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Warped compact foliations

by Szymon M. Walczak (Łódź)

Abstract. The notion of the Hausdorffized leaf space eL of a foliation is introduced.
A sufficient condition for warped compact foliations to converge to eL is given. Moreover,
a necessary condition for warped compact Hausdorff foliations to converge to eL is shown.
Finally, some examples are examined.

1. Introduction. The notion of warped foliations was developed by the
author of this note as a generalization of the concept of Berger spheres. It
was introduced in [14], where it was defined as follows:

Let (M,F , g) be a foliated Riemannian manifold, and f : M → (0,∞)
a smooth function on M constant along the leaves of the foliation F . We
modify the Riemannian structure g to gf in the following way:

For any vectors v, w tangent to F we set gf (v, w) = f2g(v, w). If at least
one of v, w is perpendicular to F , then we set gf (v, w) = g(v, w). The foliated
Riemannian manifold (M,F , gf ) is called the warped foliation and denoted
by Mf . The function f is called the warping function.

In [14] anecessaryand sufficient condition for a sequence ofwarped compact
Riemannian submersions to converge to the base of a Riemannian submersion
was given. The results obtained in [14] were published in [13]. Later on, this
condition was generalized to Riemannian foliations with all leaves compact,
and some results on compact Hausdorff foliations were obtained [12].

In this note, the concept of the Hausdorffized leaf space of an arbitrary
foliation F on a compact Riemannian manifold (M, g) is developed (Sec-
tion 2). It is defined as the quotient space of a certain equivalence relation
in the space of leaves of F .

In Sections 3–5 we recall some basic facts about compact foliations,
Gromov–Hausdorff distance, and the Bishop volume estimation [1] for an
arbitrary metric space with measure. Some facts about Bishop measures re-
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lating to compact Riemannian foliations, compact Hausdorff foliations and
Hausdorffized leaf spaces are given. In Section 6 we provide a sufficient con-
dition for a sequence of warped compact foliations on a compact Riemannian
manifold to converge in the Gromov–Hausdorff sense to the Hausdorffized
leaf space (Theorem 6.1). Additionally, we prove a necessary condition for
compact Hausdorff foliations to converge to the Hausdorffized leaf space
(Theorem 6.5). These two theorems are the main results of this note. Finally,
in Section 7, we examine an example of a compact 1-dimensional foliation
of codimension 3 with nonempty bad set, and we study the topology of its
Hausdorffized leaf space (Theorem 7.3 and Corollary 7.4).

2. Hausdorffized leaf space. Let F be an arbitrary foliation on a
smooth compact Riemannian manifold (M, g). Let L denote the leaf space
of F . Set

(1) %(L,L′) = inf
{ n−1∑
i=1

dist(Li, Li+1)
}
,

where the infimum is taken over all finite sequences of leaves beginning with
L1 =L and ending with Ln=L′, and dist(A,B)=inf{d(x, y) : x∈A, y∈B}.
It is easy to check that % defines a pseudo-metric in L. Next, let us introduce
in L an equivalence relation ∼ as follows:

L ∼ L′ ⇔ %(L,L′) = 0, L, L′ ∈ L.

Set L̃ = L/∼ and

(2) %̃([L], [L′]) = %(L,L′), [L], [L′] ∈ L̃.

Then (L̃, %̃) is a metric space. We call it the Hausdorffized leaf space (briefly,
the HLS) for the foliation F .

Remark 2.1. One can ask if dist can be used above instead of %. It is
easy to check that this can lead to different metric spaces. For example, any
two leaves of a compact foliation have a distance greater than zero. If the
bad set of a compact foliation is nonempty, then there exist leaves L 6= L′

such that %(L,L′) = 0. Moreover, the distance of sets does not satisfy the
triangle inequality, hence it is not a pseudo-metric.

Remark 2.2. Note that the topology of L̃ does not depend on the metric
structure g. In fact, let (M,F) be a foliated compact manifold, and let
g and g′ be any Riemannian structures onM . Since the Riemannian metrics
d and d′, induced by g and g′ respectively, satisfy

1
C
d′(x, y) ≤ d(x, y) ≤ Cd′(x, y)

for some constant C ≥ 1 and all x ∈ L and y ∈ L′, we have dist(L,L′) ≤
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C dist′(L,L′) and dist′(L,L′) ≤ C dist(L,L′). Hence, %(L,L′) ≤ %′(L,L′)
and %′(L,L′) ≤ %(L,L′). Finally, L̃ = L̃′ and (1/C)%̃′ ≤ %̃ ≤ C%̃′.

Remark 2.3. It seems reasonable to ask if we can define the Hausdorf-
fized leaf space L̃ in topological terms.

Let X be a compact Hausdorff space and let ∼ denote an equivalence
relation in X. Let X = X/∼. Of course, X with the quotient topology
is seldom Hausdorff. Let x,y ∈ X. We define a relation ≈ in X putting
x ≈ y iff x and y cannot be separated in X, i.e. there do not exist open sets
U, V ⊂ X such that x ∈ U , y ∈ V and U ∩ V = ∅.

The relation ≈ need not be an equivalence relation. Let ' be the smallest
equivalence relation containing ≈. Put X̃ = X/'. It is easy to check that
X̃ with the quotient topology is Hausdorff and compact.

Let X = M be a compact Riemannian manifold equipped with a folia-
tion F , and let ∼ be defined by

x ∼ y ⇔ Lx = Ly,

where Lx denotes the leaf through x ∈M . In this case X̃ = L̃.
Remark 2.4. The assumption of compactness of X in Remark 2.3 is

essential. Consider the foliation F of the plane R2 with the standard metric
given by the graphs of the functions fa : R \ {0} 3 x 7→ 1/x+ a ∈ R, a ∈ R,
and the y-axis. Then any two leaves L,L′ can be separated in the topology
of R2, but %(L,L′) = 0.

Let π : M → L̃ be the natural projection given by π(x) = [Lx], where
Lx again denotes the leaf through x ∈ M . Let U ⊂ L̃ be an open set and
[L] ∈ U . Since U is open, there exists ε > 0 such that the open ball B eL([L], ε)
is contained in U . By (2),

BM (x, ε) ⊂ π−1(U)

for all x ∈ L. Hence the projection π is continuous, and the space (L̃, %̃) is
compact because M is compact.

Due to the Reeb Stability Theorem [2], for any compact leaf L with finite
holonomy the equivalence class [L] of this leaf equals L.

3. Compact foliations. A foliation with all leaves compact is called a
compact foliation. Let F be an arbitrary compact foliation on a manifoldM .
Let π : M → L be a quotient map onto the space of leaves L which identifies
each leaf to a point. The space of leaves is often non-Hausdorff. In fact, the
following theorem [6, Theorem 4.1] describes the topology of such a foliation:

Theorem 3.1. The following conditions are equivalent.

(1) π is a closed map.
(2) π maps compact sets onto closed sets.
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(3) Each leaf has arbitrarily small saturated neighborhoods.
(4) L with the quotient topology is Hausdorff.
(5) If K ⊆M is compact , then the saturation of K is also compact.

Let M be a Riemannian manifold and N be a submanifold on M . One
can consider the induced Riemannian structure on N and define the volume
of N as its volume in the induced Riemannian structure.

The relation between the volume of leaves defined as above (briefly, the
volume function), the holonomy group and the topology of the space of leaves
of the foliation F on a Riemannian manifold (M, g) is also well known [6,
Theorem 4.2].

Theorem 3.2. If (M,F , g) is a foliated Riemannian manifold and L is
a compact leaf then the following conditions are equivalent.

(1) There exists a saturated neighborhood N of the leaf L such that the
volume function is bounded on N .

(2) The holonomy group of L is finite.

The above conditions imply that some neighborhood N of L consists of
compact leaves, and in N the conditions of Theorem 3.1 are satisfied.

Theorem 3.3. Suppose that M is a smooth compact Riemannian man-
ifold which is foliated by compact leaves of codimension one or two. Then
there is an upper bound on the volumes of the leaves of M .

The above result was obtained by R. Edwards, K. Millett, and D. Sullivan
in [4, Theorem 2].

Let G be the set of all x ∈M near which the volume function is bounded,
i.e. x ∈ G if and only if there exists an open neighborhood U of x such that
the volumes of all leaves passing through U are uniformly bounded. The set
G is called the good set of the foliation F [5]. It is open, saturated, and dense
in M . By Theorem 3.2, the holonomy groups of all leaves contained in G are
finite.

The following gives a precise description of the good set [2, Theorem
2.4.3] (H(L) denotes the holonomy group of the leaf L):

Theorem 3.4 (Reeb Stability Theorem). For any compact leaf L with
finite holonomy , there exists a tubular neighborhood p : V → L of L in M
such that (V,F|V , p) is a foliated bundle with all leaves compact. Moreover ,
each leaf L′ ⊂ V has finite holonomy group of rank at most the order of H(L)
and the covering p : L′ → L has k sheets, where k is less than or equal to
rank of H(L).

The set B = M \G is called the bad set of the foliation F . The bad set
of a compact foliation is closed and nowhere dense in M [6].
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Let (M,F) be a compact foliated manifold, and F a compact foliation
on M . Let g and g′ be arbitrary Riemannian structures on M such that
the g-orthogonal bundle F⊥g and the g′-orthogonal bundle F⊥g′ coincide, i.e.
every vector v perpendicular to F in g is perpendicular in g′ and vice versa.
Let g(v, w) = g′(v, w) for any v, w ∈ F⊥g . Let % and %′ be the pseudo-metrics
defined by (1) using g and g′ respectively.

Lemma 3.5. %̃ = %̃′.

Proof. Since any two metric structures on a compact Riemannian man-
ifold are equivalent, we can assume that g ≤ Cg′, C ≥ 1. Let % and %′ be
the pseudo-metrics given by (1). Since the geometry of a compact manifold
is bounded, for every A > 0 and ε > 0 there exists δ > 0 such that for every
curve γ : [0, l(γ)]→M satisfying

(1) γ̇(0) is perpendicular to F ,
(2) its g′-length satisfies l′(γ) < δ,
(3) its g-geodesic curvature satisfies |kg(γ)| < A,

the g-length of the component tangent to the foliation F satisfies
|γ̇>| < ε, where |v| =

√
g(v, v).

Let ε > 0, L,L′ ∈ F , and let γ : [0, d] → M be a g′-geodesic curve
realizing the distance dist′(L,L′) = d < δ. Then

dist(L,L′) ≤
�

[0,d]

|γ̇| ≤
�

[0,d]

|γ̇>|+
�

[0,d]

|γ̇⊥| ≤ εCd+
�

[0,d]

|γ̇⊥|′

≤ εCd+ l′(γ) = (1 + Cε) dist′(L,L′),

where |v|′ =
√
g′(v, v). By (1), for every sequence of leaves satisfying

n−1∑
i=1

dist′(Li, Li+1) ≤ %′(L,L′) + ε,

and such that dist′(Li, Li+1) < δ for every 1 ≤ i ≤ n− 1, we obtain

%(L,L′) ≤
n−1∑
i=1

dist(Li, Li+1) ≤ (1 + Cε)
n−1∑
i=1

dist′(Li, Li+1)

≤ (1 + Cε)(%′(L,L′) + ε).

Letting ε → 0, we obtain % ≤ %′. Consequently, %̃ ≤ %̃′. Similarly, we can
show that %′ ≤ %.

4. Gromov–Hausdorff distance. Let us recall that the Hausdorff dis-
tance dH of two compact subsets A,B of a metric space (X, d) is defined as

dH(A,B) = inf{ε > 0 : A ⊂ N(B, ε) ∧B ⊂ N(A, ε)},
where N(Y, ε) = {x ∈ X : d(x, Y ) < ε}.
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M. Gromov [8] generalized this notion to arbitrary compact metric spaces
(X, dX) and (Y, dY ) introducing the distance of X and Y as

(3) dGH(X,Y ) := inf dH(X,Y ),

where d ranges over all admissible metrics on the disjoint sum X q Y , i.e. d
is an extension of dX and dY , and dH denotes the Hausdorff distance. The
number dGH(X,Y ) is called the Gromov–Hausdorff distance of the metric
spaces X and Y .

Note that dGH defines a metric on the classM of all isometry classes of
compact metric spaces [3].

It is rather difficult to compute the exact value of the Gromov–Hausdorff
distance between two given metric spaces. But it is possible to estimate it
[3, 11]:

Lemma 4.1. Let (X, dX) and (Y, dY ) be arbitrary compact metric spaces,
and let

A = {x1, . . . , xk} ⊂ X and B = {y1, . . . , yk} ⊂ Y
be ε-nets satisfying for all 1 ≤ i, j ≤ k the condition

|dX(xi, xj)− dY (yi, yj)| ≤ ε.
Then dGH(X,Y ) ≤ 3ε.

For the proof we refer to [11].
The following theorem is useful:

Theorem 4.2. Let ((Xi, dXi))i∈N and (Y, dY ) be compact metric spaces.
If Xi → Y as i → ∞ in the Gromov–Hausdorff sense then for any η > 0
and for any η-net A = {y1, . . . , yl} on Y there exists a sequence (Ai =
{xi1, . . . , xil})i∈N of 2η-nets on Xi such that A is a quasi-isometric limit of
Ai, i.e.

|dY (yj , yk)− dXi(x
i
j , x

i
k)| → 0 as i→∞

for any j, k ∈ {1, . . . , l}.

For the proof we refer to [3].

5. Bishop measures. We say that a measure µ on a metric space (X, d)
satisfies the Bishop inequalities if there exist constants β ≥ 1, η0 > 0, and
p > 0 such that for all η < η0 and x ∈ X,

(4)
1
β
ηp ≤ µ(Bd(x, η)) ≤ βηp,

where Bd(x, η) = {y ∈ X : d(x, y) < η}. We then call µ a Bishop measure on
(X, d), and the number p the dimension of µ. The family of all p-dimensional
Bishop measures on (X, d) satisfying the Bishop inequalities with constants
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β, η0 and p will be denoted by B(X, d, β, η0, p). If the space X is known, we
briefly write µ ∈ B(d, β, η0, p).

Remark 5.1. Let (X, d) be a metric space and let µ ∈ B(d, β, η0, p). Let
d′ be another metric on X such that (1/C)d ≤ d′ ≤ Cd with some constant
C ≥ 1. Since Bd(x, (1/C)ε) ⊂ Bd′(x, ε) ⊂ Bd(x,Cε) for all ε > 0, we have

µ(Bd′(x, η)) ≤ µ(B(x,Cη)) ≤ β(Cη)p = βCpηp

for all η < η0/C, and

µ(Bd′(x, η)) ≥ µ
(
B

(
x,
η

C

))
≥ 1
C

(
η

C

)p
=

1
βCp

ηp.

Hence µ ∈ B(d′, βCp, η0/C, p).

Let (M,F , g) be a compact Riemannian manifold equipped with a com-
pact Riemannian foliation F of codimension q. The space L of leaves of F
forms an orbifold [10], and, by the Reeb Stability Theorem, coincides with L̃.

Let us equip L with a metric defined by the Hausdorff distance dH of
leaves. Since all holonomy mappings are local isometries, %̃ = dH. In [12,
Corollary 1], it was shown that for every compact Riemannian foliation F
of codimension q on a compact Riemannian manifold (M, g) there exists a
Bishop measure λ ∈ B(L̃, %̃, β̃, η̃, q) with some constants β̃ ≥ 1, η̃ > 0.

Let (M,F , g) be an arbitrary compact Riemannian manifold with a com-
pact Hausdorff foliation of codimension q. Then M admits a Riemannian
structure g0 such that (M,F , g0) becomes a Riemannian foliation [10]. Hence,
there exists λ ∈ B(L̃, %̃0, β̃0, η̃0, q) with some constants β̃0 ≥ 1 and η̃0 > 0.
Since M is compact, we have

λ ∈ B(L̃, %̃, β̃0C
q, η̃0/C, q)

for some constant C ≥ 1, that is, there exists λ ∈ B(L̃, %̃, β̃, η̃, q) with β̃ ≥ 1
and η̃ > 0.

6. Collapsing compact foliations. We now ask if the HLS for a com-
pact foliation F on a compact Riemannian manifold (M, g) can be a limit
of a sequence of warped foliations (Mfn)n∈N for some warping functions
(fn : M → (0, 1])n∈N. In the following, we try to formulate the conditions
on warping functions as weak as possible.

Let (M,F , g) be a foliated Riemannian manifold with F having all leaves
compact. Let A be a family of leaves from F . For every L,L′ ∈ A choose
a finite sequence F εL,L′ = (FL,L

′

1 , . . . , FL,L
′

k ) of leaves such that FL,L
′

1 = L,

FL,L
′

k = L′, and
k−1∑
i=1

dist(Fi, Fi+1) < %̃(L,L′) + ε,
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where k depends on ε, L, and L′. The family of leaves which appear in all
F εL,L′ will be denoted by Υ (A, ε). The number

diam(A) := sup
F∈A

diamF

is called the diameter of the family A. Note that for A finite the family
Υ (A, ε) is also finite.

Let (M,F , g) be a compact Riemannian manifold equipped with a com-
pact foliation, let G denote the good set of F , and let (fn : M → (0, 1])n∈N
be a sequence of warping functions on M .

Theorem 6.1. Suppose that for every ε > 0 there exists N ∈ N such
that for all n > N there exists a family Fn = {Fn1 , . . . , Fnln} of leaves such
that

(1)
⋃
Fn ⊂ G is ε-dense in M ,

(2)
⋃
Υ (Fn, ε) ⊂ G,

(3) fn|SΥ (Fn,ε) < ε/d,

where d = max{]Υ (Fn, ε) · diam(Υ (Fn, ε)), 1}. Then the sequence (Mfn)n∈N
of warped foliations converges, as n → ∞, to the HLS (L̃, %̃) for the folia-
tion F .

Remark 6.2. On a compact foliated Riemannian manifold (M,F , g)
with compact foliation one can easily construct a sequence of nonconstant
warping functions satisfying the conditions of the above theorem. Let B
be the bad set of F , and let π : M → L̃ be the natural projection. Let
fn : M → (1/n, 1] be a smooth function satisfying:

• fn(x) = 1 for x ∈ π−1(N(π(B), 1/n)),
• fn(x) = 1/n for x ∈M \ π−1(N(π(B), 2/n)),

where N(A, η) = {x ∈ L̃ : %̃(A, x) < η}. Since M \ π−1(N(π(B), 1/n)) is
saturated, and all the leaves inM \π−1(N(π(B), 1/n)) have finite holonomy,
we can assume that fn is constant along the leaves of F . Hence, fn is a
warping function. Moreover, (fn)n∈N is a sequence of nonconstant functions
and satisfies the conditions listed in Theorem 6.1.

Remark 6.3. For any sequence of warping functions converging to zero
the conditions of Theorem 6.1 are satisfied. The converse need not be true.

Let (fn : M → (0, 1])n∈N be a sequence of warping functions equal to 1 on
a certain leaf F0 contained in the good set G and such that fn|G\F0

→ 0. One
can construct families Fn satisfying the conditions of Theorem 6.1 which are
contained in G\{F0}. Hence, the conditions of Theorem 6.1 are weaker than
pointwise convergence to zero.

Proof of Theorem 6.1. Let ε > 0, n > N , and π : M → L̃ denote
the natural projection π(x) = [Lx]. Since

⋃
Fn ⊂ G is ε-dense in M , and
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%̃(L,L′) ≤ dist(L,L′) for all L,L′ ∈ F , it follows that π(
⋃
Fn) is also ε-dense

in (L̃, %̃).
Choose xni ∈ Fni , i = 1, . . . , ln. Then {xn1 , . . . , xnln} is a 2ε-net on Mn =

(M, gfn). Note that g and gn = gfn have identical orthogonal bundles and
coincide on them, i.e. g(v, w) = gn(v, w) for all vectors v, w orthogonal to F
either in g or gn.

Let 1 ≤ i, j ≤ ln. By Lemma 3.5, we have

%̃(Fni , F
n
j ) = %̃n(Fni , F

n
j ) ≤ dn(xni , xnj ).

Next, let (F1, . . . , Fk) ∈ Fn be a sequence of leaves such that
k−1∑
i=1

dist(Fi, Fi+1) < %̃(Fni , F
n
j ) + ε.

By the assumptions (1) and (2),

dn(xni , x
n
j ) ≤

k−1∑
ν=1

dist(Fν , Fν+1) +
k∑
ν=1

diamn(Fν) ≤ %̃(Fni , Fnj ) + 2ε,

and Lemma 4.1 gives us the statement.

Corollary 6.4. For every compact foliation F on a compact Rieman-
nian manifold (M, g) there exists a sequence (fn : M → (0, 1])n∈N of warping
functions such that the Gromov–Hausdorff limit limMfn of the sequence of
warped foliations is equal to the HLS for the foliation F .

Suppose that F is Hausdorff, i.e. the space of leaves L with the quotient
topology is Hausdorff.

Theorem 6.5. Let (fn : M → (0, 1])n∈N be a sequence of warping func-
tions on M . If (M, gfn) → (L̃, %̃) then for every ε > 0 there exists N ∈ N
such that for any n > N there exists a finite family Fn = {Fn1 , . . . , Fnk } of
leaves such that

(1)
⋃
Fn ⊂ G,

(2)
⋃
Fn is ε-dense in M ,

(3) fn|SFn < ε.

Proof. Let π : M → L̃ denote the natural projection given by π(x)
= [Lx], and suppose that there exists an ε0 > 0 satisfying for all N ∈ N the
following: there exists n > N such that for any finite ε0-dense family Fn of
leaves from G one can find Ln ∈ Fn satisfying

fn|Ln ≥ ε0.
It follows that one can choose a subsequence (fnk

)k∈N, a sequence (rk)k∈N,
leaves (Lk)k∈N, and a constant r0 > 0 such that rk > r0 and

fnk
|π−1(B([Lk],rk)) ≥ ε0 for all k ∈ N.
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In fact, suppose that there is no such subsequence. Then for almost all
n in N, in every open saturated set U ⊂ M one can find a point with
fn arbitrarily small. Since fn is constant along the leaves it is possible to
construct, for large enough n ∈ N, an ε0-dense finite family Fn0 of leaves from
G such that fn|SFn

0
is arbitrarily small. But this contradicts our assumption.

Since L̃ is compact, there exist r0 > 0, [L0] ∈ L̃, and a subsequence
(fnk

)k∈N such that for all k ∈ N,

fnk
|π−1(B([L0],r0)) ≥ ε0.

Suppose now that Mfnk
→ (L̃, %̃) in the Gromov–Hausdorff topology.

Let η > 0 be small enough and let A = {[L0], . . . , [Lν ]} ⊂ L̃ be a mini-
mal η-net. Then, by Theorem 4.2, there exists a sequence of 2η-nets Ank =
{xnk

0 , . . . , xnk
ν } ⊂ Mfnk

such that A is a quasi-isometric limit of Ank . More-
over,

(ν + 1) min
[L]∈ eLλ(B([L], η/4)) ≤ λ(L̃),

and
(ν + 1) max

x∈M
volnk

(B(x, 2η)) ≥ volnk
Mfnk

,

where λ ∈ B(L̃, %̃, β̃, η̃0, q) is the measure mentioned in Section 5.
Since M is compact, we have vol ∈ B(M,d, βM , ηM ,dimM). Hence,

0 < vol(π−1(B([L0], r0))) · εp0

≤ volnk
Mfn ≤ λ(L)

maxx∈M volfnk
B(x, 2η)

min
[L]∈ eL λ(B([L], η/4))

≤ λ(L̃)
βM β̃(2η)dimM

(η/4)q
.

Letting η → 0 yields a contradiction.

7. Example. We will now study an example of a compact foliation of
dimension 1 and codimension 3 on a 4-dimensional manifold, which was
described by D. B. A. Epstein and E. Vogt [7] in 1978. The codimension of
that foliation is the smallest one with possible bad set nonempty. The bad
set of the foliation consists of four spheres of dimension 3 with Hopf fibration
on each of them, and four tori of dimension 2 with circular foliations. It is
connected and compact. We only recall the precise analytic description of
the manifold and the foliation given in [7, Sections 3, 4, and 6].

Let us consider the octagon

D = {(x, y) ∈ R2 : |x| ≤ 2, |y| ≤ 2, |x− y| ≤ 3, |x+ y| ≤ 3},
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and let

ψ(x, y) = (2−x)(2+x)(2−y)(2+y)(3+x+y)(3−x−y)(3+x−y)(3−x+y).

Notice that ψ > 0 on intD and ψ|∂D = 0. Let

A = D ∩ {(x, y) ∈ R : ψ(x, y) ≤ 1},
and let ξ = (x, y, u1, u2, w1, w2, z) ∈ R7. We define F : R7 → R3 by

F1(ξ) = u2
1 + u2

2 − 4 + x2,

F2(ξ) = w2
1 + w2

2 − 4 + y2,

F3(ξ) = z2 − %(x, y),
where

%(x, y) = (1− ψ(x, y))(3− x− y)(3 + x+ y)(3 + x− y)(3− x+ y).

We see that F (ξ) ∈ R3. We define M = F−1(0). By [7, Lemma 4.1], the
projection of R7 onto the first two coordinates maps M onto A, and M is a
4-dimensional compact manifold ([7, Lemmas 4.2 and 4.3]).

Define a vector field X on R7 by

Xξ = ψ
∂ψ

∂y

∂

∂x
− ψ ∂ψ

∂x

∂

∂y
+ (Ku1 − pu2)

∂

∂u1
+ (pu1 +Ku2)

∂

∂u2

+ (Lw1 − qw2)
∂

∂w1
+ (qw1 + Lw2)

∂

∂u2
+ zσ

∂

∂z
,

where

K(x, y) = −x ∂ψ
∂y

(4− y2)(9− (x+ y)2)(9− (x− y)2),

L(x, y) = y
∂ψ

∂y
(4− x2)(9− (x+ y)2)(9− (x− y)2),

p(x, y) = (9 + x2 − y2)y,
q(x, y) = (9− x2 + y2)x,

σ(x, y) =
(
∂ψ(x, y)
∂x

− ∂ψ(x, y)
∂y

)
(x+ y)ψ

9− (x+ y)2

+
(
∂ψ

∂x
+
∂ψ(x, y)
∂y

)
(y − x)ψ(x, y)
9− (x− y)2

.

By [7, Lemma 6.1], if ξ ∈ M , then X(ξ) ∈ TξM . Hence, X is a nowhere
vanishing vector field on M . Moreover, by [7, Lemma 6.5], the orbit of X
through ξ is diffeomorphic to a circle if only ψ(x, y) > 0, and the length
of that orbit tends to infinity if ψ(x, y) tends to zero. By [7, Lemmas 6.6
and 6.7], all other orbits are also diffeomorphic to circles.

We will now examine the topology of the HLS for the foliation F defined
by the orbits of X on M . Let π : M → L̃ be the natural projection.
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Lemma 7.1. The bad set B of the foliation F projects to a singleton.

Proof. Let π1 : M 3 ξ = (x, y, u1, u2, w1, w2, z) 7→ (x, y) ∈ A. Since X is
invariant under rigid rotation about the origin in the u-plane or the w-plane
[7, Lemma 6.3], the vector field X is constant along the set π−1

1 (x, y) for
any (x, y) ∈ A. Moreover, for the level surface ψ−1(a) with 0 < a ≤ 1, there
exists (xa, ya) ∈ A such that the component of X tangent to π−1

1 (xa, ya) is
tangent to a circle in the u-plane.

Since M is compact and X is a nonzero vector field, the length |X|
is bounded below by a positive constant. Recall that the component of X
tangent to A is constant along the level surfaces of ψ and tends to zero as
ψ → 0. Hence there exists η0 > 0 such that for any 0 < η < η0 one can find
a point (xη, yη) ∈ ψ−1(η) with every leaf η-dense in

π−1
1 (B((xη, yη), η) ∩ ψ−1(η)).

It follows that for small enough η > 0 the distance dist(Lξ, Lξ′) is smaller
than η for any ξ, ξ′ ∈ π−1

1 (ψ(η)), where Lξ denotes the leaf through ξ ∈M .
Finally, for small enough η > 0 and arbitrary ξ, ξ′ ∈ B we have

%̃(Lξ, Lξ′) < η.

This ends the proof.

Let S1 = {z ∈ C : |z| = 1}, T 2 = S1 × S1, and π1 : M → A be as in
Lemma 7.1.

Lemma 7.2. The projection π(G) of the good set of F is homeomorphic
to (S1 \ {1})× T 2.

Proof. Let Lξ, ξ = (x, y, u1, u2, w1, w2, z), be a leaf contained in the good
set G of F , and let z be fixed. Then Lξ is contained in π−1

1 (ψ(η)) for a certain
0 < η ≤ 1, for ψ is constant on every orbit. As mentioned before, the vector
field X is invariant under rigid rotation about the origin in the u-plane or
the w-plane and it is constant along π−1

1 (x, y) for any (x, y) ∈ A. Hence Lξ
intersects each torus in π−1

1 (x, y) the same number of times, and so does any
other leaf in π−1(ψ(η)).

By the Reeb Stability Theorem and Theorem 3.2, [L] = {L} for any leaf
L from G. Hence, the space of leaves of π−1

1 (ψ(η)) is homeomorphic to the
torus T 2, and π(G) is homeomorphic to S1 \ {1} × T 2.

Let X be a topological space. Let ∼ be the equivalence relation in S1×X
defined by

(z, x) ∼ (w, y) ⇔ (z = w = 1 or (z, x) = (w, y)).

Let Σ(X) denote (S1 ×X)/∼ with the quotient topology.

Theorem 7.3. L̃ is homeomorphic to Σ(T 2).
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Proof. This is a simple consequence of Lemmas 7.1 and 7.2.
Let h : Σ(T 2) → L̃ be the homeomorphism of Theorem 7.3. For any

x, y ∈ Σ(T 2) set d(x, y) = %̃(h(x), h(y)). Let G′ ⊂ G be a dense saturated
subset of the good set of the foliation F , and let fn : M → (0, 1] be a sequence
of basic functions (i.e. functions constant along the leaves) converging to zero
on G′.

As an easy corollary of Theorems 7.3 and 6.1 we have the following:
Corollary 7.4. The sequence of warped foliations (M,F , gfn) con-

verges in the Gromov–Hausdorff topology to (Σ(T 2), d).
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