤ ‖∂tϕ− ∂tϕ̄‖t +B[‖v̄ − v‖t + ‖∂xv − ∂xv̄‖(t)], 0 ≤ t ≤ c,

which, together with (38), yields (37) with Λc = 1 + (1 +B)Λc.

Remark 4.2. Note that a corresponding existence result for systems of
equations with deviated argument, or integral-differential equations, of the
form given in Examples 1.1, 1.2, may be easily obtained from the preceding
theorem.

Remark 4.3. The theory presented in this paper may be easily extended
to systems of equations with several function variables:

∂tzs(t, x) = fs(t, x, zα1(t,x), zα2(t,x), . . . , zαn(t,x), ∂xzs(t, x)), s ∈ S,
with the initial-boundary condition (2). Such a model would allow one to
consider mixed problems with both deviated argument and a classical argu-
ment:

∂tzs(t, x) = fs(t, x, zα(t,x), z(t, x), ∂xzs(t, x)), s ∈ S,
and to obtain existence results for them.
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