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Geometry of Markov systems and codimension one foliations

by Andrzej Biś (Łódź) and Mariusz Urbański (Denton, TX)

Abstract. We show that the theory of graph directed Markov systems can be used
to study exceptional minimal sets of some foliated manifolds. A C1 smooth embedding
of a contracting or parabolic Markov system into the holonomy pseudogroup of a codi-
mension one foliation allows us to describe in detail the h-dimensional Hausdorff and
packing measures of the intersection of a complete transversal with exceptional minimal
sets.

1. Introduction. Cantwell and Conlon [4] observed that there exists
a special class of pseudogroups, called Markov pseudogroups, which are
semiconjugate to subshifts of finite type. Markov pseudogroups appear in
a natural way in the theory of foliations as the holonomy pseudogroups of
some closed, transversally oriented, C2 foliated manifolds of codimension
one. A detailed introduction to foliation theory can be found in [3]. For the
convenience of the reader we shall recall some definitions.

Given a topological space X, denote by Homeo(X) the family of all
homeomorphisms between open subsets of X. If g ∈ Homeo(X), then Dg

is its domain and Rg = g(Dg) is its range.

Definition 1. Let M be a Riemannian manifold. A Cr pseudogroup Γ
on M is a collection of Cr diffeomorphisms h : Dh → Rh between open
subsets Dh and Rh of M such that:

(1) If g, h ∈ Γ then g ◦ f : f−1(Rf ∩Dg)→ g(Rf ∩Dg) is in Γ.
(2) If h ∈ Γ , then h−1 ∈ Γ.
(3) idM ∈ Γ .
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(4) If h ∈ Γ and W ⊂ Dh is an open subset, then h|W ∈ Γ.
(5) If h : Dh → Rh is a Cr diffeomorphism between open subsets of M

and if, for each p ∈ Dh, there exists a neighborhood N of p in Dh

such that h|N ∈ Γ , then h ∈ Γ.
For any set G ⊂ Homeo(M) which satisfies the condition⋃

g∈G
{Dg ∪Rg : g ∈ G} = M,

there exists a unique smallest (in the sense of inclusion) pseudogroup Γ (G)
which contains G. Notice that γ ∈ Γ (G) if and only if γ ∈ Homeo(M) and for
any x ∈ Dγ there exist maps g1, . . . , gk ∈ G, exponents e1, . . . , ek ∈ {−1, 1}
and an open neighbourhood U of x in M such that

U ⊂ Dγ and γ|U = ge11 ◦ · · · ◦ g
ek
k |U .

The pseudogroup Γ (G) is said to be generated by G. If the set G is finite,
we say that Γ (G) is finitely generated.

Definition 2 (following [18]). A finite system S = {h1, . . . , hm} ⊂
Homeo(M), hj : Dj → Rj , together with nonempty compact sets Kj ⊂ Rj ,
is called a Markov system if

(1) Ri ∩Rj = ∅ when i 6= j,
(2) either Ki ⊂ Qj or Ki ∩Dj = ∅,

where Qj = h−1
j (Kj). If S is a Markov system and

⋃m
i=1(Dhi

∪ Rhi
) = M,

then Γ (S) is called a Markov pseudogroup.

Notice that Markov pseudogroups are generated by maps hi, hj ∈ S such
that either Dhi◦hj

= Dhi
or Dhi◦hj

= ∅. Therefore, the following definition
is useful:

Definition 3. For any Markov system S = {h1, . . . , hm} one defines its
transition matrix P = [pij ]mi,j=1 as follows:

pij ∈ {0, 1} and pij = 1 iff Kj ⊂ Qi.
The Markov invariant set Z0 is defined as Z0 = Z \ int(Z), where

Z =
∞⋂
n=1

⋃
g∈Sn

Kg, Sn = {hi1 ◦ · · · ◦ hin : i1, . . . , in ≤ m},

Kg = g(Qin) when g = hi1 ◦ · · · ◦ hin .
Examples of Markov pseudogroups and their minimal sets abound in the

literature on foliation theory; let us mention only a few papers: [16], [8],
[9], [10]. From our point of view, the importance of Markov pseudogroups
for foliation theory stems from the result of Cantwell and Conlon [5] which
states that any one-dimensional Markov pseudogroup can be realized as the
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holonomy pseudogroup of some foliated manifold. A more precise formulation
of this result and a detailed proof is due to Walczak [18]:

Theorem 1 (Thm. 1.4.8 in [18]). If Γ is a Markov pseudogroup on a
circle such that its Markov invariant set Z0 contains a Γ -invariant minimal
set C, then there exist a closed foliated 3-manifold (M,F ), dimF = 2, an
exceptional minimal set E ⊂ M, a complete transversal T and a homeo-
morphism h : E ∩ T → C which conjugates Γ |C to H|E∩T , where H is the
holonomy pseudogroup of F acting on T .

The reader can find more results and a list of open problems on Markov
pseudogroups in [1]. Another realization of a Markov pseudogroup, obtained
from a hyperbolic Markov system, as the holonomy pseudogroup of a codi-
mension one foliation on a compact 3-manifold, was provided by Biś, Hurder
and Shive [2] in their construction of generalized Hirsch foliations. Sev-
eral months after that paper was written, similar results were obtained
in [7].

2. Contracting and parabolic Markov systems. Suppose that X
is a 1-dimensional smooth compact manifold, not necessarily connected and
possibly with boundary. Then the distances induced by any two Riemannian
metrics on X compatible with its smooth structure are bi-Lipschitz equiv-
alent. Therefore, Hausdorff measures calculated with respect to two such
metrics either simultaneously vanish, are positive and finite, or are simul-
taneously equal to infinity. Consequently, if one of these measures is finite
and positive then its Radon–Nikodym derivative with respect to the other
is uniformly separated from zero and infinity. In particular, the Hausdorff
dimension of any subset of X is the same, regardless of which metric com-
patible with the smooth structure of X is taken to calculate it. Therefore,
we do not explicitly single out any such metric. However, we emphasize that
the Hausdorff dimension depends on the smooth structure of X, and in par-
ticular it is not a topological concept.

Let I be a countable set and let S = {hj : j ∈ I} be a Markov system
in the sense of Definition 2 such that all Dj ’s and Rj ’s are proper subarcs
of X. Suppose further that all homeomorphisms hj have C1+ε extensions to
Dj , the closures of their domains. We call the Markov system S contracting
provided that

(∗) s = sup{||h′ij ||∞ : Fij = 1} < 1,

where Fij = 1 if Ki ⊆ Qj = h−1
j (Kj), and Fij = 0 otherwise, and hij =

hj |Ki . The associated Markov pseudogroup is also called contracting. We
want to associate to S a (conformal) graph directed Markov system Ŝ in
the sense of [12]. Indeed, take V = {1, . . . ,m} to be the set of vertices, and
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E = {(i, j) : Fij = 1} to be the set of edges. Define the incidence matrices
A : E × E → {0, 1} by the formula

A(i,j)(k,l) =

{
1 if i = l,

0 if i 6= l.

Put further
ϕ(i,j) = hij

for all (i, j) ∈ E. Then Ŝ = {ϕe}e∈E is our graph directed Markov system. In
order to meet all the formal conditions from [13] we extend all the maps ϕe,
e ∈ E, in a C1+ε fashion to some open intervals ∆j ⊃ Kj such that all the
components of∆j\Kj , j = 1, . . . ,m, have the same length and |ϕ′(i,j)(x)| ≤ s
for all (i, j) ∈ E and all x ∈ ∆i. It is easy to notice that the limit set of the
graph directed Markov system Ŝ is equal to Z0 = Z (this equality being a
consequence of (∗)), the Markov invariant set of S introduced in Definition 3.

Assume that the incidence matrix A is finitely primitive, meaning that
there exists a finite set Λ of A-admissible words of the same length such that
for any two elements a and b of E there exists γ ∈ Λ such that the word aγb
is A-admissible. Let h = HD(Z) be the Hausdorff dimension of the invariant
set Z.

Packing measures are counterparts of Hausdorff measures; both are used
in measuring fractals. They are defined for subsets of finite-dimensional Eu-
clidean space. One can find detailed definitions and properties of those mea-
sures in [11], [6] or [12].

A more general set-up of finite conformal graph directed Markov systems
with primitive incidence matrix was investigated by Mauldin and Urbański
in [12], where they showed (Theorem 4.2.11 in [12]) that there exists C > 1
such that

C−1 ≤ m(B(x, r))
rh

≤ C

for any x of Markov invariant set Z0 and small radius r. Here h is the unique
zero of the pressure function andm denotes the unique h-conformal measure.

The following theorems are direct consequences of Theorem 4.2.11 in [12]:

Theorem 2. If S is a contracting Markov system, then 0 < h < 1,
Hh(Z) <∞ and Ph(Z) > 0, where Hh denotes the h-dimensional Hausdorff
measure and Ph denotes the h-dimensional packing measure. If S is finite,
then in addition Hh(Z) > 0 and Ph(Z) < ∞. Furthermore, the measures
Hh|Z and Ph|Z are then equal up to a multiplicative constant.

To be more precise, Theorems 4.5.10, 4.5.1 and 4.5.2 of [12] yield the first
part of Theorem 2.
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From now on, we assume that our contracting Markov system is finite;
I = {1, . . . ,m}.

Theorem 3. If S is a finite contracting Markov system, then there exists
a constant c ≥ 1 such that for all r ∈ (0, 1] and all z ∈ Z,

c−1 ≤ Hh(B(z, r))
rh

≤ c.

Theorem 4. If S is a contracting Markov system, then BD(Z) = PD(Z)
= HD(Z), where BD(Z) and PD(Z) are respectively the box counting and
packing dimensions of Z.

Proof. The proof coincides with that of Theorem 7.6.7 in [15].

Now, replace in the above considerations condition (∗) by the following.
For all i, j ∈ {1, . . . ,m} with Aij = 1 and all x ∈ Ki,

|h′ij(x)| ≤ 1,

and if |h′ij(x)| = 1, then hij(x) = x. Such a point x is called parabolic. The
set Ω of parabolic points is assumed to be nonempty and Ki ∩ Ω contains
at most one point, for all i ∈ I; in particular the set Ω is finite. Assume also
that the maps hij are C2 with nonvanishing second derivative at parabolic
points; more generally, assume that condition (1.5) from [17] is satisfied. Call
any such system S parabolic Markov. Then Theorems 2, 3 and 4 take on the
following form:

Theorem 5. If S is a parabolic Markov system and 0 < h < 1, then the
h-dimensional Hausdorff measure of Z vanishes whereas the h-dimensional
packing measure is positive and finite.

Proof. It is known that 0 < Ph(Z) < ∞ and Hh(Z) < ∞. Moreover,
using Theorem 6.4 of [17] we get Hh(Z) = 0 if and only if h < 1.

Theorem 6. Suppose that S is a parabolic Markov system. Then for any
z ∈ Z off a set of Ph measure zero, we have

lim inf
r→0

Ph(B(z, r))
rh

∈ (0,+∞] and lim sup
r→0

Ph(B(z, r))
rh

= +∞,

where Ph denotes the h-dimensional packing measure on Z.

Proof. For the h-conformal measure m there exists a constant c > 0 such
that Ph = cm, therefore by Theorem 4.2.10 of [12] we get the first relation.
Notice that the set Y of those points whose ω-limit set does not contain any
parabolic point, has m measure equal to zero. Therefore the second formula
we claim in our theorem holds for all z ∈ Z \ Y because of Theorem 6.2
from [17].

Theorem 7. If S is a parabolic Markov system, then BD(Z) = PD(Z) =
HD(Z).
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3. Contracting and parabolic Markov systems versus codimen-
sion one foliations. Denote the unit disc, the unit circle, a circle and an
open ball in the complex plane respectively by:

D = {w ∈ C : |w| ≤ 1}, S(z, r) = {w ∈ C : |w − z| = r},
S1 = {w ∈ C : |w| = 1}, B(z, r) = {w ∈ C : |w − z| ≤ r}.

Choose an integer n > 1 and an analytic embedding ϕ : S1 → S1 × D
so that its homotopy class is equal to ng, where g is a generator of the
fundamental group of the solid torus.

Now we recall the construction of a generalized Hirsch foliation in codi-
mension one, which was presented in detail in Section 2 of [2], in the following
way. Choose a nonzero interior point z0 ∈ D (such that 0 < |z0| < 1) and
ε > 0 such that 0 < 2ε < min{|z0|, 1 − |z0|}. Now define the n-punctured
disc

P = D \ (B(z0, ε) ∪B(z1, ε) ∪ · · · ∪B(zn−1, ε)),

where zm = %mz0 for any 0 ≤ m < n and % = e2πi/n.
The analytic 3-manifold N1 with boundary is defined as the quotient of

R × P by the equivalence relation ∼ that identifies the points (x, z) and
(x+ 1, %z). Notice that N1 is diffeomorphic to the solid torus S1 ×D with
an open tubular neighborhood of ϕ(S1) removed. Remember that the em-
bedding ϕ : S1 → S1 ×D winds n times around the core. The boundary of
N1 consists of two disjoint tori, ∂N1 = ∂+N1 ∪ ∂−N1, where

∂+N1 = (R×S1)/∼, ∂−N1 = (R×((S(z0, ε)∪S(z1, ε)∪· · ·∪S(zn−1, ε)))/∼.
The manifold N1 admits a foliation FN1 = {{x}×P : x ∈ [0, 1)} by compact
2-manifolds with boundary. Notice that the intersection of the leaves of FN1

with the boundary tori consists of circles, therefore each boundary torus
is foliated by circles. Gluing the boundary ∂+N1 with the boundary ∂−N1

by a properly chosen diffeomorphism f : ∂+N1 → ∂−N1, which maps the
foliations of the boundary tori to one another, we get a foliated manifold N
with foliation F . To construct such a diffeomorphism f choose an immersion
H : S1 → S1 of degree n. Notice that the choice of H is equivalent to the
choice of a diffeomorphism h : R → R such that h(x + 1) = h(x) + 1. So,
H = h (mod 1).

Lemma 1 ([2, p. 76–77]). For any diffeomorphism h : R → R such that
h(x+ 1) = h(x) + n, the map f̃ : R×D → R×D defined by the formula

f̃(x, z) = (h(x), z1 + εze2πxi/n)

induces a map f : ∂+N1 → ∂−N1.

Finally, define
N = N1/∼f ,
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where ∼f identifies the points (x, z) and f(x, z). Then leaves of FN1 ∩∂+N1

are mapped to leaves FN1 ∩ ∂−N1, which implies that N has a foliation FN
whose leaves are n-punctured discs.

The foliation FN on N is called a generalized Hirsch foliation.
The foliation FN on N admits a complete transversal T : S1 → N.

Observe that the foliation FN1 on N1 is defined by a fibration, therefore
FN1 has no holonomy. So, all the holonomy of FN is introduced by the
identification of the outer boundary ∂+N1 with the inner boundary ∂−N1

via the diffeomorphism f .
The immersion H : S1 → S1 of degree n induces an equivalence relation

on S1: two points x, y ∈ S1 are said to be in the same “grand orbit” of H
if there exist positive integers k and l such that Hk(x) = H l(y) (cf. Milnor
[14]). The grand orbit of a point x is denoted by O(x).

Recall that a subset K ⊂ S1 is said to be H-invariant if for all x ∈ K
the grand orbit O(x) is contained in K.

Definition 4. An invariant set K is called minimal if it is closed and
for all x ∈ K the H-orbit O(x) is dense in K. A minimal set K is exceptional
if it is nowhere dense and is not finite.

Our first, obvious application to the theory of foliations is the following.

Theorem 8. Suppose F is a smooth codimension 1 foliation on a Rie-
mannian manifold M and T is a complete transversal for F . If the holonomy
pseudogroup of F acting on T is generated by a contracting (resp. parabolic)
Markov system, then there is an exceptional minimal set E for F such that
Theorems 2–4 (5–7) are true with the set Z replaced by E ∩ T.

Theorem 9. If S = {h1, . . . , hm} is either a contracting or parabolic Cr
Markov system on the circle S1, r ≥ 1, such that all maps hi are defined on
the closed interval I0 ⊂ S1, then there exists a generalized Hirsch foliation
(N,F) with codimF = 1, an exceptional minimal set E ⊆ N , a complete
transversal T and a Cr diffeomorphism f : E∩T → JG (the Markov invariant
set of the pseudogroup G generated by the Markov system S).

Proof. Take a contracting or parabolic Cr Markov system S = {h1,
. . . , hm} and closed intervals Ij = [aj , bj ], j = 0, 1, . . . ,m, such that

(1) hi : I0 → Ii ⊂ I0,
(2) Ii ∩ Ij = ∅ for i 6= j,
(3) |h′i(x)| ≤ 1 for any x ∈ I0 and the equality |h′i(x0)| = 1 holds for at

most one point x0 of Ii.

We may assume that I0 = [0, c], where c < 1. Denote the unique fixed point
of hi by x∗i . Let a0 = min{x∗i : 1 ≤ i ≤ m} and b0 = max{x∗i : 1 ≤ i ≤ m}.
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Without losing generality, we can assume for 1 ≤ i ≤ m that Ii = [ai, bi]
and

0 = a0 = a1 < b1 < a2 < · · · < bm−1 < am < bm = b0.

Following Example 6.1 in [2] we define a Cr diffeomorphism h : [0, 1] →
[0,m] in the following way:

(1) h|[ai,bi] = (i− 1) + hi for any 1 ≤ i ≤ m− 1;
(2) h|[bi,ai+1] = fi, where fi : [bi, ai+1] → [i − 1 + c, i] is a Cr diffeomor-

phism chosen so that h is Cr at the points bi and ai+1, 1 ≤ i ≤ m−1;
(3) h|[c,1] = fm, where the Cr diffeomorphism fm : [c, 1]→ [c, 1] satisfies

(a) fm has a unique attracting fixed point at x0 = (1 + c)/2,
(b) fm(c) = c and fm(1) = 1,
(c) fm|(c,1) is a contraction of the open interval (c, 1) to the attract-

ing fixed point x0,
(d) h is Cr at the points bm = c and 1.

Let H : S1 → S1 be the immersion of degree m, defined by H = h (mod 1),
and define the open set U ⊂ S1 to be the union of the H-orbits of the open
interval (c, 1). Putting K = S1 \U we find that K ⊂ I1∪· · ·∪Im. Modifying
slightly the proof of Lemma 2.1 in [2] we get

Lemma 2. Let H : S1 → S1 be the immersion of degree m, defined by
H = h (mod 1). Then there exists a unique minimal set JG ⊂ S1 with respect
to H. Moreover , JG = K.

Gluing the outer boundary ∂+N1 to the inner boundary ∂−N1 via the
diffeomorphism h, we obtain a three-dimensional manifold N . The foliation
FN on N admits a complete transversal. It can be constructed by the em-
bedding

t̂ : R→ R× P,
where t̂(x) = (x, 0). Notice that

t̂(x+ 1) = (x+ 1, 0) ∼ (x, %0) = (x, 0) = t̂(x).

Passing to the quotient manifold we get t : S1 → N1. By our construction
we deduce that L ∩ t(S1) 6= ∅ for any leaf L ∈ FN1 . Therefore, after gluing
outer and inner boundaries we get a complete transversal T : S1 → N.
The construction of the foliation FN on N implies that for the exceptional
minimal set E of FN we have

E ∩ T (S1) = K = JG ,

which completes the proof.

Corollary 1. With the assumptions and terminology of Theorem 9,
Theorems 2–7 remain true with the set Z replaced by E ∩ T.
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Similarly, making the construction in the proof of Theorem 1.4.8 in [18]
C1-smooth, we get the following

Theorem 10. If G is a contracting (resp. parabolic) Markov pseudogroup
on a circle, then there exist a closed foliated 3-manifold (M,F), dimF = 2,
an exceptional minimal set E ⊂ M, a complete transversal T and a C1

diffeomorphism f : E ∩ T → JG (the Markov invariant set of G) which
conjugates G|JG to H|E∩T , where H is the holonomy pseudogroup of F acting
on T . Consequently , Theorems 2–4 (resp. 5–7) remain true with the set Z
replaced by E ∩ T.

Now, if E is an exceptional minimal set for a codimension 1 foliation F
and T is a complete transversal for F , then E is locally diffeomorphic to the
Cartesian product of E∩T and an interval. Consequently, Theorems 8 and 9
remain true with E ∩ T replaced by “sufficiently small” open subsets of E.
The dimension h then equals HD(E) = HD(E ∩ T ) + 1.
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