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Subextension of plurisubharmonic functions
without increasing the total Monge–Ampère mass

by Rafał Czyż (Kraków) and Lisa Hed (Umeå)

Abstract. We prove that subextension of certain plurisubharmonic functions is al-
ways possible without increasing the total Monge–Ampère mass.

1. Introduction. Bedford and Burns [5] (see also [9]) proved that any
smooth bounded domain in Cn satisfying a certain non-degeneracy condition
on the Levi form on the boundary is the domain of existence for plurisub-
harmonic functions, and El Mir [19] constructed an example of a plurisub-
harmonic function defined on the unit bidisc in C2 for which the restriction
to any smaller bidisc admits no subextension to C2. Bedford and Taylor [6]
improved an example by Fornæss and Sibony [20] by constructing a smooth
negative plurisubharmonic function on an arbitrary bounded domain in Cn

with C2-boundary that does not subextend.
In this article we are interested in subextension without increasing the

total Monge–Ampère mass. Before proceeding we need some background
and notation. Let PSH(Ω) denote the set of all plurisubharmonic functions
defined on a domain Ω ⊂ Cn. Recall that a bounded domain Ω ⊆ Cn

is called hyperconvex if there exists a bounded plurisubharmonic function
ϕ : Ω → (−∞, 0) such that the closure of the set {z ∈ Ω : ϕ(z) < c} is
compact in Ω for every c ∈ (−∞, 0). Let E0(Ω) be the class of bounded
plurisubharmonic functions u such that limz→ξ u(z) = 0 for all ξ ∈ ∂Ω and	
Ω(ddcu)n <∞. We say that a negative function u ∈ PSH(Ω) is in the class
F(Ω) if there is a decreasing sequence [uj ] of functions uj ∈ E0(Ω) which
converges pointwise to u on Ω and supj

	
(ddcuj)n < ∞. The class E(Ω)

contains the functions in PSH(Ω) that are locally in F(Ω), and Theorem 4.2
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in [11] implies that (ddc)n is well-defined on E(Ω). For more details about
these classes, see [11]. Note that, by [7, 8], a function u ∈ E(Ω) is maximal if,
and only if, (ddcu)n = 0. The set of all maximal plurisubharmonic functions
defined on Ω will be denoted byMPSH(Ω).

Similarly to [10, 12], if K ∈ {E0,F ,N}, where N will be defined later,
we say that a plurisubharmonic function u defined on Ω belongs to the class
K(Ω,H) for some H ∈ E(Ω) if there exists a function ϕ ∈ K(Ω) such that

(1.1) H ≥ u ≥ ϕ+H.

Note that K(Ω, 0) = K(Ω) and that functions belonging to K(Ω,H) not nec-
essarily have finite total Monge–Ampère mass (see [3, 16]). Inequality (1.1)
allows one to introduce, in some sense, generalized boundary values of certain
plurisubharmonic functions ([14], see also [21]).

Our aim is to prove the following theorem:

Theorem 1.1. Let Ω1 and Ω2 be two bounded hyperconvex domains such
that Ω1 ⊂ Ω2 ⊂ Cn, n ≥ 1, and let F ∈ E(Ω1) and G ∈ E(Ω2)∩MPSH(Ω2)
be such that

(1.2) F ≥ G on Ω1.

If u ∈ F(Ω1, F ), then there exists v ∈ F(Ω2, G) such that v ≤ u on Ω1 and�

Ω2

(ddcv)n ≤
�

Ω1

(ddcu)n.

Under the assumption that F and G are identically zero and Ω1 is rel-
atively compact in Ω2, Theorem 1.1 was proved in [17], and when F and
G are the Perron–Bremermann envelopes for certain continuous functions f
and g that satisfiy (1.2), it was proved in [4]. Example 5.5 in [4] shows that
condition (1.2) is necessary. In contrast to the corresponding results in [4, 17]
we do not need the assumption that Ω1 is relatively compact in Ω2.

Subextension without increasing the Monge–Ampère mass has proven
to be a useful tool in applications, e.g. approximation of plurisubharmonic
functions ([13]) and estimating the volume of plurisubharmonic sublevel sets
([2]). Without the control of the total Monge–Ampère mass, subextension
in F(Ω,H), H ∈ E(Ω), would follow as the second part of the proof of
Theorem 1.1 by using Theorem 2.2 in [17]. At present the authors do not
know if the assumption that G ∈ MPSH(Ω2) is necessary but we observe
that it is necessary that

	
Ω2

(ddcG)n ≤
	
Ω1

(ddcF )n. For further results con-
cerning subextension of plurisubharmonic functions see e.g. [15, 22] and the
references therein.

2. Proof of Theorem 1.1. In this paper, a fundamental sequence [Ωj ]
in Ω is an increasing sequence of strictly pseudoconvex subsets of Ω such
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that Ωj b Ωj+1 for every j ∈ N and
⋃∞
j=1Ωj = Ω. Here b denotes that Ωj

is relatively compact in Ωj+1.

Definition 2.1. Let u ∈ PSH(Ω), u ≤ 0, and let [Ωj ] be a fundamental
sequence in Ω. Define

uj = sup{ϕ ∈ PSH(Ω) : ϕ ≤ u on CΩj},
where CΩj denotes the complement of Ωj in Ω, and

ũ = ( lim
j→∞

uj)∗,

where ω∗ denotes the upper semicontinuous regularization of ω.

Definition 2.1 implies that [uj ] is an increasing sequence and therefore ũ
is plurisubharmonic on Ω. Moreover, if u ∈ E(Ω), then by [11] we know that
ũ ∈ E(Ω), since u ≤ ũ ≤ 0, and from [7, 8] it follows that ũ is maximal on Ω.
Let N (Ω) be the class of all functions u ∈ E(Ω) such that ũ = 0. Note that
E0(Ω) ⊂ F(Ω) ⊂ N (Ω) ⊂ E(Ω).

In the proof of the main theorem we will need some well known results.
For the convenience of the reader we will formulate some of them in the
proposition below.

For brevity, in the statements and proofs of Propositions 2.2 and 2.3, we
write E , N (H) etc. for E(Ω), N (Ω,H) etc.

Proposition 2.2. Let Ω ⊂ Cn be a hyperconvex domain and H ∈ E.
(a) Let u, v ∈ N (H), u ≤ v, and

	
Ω (ddcu)n < ∞. Then

	
Ω (ddcv)n ≤	

Ω (ddcu)n.
(b) If [uj ] ⊂ uj ∈ N (H) is a decreasing sequence that converges pointwise

to a function u ∈ N (H) as j →∞, then

lim
j→∞

�

Ω

(ddcuj)n =
�

Ω

(ddcu)n.

(c) If u ∈ N (H) and
	
Ω (ddcu)n <∞, then u ∈ F(H).

Proof. (a) follows directly from Lemma 3.3 in [1], and (b) from Corollary
3.4 in [1]. To prove (c) note that since if u ∈ N (H) there exists ϕ ∈ N such
that H ≥ u ≥ ϕ+H and therefore H̃ ≥ ũ ≥ ϕ̃+H̃, so ũ = H̃ from Theorem
2.1 in [12]. But since N (H) ⊂ E we have u ∈ F(ũ), so u ∈ F(H̃). Hence,
there exists ψ ∈ F such that H̃ ≥ u ≥ ψ + H̃. Now, since H̃ ≥ H we know
that

H ≥ u ≥ ψ + H̃ ≥ ψ +H

and so u ∈ F(H).

Using Proposition 2.2(b) we obtain the following characterization of F(H)
that will be used in the proof of Theorem 1.1. Proposition 2.3 is a general-
ization of Theorem 3.7 in [4].
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Proposition 2.3. Let H ∈ E. If u ∈ F(H) is such that

(2.1)
�

Ω

(ddcu)n <∞,

then there exists a decreasing sequence [uj ] ⊂ E0(H) that converges pointwise
to u as j tends to ∞, and

(2.2) sup
j

�

Ω

(ddcuj)n <∞.

Moreover , if [uj ] ⊂ F(H) is a decreasing sequence that converges pointwise
to a function u as j tends to ∞, and (2.2) is satisfied , then u ∈ F(H)
and (2.1) holds.

Proof. Assume that u ∈ F(H) satisfies (2.1). It follows from Proposi-
tion 2.5 in [1] that there exists a decreasing sequence [uj ] ⊂ E0(H) that
converges pointwise to u on Ω as j → ∞. By Proposition 2.2(b) and as-
sumption (2.1) we have

sup
j

�

Ω

(ddcuj)n <∞.

Now assume first that [uj ] ⊂ E0(H) is a decreasing sequence such that
(2.2) holds and [uj ] converges pointwise to a function u as j →∞. From (2.2)
and Proposition 2.2(a) we find that

	
Ω (ddcH)n < ∞, since uj , H ∈ F(H)

and uj ≤ H. Theorem 2.1 in [12] implies that H ∈ F(H̃), where H̃ is defined
as in Definition 2.1. Hence, we can without loss of generality assume that
(ddcH)n = 0. The measure (ddcuj)n has finite total mass and vanishes on
pluripolar sets by Lemma 4.11 in [1]. Therefore Lemma 5.14 of [11] implies
that there exists a unique function ϕj ∈ F such that (ddcϕj)n = (ddcuj)n.
Furthermore,

(ddc(ϕj +H))n ≥ (ddcuj)n.

Thus, uj ≥ ϕj + H, by Corollary 3.2 in [1]. Set ϕ′j = (supk≥j ϕk)∗. Then
[ϕ′j ] ⊂ F is a decreasing sequence and

sup
j

�

Ω

(ddcϕ′j)
n ≤ sup

j

�

Ω

(ddcϕj)n <∞,

by (2.2) and the fact that (ddcϕj)n = (ddcuj)n. Thus, by Lemma 2.1 in [18],
ϕ = (limj→∞ ϕ

′
j) ∈ F . For every k ∈ N we have uj ≥ uj+k ≥ ϕj+k + H.

Hence, uj ≥ ϕ+H for all j ∈ N. By letting j → ∞ we see that u ∈ F(H).
Now (2.2) and Proposition 2.2(b) imply that

�

Ω

(ddcu)n = lim
j→∞

�

Ω

(ddcuj)n <∞.
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If uj ∈ F(H) only, we can take ψ ∈ E0(Ω), ψ 6= 0 and define

u′j = max{uj , jψ +H}.

Since jψ + H ∈ E0(H) for every fixed j, we know that u′j ∈ E0(H). By
construction, u′j ↘ u as j → ∞, and then Proposition 2.2(a) and (2.2)
imply that

	
Ω (ddcu′j)

n ≤
	
Ω (ddcuj)n. It follows from (2.2) that

sup
j

�

Ω

(ddcu′j)
n <∞,

and the result follows.

Proof of Theorem 1.1. Let u ∈ F(Ω1, F ). First assume that

(2.3)
�

Ω1

(ddcu)n <∞.

This assumption and Proposition 2.2(a) imply that
	
Ω1

(ddcF )n <∞, since
u, F ∈ F(Ω1, F ) and u ≤ F . Proposition 2.2(c) implies that F ∈ F(Ω1, F̃ ),
where F̃ is defined as in Definition 2.1. Hence, we can assume that
(ddcF )n = 0. Proposition 2.3 implies that there exists a decreasing sequence
[uj ] ⊂ E0(Ω1, F ) which converges pointwise to u on Ω1 as j →∞, and

(2.4) sup
j

�

Ω1

(ddcuj)n <∞.

Consider the measure µj = χΩ1(dd
cuj)n defined on Ω2, where χΩ1 is the

characteristic function for Ω1 defined in Ω2. The measure µj is a Borel
measure in Ω2 and it vanishes on pluripolar sets by Lemma 4.11 in [1].
Moreover, from (2.4) it follows that µj(Ω2) <∞. Theorem 3.7 in [1] together
with Proposition 2.2(c) shows that there exists a unique ψj ∈ F(Ω2, G) such
that (ddcψj)n = µj on Ω2. Theorem 5.11 in [11] implies that there exist wj ∈
E0(Ω2, 0) and ϕj ∈ L1(Ω2, (ddcwj)n), ϕj ≥ 0, such that µj = ϕj(ddcwj)n

on Ω2. For k ∈ N define the measure µjk on Ω2 by

µjk = min(ϕj , k)(ddcwj)n.

It follows from Theorem 3.7 in [1] and Proposition 2.2(c) that there exist
decreasing sequences [ψjk]∞k=1 ⊂ F(Ω2, G) and [ϕjk]∞k=1 ⊂ F(Ω1, F ) such
that

(ddcψjk)n = µjk on Ω2 and (ddcϕjk)n = µjk on Ω1.

Furthermore, [ψjk]∞k=1 converges pointwise to ψj on Ω2 and [ϕjk]∞k=1 con-
verges pointwise to uj on Ω1 as k →∞. Corollary 3.2 in [1] and (1.2) imply
that

ψjk ≤ ϕjk on Ω1.
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Thus, ψj ≤ uj on Ω1. For each j ∈ N define vj = (supl≥j ψl)∗. By construc-
tion we have vj ∈ F(Ω2, G) and

(2.5) vj ≤ uj on Ω1,

and vj ≥ ψj on Ω2, and therefore�

Ω2

(ddcvj)n ≤
�

Ω2

(ddcψj)n =
�

Ω1

(ddcuj)n,

hence

(2.6) sup
j

�

Ω2

(ddcvj)n ≤ sup
j

�

Ω1

(ddcuj)n <∞.

Thus, (limj→∞ vj) ∈ F(Ω2, G), by Proposition 2.3. Let v = limj→∞ vj . Then
(2.5) implies that v ≤ u on Ω1 and by (2.6) and Proposition 2.2(b) we have�

Ω2

(ddcv)n ≤
�

Ω1

(ddcu)n ,

which completes the proof in this case.
Now assume that u ∈ F(Ω1, F ) is such that

(2.7)
�

Ω1

(ddcu)n =∞.

Then it suffices to construct v in F(Ω2, G) such that v ≤ u on Ω1. By
definition there exists u′ ∈ F(Ω1, 0) such that

F ≥ u ≥ u′ + F.

From the first part of the proof there exists v′ ∈ F(Ω2, 0) such that v′ ≤ u′

on Ω1. Now let v = v′ +G. Then v ∈ F(Ω2, G) and (1.2) yields

u ≥ u′ + F ≥ v′ +G = v

on Ω1. Thus, the proof is complete.
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